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ABSTRACT

Understanding transcriptional regulation is a
major goal of molecular biology. Motif expression
decomposition (MED) was recently introduced to
describe the expression level of a gene as the sum
of the products of the binding strengths of its
cis-regulatory motifs and the activities of the
corresponding trans-acting transcription factors
(TFs). Here, we use computer simulation to examine
the accuracy of MED. We found that although MED
accurately rebuilds gene expression levels from
decomposed motif binding strengths and TF activ-
ities, estimates of motif binding strengths and TF
activities are unreliable. Nonetheless, MED provides
accurate estimates of relative binding strengths of
the same motif in different genes and relative
activities of the same TF under different conditions.
We found that reasonably accurate results are
achievable with genome-wide expression data
from only 30 conditions and that MED results are
robust to the existence of unknown occurrences of
known motifs, although they are less robust to the
presence of unknown motifs. With these under-
standings, judicious use of MED will likely provide
useful information about eukaryotic transcriptional
regulation. As an example, MED results are used to
demonstrate that motifs generally have higher
binding strengths when appearing in multiple
copies than appearing in one copy per promoter.

INTRODUCTION

Understanding how gene expression is regulated is a major
task of molecular biology. Jacob and Monod (1) pio-
neered the study of transcriptional regulation at the level
of interaction between cis-regulatory motifs (or elements)
in a gene’s promoter region and trans-acting transcription

factors (TFs) in the cell. Based on their idea, one may
describe the log-transformed expression level of a gene at a
given cellular condition by a function of the motifs present
in the gene’s promoter region and the TF activities
present in the condition, as given in Equation (1) in
Methods section [see also (2–4)]. The availability of several
high-throughput technologies such as gene-expression
microarrays and chromatin immunoprecipitation on
microarray chips (ChIP-chip), and rapid progress in
genomics and computational biology make it possible to
study patterns of transcriptional regulation at the genomic
scale (5–8). For example, large architectural differences in
the yeast regulatory network among different cellular
conditions have been identified (7,9). Recently, Nguyen
and D’Haeseleer used Jacob and Monod’s model to
analyze microarray gene expression data obtained from
multiple conditions in order to decipher principles of
transcriptional regulation (10). Their method, called motif
expression decomposition (MED), decomposes a matrix
(E) of gene expression levels at multiple conditions into
the product of two matrices: the first (M) contains the
condition-independent binding strength of each motif (in
each promoter) with its corresponding TF, while the
second (A) contains the activity of each TF at each condi-
tion studied. Some interesting patterns were observed
from the analysis of the M matrix. For instance, the same
motif with different orientations relative to the transcrip-
tional direction may have different binding strengths, and
the same motif with different physical distances from
the transcriptional starting site may also have different
strengths. Such findings, if correct, are invaluable for
understanding the structure, function and evolution of
promoters as well as those of transcriptional regulatory
networks (11). Nguyen and D’Haeseleer examined the
performance of MED by a cross-validation procedure,
showing that the product of the decomposed M and A
matrices is reasonably well correlated with the microarray
gene expression levels. Although this result suggests
that the method can be used to predict the expressions
of some genes at a given condition when the expressions of
many other genes are known at the same condition, it does
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not necessarily mean that the decomposed M and A
matrices are accurate, as the same E may be decomposed
into many different combinations of M and A (see
subsequently). Because it is the M and A matrices that
are of interest to most biologists, we decide to examine
whether these matrices decomposed by the MED method
are reliable. Because the true values of M and A matrices
are unknown for any organism, here we employ a com-
puter simulation approach. Our simulation results show
that MED-derived M and A matrices are unreliable.
Although this limitation of MED prohibits the direct use
of M and A matrices, we find that MED accurately
predicts the relative binding strengths of the same motif
in different genes and relative activities of the same TF
under different conditions. The performance of MED was
also examined under limited expression data or partial
knowledge of motifs. With improved understanding of
MED, we applied MED in yeast to demonstrate at the
genomic scale that motifs with >1 copy per motif have
significantly higher binding strengths than the same motifs
with 1 copy per motif.

METHODS

Generation of gene expression data

Based on Jacob and Monod’s model of transcriptional
regulation (1), the log-transformed expression level (Egc)
of gene g under condition c equals the sum of the products
of the binding strength of each motif and the activity of its
corresponding TF. That is,

E
gc
�

X

j2�g

MgjAjc 1

Here, �g is the set of motifs occurring in gene g’s promoter
region, Mgj is the binding strength of motif j in the pro-
moter of gene g, Ajc is the activity of TF j, which binds
to motif j, under condition c. A positive M indicates
an enhancer motif, whereas a negative M indicates a
repressor motif. Similarly, a positive A means activation,
whereas a negative A means suppression. Following
Nguyen and D’Haeseleer, we write Equation (1) in a
matrix format for all genes, all motifs and all conditions, as

E ¼ M � A, 2

where E is a m� n matrix that gives m genes’ expression
levels at n conditions, M is a m� k matrix that gives
the condition-independent binding strengths of k motifs
in m genes’ promoter regions and A is a k� n matrix
that gives the activities of k TFs under n conditions.
We randomly generate a m� k matrix designated as

MO; each element in column i of MO is a random
variable drawn from the normal distribution N(bi, �),
where i=1, 2, 3, . . ., k, and bi and � are the mean and
standard deviation of the normal distribution, respec-
tively. Each bi is a random variable drawn from the
normal distribution N(B, �). We set Hg, the number of
motifs in gene g, by drawing a Poisson random variable
with mean equal to 3. We then randomly pick Hg of the k
motifs in gene g and leave their corresponding entries

in row g of MO unchanged but set zero to all other entries
in row g of MO. We further make sure that each row and
each column has at least one non-zero entry. If there is a
row or column that contains all zeros, we randomly
choose an entry and reverse the value to that in the
original MO. The matrix generated after these steps is
referred to as M. We randomly generate a k� n matrix
designated as A. The elements in the ith row of A are
random variables drawn from the normal distribution
N(Ci, �), where i=1, 2, 3, . . ., k, and Ci is a random
variable drawn from the normal distribution N(C, �). We
then generate gene expression data E using Equation (2).
Because gene expression has stochastic variations (12)
and because measurement of gene expression has errors,
the observed gene expression level will differ from the
above computed E. Hence, we add an error term to each
expression value. For entry Eij, the error is a random
variable drawn from N(0, "Eij), where " is the noise level
fixed in each simulation. We have used "=0, 5, 10, 20, 30,
40, 50, and 100% in different simulations. After this step,
the E matrix is referred to as the observed or true
expressions. MED requires an initial M matrix designated
as MI to start the decomposition. We generate MI by
replacing all non-zero entries in M to 1. Unless otherwise
stated, this MI is used in our simulations. As will be
described later, in some occasions, we also used an MI

where each non-zero entry is �1 and an MI where each
non-zero entry is either 1 or �1, with equal probabilities.

Simulation

Because Nguyen and D’Haeseleer’s study focused on the
yeast Saccharomyces cerevisiae, we use parameters appro-
priate for yeast in our simulation. Using the approach
outlined in the above section, we randomly generate
expression data for 4500 genes under 300 conditions.
The total number of TFs in the organism is set to be 100.
In the dataset analyzed by Nguyen and D’Haeseleer, there
were expression data from 5719 genes under 255 condi-
tions and the total number of TFs was 62. Using the MED
method (10), we decompose the expression data (matrix E)
into M’ and A’ matrices and then compute E’ using
E’=M’�A’. We then compare E’ with E, M’ with M and
A’ with A, as they represent the MED-derived matrices
and the true matrices, respectively. At each noise level,
we repeat the simulation 10 times. This number of
replications is sufficient because our results are highly
reproducible.

RESULTS

Performance in predicting expression levels

Using computer simulation as described in Methods sec-
tion, we generated motif binding strength (M) and TF
activity (A) matrices for 4500 genes under 300 conditions,
including information for 100 different TFs and their
corresponding motifs. We first used B=2.5 and �=10 in
generating the M matrix and used C=0 and �=10 in
generating A. Our B and � values are similar to the M
matrix decomposed from the yeast expression data (10).
Our C and � are different from the decomposed values
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in (10), because MED has a normalization step that
artificially equalizes the average activity of each TF such
that the actual TF activities cannot be seen from the
decomposed A in (10). Nonetheless, even when we use
C=0 and �=0.1, similar to those observed from the
decomposed A in (10), our results remain unchanged.

We then generated the gene expression matrix E by
multiplying M and A matrices followed by addition of
different levels of expression noise. The E matrix was
decomposed into M’ and A’ matrices using the MED
method. We conducted a total of 10 simulation replica-
tions. Because the results are essentially identical among
the replicates, subsequently we describe our findings from
the first replication.

There are three expectations if the MED method
performs well. First, predicted gene expressions (E’, or
the product of M’ and A’) should be close to the observed
expressions (E). Second, predicted motif binding strengths
(M’) should be close to their true values (M). Third,
predicted TF activities (A’) should be close to their true
values (A). To measure the agreement between predicted
and true values of expression levels, we computed Pearson’s
correlation coefficient (r) between E and E’ for each gene
(row), and then computed the average r value across
the 4500 genes and the standard deviation of r. Similarly, to
measure the agreement between predicted and true values
of motif binding strengths and TF activities, we computed
r betweenM andM’ for each motif (column) and r between
A and A’ for each TF (row), and then take averages across
all motifs and all TFs, respectively.

As shown in Table 1, r between E and E’ gradually
declines as the noise level rises. Nonetheless, r> 0.80 even
when the noise is as high as 50% of the true value and is
greater than 0.90 when the noise level is <30%. These
results suggest that expression levels predicted by MED
are reliable. Indeed, for individual genes under individual
conditions, Figure 1 shows that the predicted expression
levels match the true values for the majority of genes
under the majority of conditions. Figure 1 is based on the
simulation results with a noise level of 30%. Qualitatively
similar patterns were obtained when different levels of
noise (5–100%) were introduced.

Performance in predicting motif binding strengths
and TF activities

To our disappointment, however, the r values between M
and M’ matrices are low (<0.3) regardless of the level of
noise (Table 1). Figure 2A shows that the motif binding
strength values in M and M’ are dramatically different.
Similarly, the r values between A and A’ matrices are low
(Table 1) and the TF activity values in A and A’ are quite
different (Supplementary Figure S1A). These observations
suggest that although E’ is close to E, M’ is not close to M
and A’ is not close to A. It is easy to show that if M and A
form one solution, multiplying column i of M’ by a and
row i of A’ by 1/a (a 6¼ 0) generates another solution.
Because a can be 1, �1 or any non-zero number, there are
infinite numbers of decomposition solutions. The original
proof of the uniqueness of the MED decomposition
solution was based on the arbitrary assumption that each
TF has a mean activity of 1 across all conditions (i.e., the
mean of each row in the A’ matrix is fixed at 1) (10).

Table 1. Pearson’s correlation coefficients (� standard deviation) between the true values and MED-predicted values of expression levels (E), motif

binding strengths (M) and TF activities (A)

Noise
level (%)

E M M ratio
(within-column)a

M ratio
(between-column)b

A A ratio
(within-row)c

A ratio
(between-row)d

0 1.000� 0.000 0.120� 0.997 0.998 0.289 0.120� 0.997 0.996 �0.044
5 0.997� 0.001 0.179� 0.988 0.986 �0.028 0.179� 0.988 0.992 0.200
10 0.991� 0.005 0.119� 0.997 0.988 0.101 0.119� 0.997 0.964 0.020
20 0.962� 0.026 0.119� 0.996 0.942 0.004 0.119� 0.995 0.930 0.048
30 0.929� 0.036 0.199� 0.981 0.904 0.081 0.199� 0.981 0.862 �0.045
40 0.872� 0.063 0.059� 0.997 0.848 �0.028 0.059� 0.995 0.771 0.103
50 0.834� 0.067 0.178� 0.979 0.812 �0.031 0.179� 0.977 0.714 0.110
100 0.606� 0.099 0.300� 0.890 0.587 0.064 0.303� 0.893 0.435 0.170

Note: The simulated expression data are from 300 conditions.
aRelative binding strengths of the same motif in two genes.
bRelative binding strengths of two different motifs.
cRelative activities of the same TF under two different conditions.
dRelative activities of two different TFs.

Figure 1. Comparison between the true (E) and MED-predicted (E0)
gene expression levels. The noise level is 30%. Note that the expression
levels are log-transformed and thus can be negative.
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Although there is only one decomposition solution under
this arbitrary assumption, the solution is not guaranteed
to be the right one. In fact, our simulations showed that
it is generally not the right solution. Nonetheless, our
above consideration predicts that the ratio of any two
entries within the same column (motif) of M’ can still be
close to the corresponding ratio in M, while the ratio of
any two entries from different columns of M’ should not
correlate with the corresponding ratio in M. Similar
predictions can be made for rows (TFs) of A and A’. These
predictions were indeed confirmed in our simulations.
That is, between M and M’, within-column ratios are
highly correlated, whereas between-column ratios are not
(Table 1; Figure 2B and C). In parallel, between A and A’,
within-row ratios are highly correlated, whereas between-
row ratios are not (Table 1; Supplementary Figure S1B
and C). Note that in this article, we measured Pearson’s

correlation between true and predicted ratios by using
only ratios falling in the range of [�20, 20], which account
for >95% of all ratios. This treatment is preferred over the
use of all ratios because of the existence of a small number
of ratios with extreme values, which affects the measure
of Pearson’s correlation coefficient. Similar results were
obtained when all ratios were considered in Spearman’s
rank correlation.

As stated earlier, if M’ and A’ form one solution,
multiplying column i of M’ by a and row i of A’ by 1/a
(a 6¼ 0) generates another solution. Because a can be either
positive or negative, it is expected that the r between a
column in M and its corresponding column in M’ should
be close to 1 or �1 when the noise level is low. This is
indeed the case. For example, in the simulation with 30%
noise, between M and M’, 60% of columns have r> 0.98,
while 40% of columns have r lower than �0.98 (same for

Figure 2. Comparison between true (M) and MED-predicted (M0) motif binding strengths. The noise level is 30%. (A) The scatter plot for true and
predicted motif binding strengths. Note the difference in scale between X-axis and Y-axis. (B) True and predicted relative binding strengths of the
same motifs in different genes. (C) True and predicted relative binding strengths of pairs of different motifs.
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rows between A and A’). This is why we observed low
average r values and high standard deviations for both
motif biding strengths and TF activities (Table 1).

Because MED only supplies one of infinite numbers of
solutions of M’ and A’, which particular solution does it
provide? This question is equivalent to asking what a
values MED uses. We found that the initial matrix (MI)
used to start the decomposition process affects a. We
conducted three sets of simulations, each containing 50
individual simulations. In the first set of 50 simulations,
we started with an MI where every non-zero entry was
set to be 1, as used by the original authors of MED (10).

The M matrix was generated with parameter B changing
from �5 to 5 in a step size of 0.2 in the 50 simulations.
The A matrix was generated as usual. In the second set of
50 simulations, we started with an MI where every non-
zero entry was set to be �1. In the third set of
50 simulations, we started with a MI where every non-
zero entry was randomly set to be either 1 or �1, with
equal probabilities. Figure 3A–C shows the distributions
of Pearson’s correlation coefficients between columns of
M and M’ for all the simulations in the three sets,
respectively. They clearly show that the entries in M’ tend
to have the same sign as in MI. For example, when B is

Figure 3. The distribution of Pearson’s correlation coefficient between columns (motifs) of M and M’, when all non-zero entries in MI are (A) 1,
(B) �1, and (C) randomly assigned to be either 1 or �1, with equal probabilities. B is the mean motif binding strength in M.
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positive and most entries in M are positive, use of the MI

with positive entries tends to give more positive r values
(Figure 3A) than use of the MI with negative entries
(Figure 3B). Similar patterns are observed in A (Supple-
mentary Figure S2).
Combining all the simulation results, we now have a

better understanding of MED. The MED algorithm is
designed in such a way that only one of infinite numbers of
solutions is provided and this solution depends on the
initial values used in decomposition. Knowing this prop-
erty, it becomes clear that the MED-decomposed binding
strengths for a given motif (across genes) are not true
strengths, but are expected to be true strengths multiplied
by an unknown number. Furthermore, this unknown
number can be different for different motifs. The relative
binding strengths of the same motif in different genes can
be reliably estimated by MED. However, MED cannot
distinguish between enhancers and repressors, neither can
it distinguish between activation and suppression TF
activities. Moreover, MED-predicted binding strengths
cannot be compared among different motifs, and MED-
predicted TF activities cannot be compared among dif-
ferent TFs.

Robustness ofMED

MED relies on the input of gene expression data and
cis-motif information. It is important to examine the
influences of these factors on the performance of MED.
In the above simulations, we simulated expression data
from 4500 genes at 300 conditions. A practical question is
how large the expression data have to be for MED to
produce reliable values of E’,M’ and A’. We do not reduce
the gene number because most eukaryotes have
>4500 genes. Rather, we reduce the number of conditions
from 300 to 100 and 30, respectively, with the rationale
that the cost for generating expression data can be signifi-
cantly reduced if 100 or even 30 conditions are sufficient
for predicting motif bind strengths and TF activities.
Table 2 gives the results for 30 and 100 conditions, in com-
parison with 300 conditions. One can see that the reli-
ability of the MED method in rebuilding E’ is not
reduced when fewer conditions are used. But, for predicting

relative binding strengths and TF activities, use of fewer
conditions worsens theMED performance. However, if the
noise level is <10%, use of 30 conditions can still provide
reasonably good predictions (Table 2).

Detection of TF-binding sites is a much studied topic in
the past decade (13–16). However, not all cis-regulatory
motifs can be detected by current methods (13). We
examined the accuracy of MED in two situations when
some motifs in the genome are undetected. In the first
situation, for a given TF, a fraction of its corresponding
cis-motifs in the genome are assumed to be undetected. In
the simulation, we fixed a random set of non-zero entries
in MI at 0. We repeated the simulation 10 times, as in each
replication a different set of non-zero entries from the
same MI were fixed at 0. We examined r between M and
M’ for relative binding strengths of the same motif in two
genes. Note that presumably undetected motifs were not
considered in computing r. We assumed that 0, 5, 10, 20,
30, 40 and 50% of motifs are undetected in seven sets of
simulations, respectively. The results show that undetected
motifs slightly worsen the performance of MED in
predicting relative motif binding strengths (Figure 4A).
The same is true for the relative TF activities (Supple-
mentary Figure S3A).

In the second situation, we assumed that for most TFs,
all of their corresponding motifs are known, while for
the rest of the TFs, none of their motifs are known. In the
simulation, we fixed all the entries of a random set of
columns in MI at 0. We repeated the simulation 10 times,
as in each replication a different set of columns from the
same MI were fixed at 0. We examined r between M and
M’ for relative binding strengths of the same motif in two
genes. Again, presumably undetected motifs were not
considered in computing r. We also assumed that 0, 5, 10,
20, 30, 40 and 50% of motifs are undetected in seven sets
of simulations, respectively. The results show that this
type of ignorance of motifs has a great impact on the
prediction of relative motif binding strengths (Figure 4B).
The same is true for the relative TF activities (Supple-
mentary Figure S3B). Nonetheless, the predictions are not
too bad (mean r> 0.65) when motifs corresponding to up
to 10% of TFs are completely unknown and the noise
level is not >30%.

Table 2. Pearson’s correlation coefficients between true values and MED-predicted values of expression levels (E), relative motif binding strengths

(M) and relative TF activities (A), when the expression data are obtained from 300, 100 and 30 conditions, respectively

Noise level (%) E M ratio (within-column)a A ratio (within-row)b

300
conditions

100
conditions

30
conditions

300
conditions

100
conditions

30
conditions

300
conditions

100
conditions

30
conditions

0 1.000� 0.000 0.997� 0.004 1.000� 0.000 0.998 0.993 0.976 0.996 0.998 0.996
5 0.997� 0.001 0.997� 0.001 0.998� 0.001 0.986 0.989 0.946 0.992 0.987 0.993
10 0.991� 0.005 0.990� 0.006 0.989� 0.009 0.988 0.933 0.867 0.964 0.956 0.976
20 0.962� 0.026 0.964� 0.025 0.967� 0.027 0.942 0.845 0.699 0.930 0.906 0.916
30 0.929� 0.036 0.930� 0.037 0.934� 0.049 0.904 0.840 0.586 0.862 0.873 0.818
40 0.872� 0.063 0.880� 0.061 0.887� 0.076 0.848 0.760 0.579 0.771 0.798 0.744
50 0.834� 0.067 0.833� 0.078 0.841� 0.098 0.812 0.611 0.404 0.714 0.680 0.623
100 0.606� 0.099 0.595� 0.125 0.652� 0.164 0.587 0.361 0.224 0.435 0.359 0.314

aRelative binding strengths of the same motif in two genes.
bRelative activities of the same TF under two different conditions.
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An application ofMED

After knowing what MED can do and cannot do, we
decided to use MED to address an important question in
gene regulation. It is frequently observed in eukaryotic
promoters that a motif appears with multiple tandem
copies (6). Although it has been frequently assumed that a
motif with multiple copies in a promoter has stronger
binding strength than the same motif with only one copy
(2,17), whether this assumption is valid at the genomic
scale has not been empirically tested. This question is ideal
for MED to tackle, because it only requires the mean
binding strength of a given motif in one set of genes,
relative to that in another set of genes. Using the same
yeast dataset used by Nguyen and D’Haeseleer (10), we
separated the genes into two groups for each motif.
The first group includes genes that each has only one copy
of this motif, whereas the second group includes genes
that each has multiple copies of the motif. Of the 62 motifs
that can be separated into two groups, we found 18 motifs
for which the average binding strengths for the two groups
have opposite signs (i.e. one is positive and other is nega-
tive). These inconsistent results are likely due to MED
errors and thus are removed. For each of the remaining

44 motifs, we calculated the ratio (R) between the average
binding strength of the second group and that of the first
group. We then tested the null hypothesis that R=1,
against the alternative hypothesis that R> 1. We found
that the average R of the 44 motifs is 4.517� 0.897,
significantly greater than 0 (P< 10�5; t-test; Figure 5).
Furthermore, 37 motifs, significantly more than half of
the 44 motifs, have R> 1 (P=3� 10�6; binomial test;
Figure 5). These results indicate that motifs with multiple
copies in promoters generally have greater binding
strengths than the same motifs with single copies
(Figure 5).

DISCUSSION

The exponential growth of available functional genomic
data opens the possibility to understand biological
processes at the genomic and systems levels (6,18,19).
One major advance in this endeavor is the development of
methods for identifying cis-regulatory motifs in promoters
of all genes in a genome. Using genome-wide microarray
gene expression data and motif information, Nguyen and
D’Haeseleer invented the MED method, which decom-
poses the gene expression data into motif binding strength
data and TF activity data (10). The knowledge of binding
strengths and TF activities can be used to decipher
principles of transcriptional regulation. Thus, it is impor-
tant to know how well MED performs. In this work, we
conducted computer simulations to evaluate the MED
method. Our results showed that at realistic levels of noise,
which includes both expression stochasticity and micro-
array errors, MED-predicted gene expression levels are
highly reliable. This result is not unexpected, as MED
decomposes E into M’ and A’, which are then used to
rebuild E’.
For both binding strengths and TF activities, however,

MED cannot provide accurate predictions. Further-
more, MED cannot differentiate between enhancer and

Figure 4. Performance of the MED method in predicting relative motif
binding strength when some motifs in the genome are undetected. The
mean correlation coefficient from 10 simulations and the associated
standard deviation are presented for each condition examined. In (A), a
fraction of motifs (from 0% to 50%) for each TF are undetected in the
genome. In (B), all motifs of a fraction of TFs (from 0% to 50%) are
undetected in the genome. Different colors show different fractions.

Figure 5. Frequency distribution of the ratio (R) between the mean
binding strength of a motif in promoters where it has multiple copies to
the mean binding strength of the same motif in promoters where it has
one copy. The distribution is from 44 different motifs in yeast.
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repressor motifs and cannot differentiate between activa-
tion and suppression TF activities. MED results cannot
be used to compare binding strengths among different
motifs and compare activities among different TFs.
Nevertheless, the relative binding strengths of the same
motif in different genes and the relative activities of the
same TF under different conditions can be estimated
with fairly high accuracy. If we have external informa-
tion that a motif is an enhancer or repressor or that a TF
activity under a given condition is activation or suppres-
sion (relative to the control condition), such information
can be combined with MED results to provide better
predictions. We note that relative binding strengths of
the same motif in different genes and relative activities
of the same TF under different conditions can provide
much information that is valuable to our understanding
of principles of transcriptional regulation. One such
example is the comparison between binding strengths of
the same motif when it has one copy per promoter
versus multiple copies per promoter. Using MED results,
we demonstrated that for the majority of motifs (84%),
the binding strength is greater when a motif appears
in multiple copies than when it appears in one copy.
This may explain why many motifs have multiple copies in
a promoter. However, we caution that this result was
based on an analysis of motifs corresponding to only
62 TFs, about a third of all TFs in yeast. Because our
simulation showed that MED is not robust to the igno-
rance of all motifs of even 10% of TFs in the genome, the
validity of our result should be further examined when
larger data become available.
An encouraging finding from our simulations is that at

realistic levels of noise, MED requires expression data
from as few as 30 conditions to provide reasonably accu-
rate predictions of relative motif binding strengths and
relative TF activities. Thus, even a small lab may be able
to generate sufficient data for a genome-wide estimation
of motif binding strengths in a non-model organism.
Another encouraging finding is that even when some
motifs (e.g. 20%) in the genome are undetected, MED can
still make reasonable good predictions, as long as the
majority of motifs are detected for each TF. When all
motifs of some TFs are unknown, MED will have much
reduced accuracy. Thus, from the perspective of MED
performance, it is more important to identify most motifs
for each TF than to identify all motifs for some TFs.
It should be noted, however, that the simulation results

presented here were based on a number of simplified
assumptions that warrant discussion. First, we assumed a
simple logic of transcriptional regulation as described by
Equation (1) in Methods section. If this assumption is
violated, MED predictions will be less accurate. One
potentially important violation is interaction between
motifs or interaction between TFs, which have been
observed (20,21). Second, epigenetic factors are known to
affect gene expression differently for different genes under
different conditions (22). Third, we assumed a relatively
simple form of expression stochasticity and microarray
noise. If expression errors are much larger and/or more
complex, MED predictions may be less accurate. We
believe that a better understanding of the molecular

mechanisms of gene expression regulation will assist the
development of more powerful computational tools,
which in turn help further understand gene expression
regulation.
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