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A large-scale genome-wide cross-trait analysis
reveals shared genetic architecture between
Alzheimer’s disease and gastrointestinal
tract disorders
Emmanuel O. Adewuyi 1,2✉, Eleanor K. O’Brien 1,2, Dale R. Nyholt 3, Tenielle Porter1,2,4 &

Simon M. Laws 1,2,4✉

Consistent with the concept of the gut-brain phenomenon, observational studies suggest a

relationship between Alzheimer’s disease (AD) and gastrointestinal tract (GIT) disorders;

however, their underlying mechanisms remain unclear. Here, we analyse several genome-

wide association studies (GWAS) summary statistics (N= 34,652–456,327), to assess the

relationship of AD with GIT disorders. Findings reveal a positive significant genetic overlap

and correlation between AD and gastroesophageal reflux disease (GERD), peptic ulcer

disease (PUD), gastritis-duodenitis, irritable bowel syndrome and diverticulosis, but

not inflammatory bowel disease. Cross-trait meta-analysis identifies several loci

(Pmeta-analysis < 5 × 10−8) shared by AD and GIT disorders (GERD and PUD) including PDE4B,

BRINP3, ATG16L1, SEMA3F, HLA-DRA, SCARA3,MTSS2, PHB, and TOMM40. Colocalization and

gene-based analyses reinforce these loci. Pathway-based analyses demonstrate significant

enrichment of lipid metabolism, autoimmunity, lipase inhibitors, PD-1 signalling, and statin

mechanisms, among others, for AD and GIT traits. Our findings provide genetic insights into

the gut-brain relationship, implicating shared but non-causal genetic susceptibility of GIT

disorders with AD’s risk. Genes and biological pathways identified are potential targets for

further investigation in AD, GIT disorders, and their comorbidity.
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A lzheimer’s disease (AD) is the most prevalent form of
dementia, characterised by neurodegeneration and a
progressive decline in cognitive ability1,2. The disorder

ranks as a subject of increasing global public health importance
with consequences for wide-ranging social and economic adverse
impacts on sufferers, their families, and the society at large1. By
the year 2030, over 82 million people—and about 152 million by
2050—are projected to suffer from AD1,2. While AD has no
known curative treatments, and its pathogenesis is yet to be
clearly understood, a comprehensive assessment of its shared
genetics with other diseases (comorbidities) can provide a deeper
understanding of its underlying biological mechanisms and
enhance potential therapy development efforts.

Several studies have reported a pattern of co-occurrence of
dementia (and AD in particular) with certain gastrointestinal
tract (GIT) disorders, microbiota, dysbiosis or medications
commonly used in the treatment of peptic ulcer disease
(PUD)3–10. For example, an observational study reported more
than twice the odds of dementia in individuals with gastritis
(adjusted odds ratio [AOR]: 2.42, P < 0.001, 95% confidence
interval [CI]: 1.68–3.49)3. Another observational study found a
significant association between regular use of proton-pump
inhibitors (PPI, medications for gastritis duodenitis, gastro-
esophageal reflux disease [GERD] or PUD) and increased risk of
incident dementia (hazard ratio [HR]: 1.44 [95% CI, 1.36–1.52];
P < 0.001)4. Similarly, lansoprazole (a PPI) was reported to pro-
mote amyloid-beta (Aβ) production5, the accumulation of which
is central to one of the core hypotheses for the development of
AD11. More recently, a longitudinal study reported more than a
sixfold increased risk of AD in individuals with inflammatory
bowel disease (IBD) [HR: 6.19, 95%CI: 3.31–11.57], predicting
over five-fold increased incidence across all forms of dementia7.

The available evidence, thus, suggests comorbidity or some
forms of association between AD and GIT disorders, although it
is not clear whether GIT traits are risks for AD or vice versa.
Regardless, these findings agree with the concept of the
‘gut–brain’ axis or the ‘gastric mucosa–brain’ relationship, which
has been implicated between GIT-related traits and central ner-
vous system (CNS) disorders including depression and Parkin-
son’s disease12–17. A relationship between AD and GIT disorders
or their comorbidity can worsen the quality of life of sufferers
while contributing to increased healthcare costs.

Despite the increasing number of studies reporting an asso-
ciation between AD and GIT traits, the biological mechanism(s)
underlying this potential association remains unclear. Moreover,
contrasting evidence exists7,18,19, leading to a longstanding debate
on the potential links of GIT traits to the risk of AD15,18–20.
Large-scale genome-wide association studies (GWAS), identifying
an increasing number of single nucleotide polymorphism (SNPs),
genes, and susceptibility loci, have been conducted separately for
AD and a range of GIT traits21–24. Findings from these GWAS
provide compelling evidence for the roles of genetics in the
aetiologies of AD and GIT disorders including GERD, PUD,
PGM (a combination of disease-diagnosis of PUD and/or GERD
and/or corresponding medications and treatments—a potential
proxy for PUD or GERD), gastritis-duodenitis, irritable bowel
syndrome (IBS), diverticular disease, and IBD21–24. However, to
the best of our knowledge, no study has leveraged the possible
pleiotropy between AD and GIT disorders as a basis for dis-
covering their shared SNPs, genes and/or susceptibility loci.

In this study, we analyse well-powered GWAS summary data
to comprehensively assess the genetic relationship and potential
causal association between AD and GIT disorders. We demon-
strate a positive significant genetic overlap and correlation
between AD and GERD, PUD, PGM, IBS, gastritis-duodenitis,
and diverticular disease. Also, in a cross-trait GWAS meta-

analysis, we identify many loci shared by AD and GIT disorders.
Causality assessment reveals no evidence for a significant causal
association between AD and GIT disorders. However, we identify
shared genes reaching genome-wide significance for AD and GIT
disorders in gene-based association analyses. Lastly, pathway-
based analyses show significant enrichment of lipid metabolism,
autoimmunity, lipase inhibitors, PD-1 signalling and statin
mechanisms, among others, for AD and GIT traits.

Results
Figure 1 presents a schematic workflow for this study. Briefly, we
performed three broad levels of analyses—SNP-level, gene-level,
and pathway-based analyses. First, we used the linkage dis-
equilibrium score regression (LDSC)25 to estimate the genetic
correlation between AD and GIT traits, and the ‘SNP effect
concordance analysis’ (SECA)26 method for concordance in SNP
risk effect assessment. Second, to identify SNPs and susceptibility
loci shared by AD and GIT disorders, we carried out GWAS
meta-analyses. We also applied the pairwise GWAS (colocalisa-
tion) method27 to identify independent genomic loci with shared
genetic influence on AD and GIT disorders. Third, using the
Mendelian randomisation (MR)28 and the Latent Causal Variable
(LCV)29 methods, we assessed potential (and partial) causal
associations between AD and GIT disorders. Lastly, we performed
gene and pathway-based analyses to identify shared genes
reaching genome-wide significance and biological pathways for
AD and GIT disorders. The largest publicly available AD sum-
mary statistics and GIT summary data from research consortia or
public repositories were utilised for analysis (Table 1 and Sup-
plementary Data 1).

Genetic correlation between AD and GIT disorders. We
assessed and quantified the SNP-level genetic correlation between
AD and GIT disorders using the LDSC25 analysis method. The
apolipoprotein E (APOE) region has a large effect on the risk of
AD; hence, we excluded APOE and the 500 kilobase (kb) flanking
region (hg19, 19:44,909,039–45,912,650) from the AD GWAS.
We also excluded SNPs in the 26 to 36 megabase region of
chromosome six from the data given the complex LD structure in
the human major histocompatibility complex (MHC). Notably, in
analyses both with and without the APOE region, LDSC reveals a
significant genetic correlation between AD and GIT traits
(Table 2). Genetic covariance intercept estimates were not sig-
nificantly different from zero (Supplementary Data 2), indicating
no sample overlap between our AD and GIT GWAS.

We found a positive and significant genetic correlation (rg) of
AD (excluding APOE region) with GERD (rg= 0.25,
P= 8.19 × 10−18), PUD (rg= 0.28, P= 3.70 × 10−7), PGM (rg=
0.22, P= 2.38 × 10−14), gastritis-duodenitis (rg= 0.24,
P= 2.40 × 10−8), IBS (rg= 0.19, P= 1.10 × 10−4), and diverticu-
lar disease (rg= 0.15, P= 2.97 × 10−5). However, we found no
evidence of a significant genetic correlation between AD and IBD
(rg= 0.07, P= 9.94 × 10−2) [Table 2], which may be because of
the relatively small cases and sample size of the IBD GWAS
(Table 1 and Supplementary Data 1). Our estimates of effective
sample size (Supplementary Data 1) suggest the IBD GWAS was
underpowered compared to other GIT data sets. We reproduced a
pattern of a positive and significant genetic correlation between
AD21 and the replication set of GIT traits with or without the
APOE region, except for IBD (Supplementary Data 3).

SNP effect concordance analysis (SECA) results. Using the
SECA method26, we assessed the directions of SNP-level genetic
overlap between AD and GIT disorders. We provide a more
comprehensive description of SECA in the methods section.
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Briefly, SECA performs a bi-directional analysis, assessing con-
cordance in the direction of the effect of AD-associated SNPs
(data set 1) on each of the GIT disorders (data set 2) and vice
versa. First, we conducted two rounds of P-value informed LD
clumping (first clumping: -clump-r2 0.1, -clump-kb 1000; second
clumping: -clump-r2 0.1, -clump-kb 10000) using PLINK 1.9030.

SECA subsequently assesses (using Fisher’s test) the presence of
excess SNPs in which the direction of effects is concordant across
144 subsets of data set 1 (AD GWAS) and data set 2 (each of the
GIT traits GWAS).

We found a positive and significant concordance of SNP risk
effect across the AD (data set 1) and each of the GIT GWAS (data

Fig. 1 Study design and workflow: examining shared genetic and causality of GIT disorders with the risk of Alzheimer’s disease. GWAS genome-wide
association studies, SNP single-nucleotide polymorphism, SECA SNP effect concordance analysis, LDSC linkage disequilibrium score regression, LCV latent
causal variable, MAGMA multi-marker analysis of genomic annotation, MR Mendelian randomisation, MR-PRESSO Mendelian randomisation pleiotropy
residual sum and outlier, KEGG Kyoto Encyclopedia of Genes and Genomes.

Table 1 Summary of GWAS data sets analysed.

GWAS summary statistics Cases Control Sample size Ancestry Phenotype source/definition

AD (Jansen et al.21) 71,880 383,378 455,258 European Clinically diagnosed and UKB AD-by-proxy21

GERD-UKBB_QSKIN (An et al.23) 71,522 261,079 332,601 Data from the UKB and the QSKIN study23

PUD (Wu et al.22) 16,666 439,661 456,327 UKB data code described in Wu et al.22,a

PGM (Wu et al.22) 90,175 366,152 456,327 GWAS for diagnosis of PUD and/or GERD
and/or corresponding medications and
treatments from the UKB data22,a

Gastritis-duodenitis Phecode 535
(Lee Lab)

28,941 378,124 407,065 Full European data subset from the Lee Lab

IBS (Wu et al.22) 28,518 426,803 455,321 UKB data code described in Wu et al.22,a

Diverticulosis Phecode 562 (Lee Lab) 27,311 334,783 362,094 Full European data subset from the Lee Lab
IBD (Wu et al.22) 7045 449,282 456,327 UKB data code described in Wu et al.22,a

Replication set
GORD (Wu et al.22) 54,854 401,473 456,327 European UKB data code described in Wu et al.22,a

PUD Phecode 531 (Lee Lab) 7436 401,525 408,961 Full European data subset from the Lee Lab
Lansoprazole (Watanabe et al.91) 13,559 266,884 280,443 UKB treatment/medication code:

lansoprazole91

Gastritis-duodenitis (Watanabe et al.91) 14,477 286,314 300,791 Main ICD10: K29 Gastritis and duodenitis91

IBS Phecode 564.1 (Lee Lab) 5548 334,783 340,331 Full European data subset from the Lee Lab
Diverticular disease (Watanabe et al.91) 14,028 286,763 300,791 Main ICD10: K57 Diverticular disease91

IBD (Liu et al.49) 12,882 21,770 34,652 Data from the IBD genetic consortium49

The ‘clinically diagnosed AD’ combined data from three case–control cohorts (N= 79,145). ‘AD-by proxy’ data were based on the UKB phenotype definition of individuals whose biological parents were
affected by AD. The parent’s current age, and where relevant, age at death were reported along with this GWAS data. The genetic correlation between the ‘clinically diagnosed AD’ and the ‘AD-by proxy’
is high at 0.8121, providing strong evidence or justification for combining them as more comprehensively described in the associated publication21.
AD Alzheimer’s disease, GERD and GORD gastroesophageal reflux disease, PUD peptic ulcer disease, PGM GWAS combining disease-diagnosis of PUD and/or GERD and/or medications for their
treatments, IBS irritable bowel disease, IBD inflammatory bowel disease, ICD International Classification of Diseases, UKB United Kingdom Biobank.
aUKB data code for case definition was from death register, primary care, hospital admissions data, self-report only, and other sources as described in the original publication Wu et al.22. The replication
set data were used for reproducibility testing in LDSC and SECA analyses, and partly in LCV analysis.
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set 2) including IBD (Table 3). For example, of the total 144 SNP
subsets tested with AD as data set 1 (Table 3), all 144 (for GERD,
PGM and gastritis-duodenitis), 139 (PUD), 133 (IBS), 130
(diverticulosis) and 42 (IBD) produced Fisher’s exact tests with
at least nominally significant effect concordance (odds ratio
[OR] > 1 and P < 0.05). The empirical P values (Ppermuted) for the
significant associations, adjusting for the 144 SNP subsets tested
(using permutations of 1000 replicates), range from 0.001 to 0.018
(Table 3). These results are significantly more than expected by
chance, supporting evidence of genetic overlap between AD and
the GIT traits.

By changing the direction of the analysis (in a bidirectional
assessment), we tested each of the GIT traits as data set 1 against
AD as data set 2 (Table 3). The results indicate evidence of a
strong genetic overlap between AD and GERD, PUD, PGM,
gastritis-duodenitis, IBS and diverticulosis. The results also
suggest (except for IBD) that SNPs that are strongly associated

with AD influence the named GIT traits and vice versa. Overall,
findings in SECA are largely consistent with those of LDSC,
except in the case of IBD—highlighting how SECA differs from
(capacity for a bidirectional assessment) as well as complements
LDSC. Notably, and like LDSC, SECA found a significant
association between AD and GIT traits with or without the
APOE region (Table 3 and Supplementary Data 4). Further,
replication analyses in SECA produced largely consistent findings
as with LDSC (Supplementary Data 5 and 6).

SNPs and loci shared by AD and GIT disorders. Leveraging the
significant genetic overlap and correlation as well as the substantial
GWAS sample sizes, we performed cross-disorder meta-analyses of
AD with GERD and PUD. The GWAS for PGM has many cases
and overall large sample size (Table 1) and is strongly correlated
with GERD (rg= 0.99, P= 0.000) and PUD (rg= 0.76,

Table 2 Genetic correlation between AD and GIT disorders.

Trait 1 Trait 2 rg se P

AD (Jansen et al.21)
Excluding APOE and MHC regions

GERD-UKBB_QSKIN (An et al.)23 0.25 0.03 8.19 × 10−18

PUD (Wu et al.22) 0.28 0.05 3.70 × 10−7

PGM (Wu et al.22) 0.22 0.03 2.38 × 10–14

Gastritis-duodenitis Phecode 535 0.24 0.04 2.40 × 10−8

IBS (Wu et al.22) 0.19 0.05 1.10 × 10−4

Diverticulosis Phecode 562 0.15 0.04 2.97 × 10–5

IBD (Wu et al.22) 0.07 0.05 9.94 × 10−2

AD (Jansen et al.21) with APOE region GERD-UKBB_QSKIN An et al 201923 0.23 0.04 1.20 × 10−10

PUD (Wu et al.22) 0.26 0.05 4.25 × 10−7

PGM (Wu et al.22) 0.21 0.04 3.56 × 10−9

Gastritis-duodenitis Phecode 535 0.22 0.05 1.21 × 10−5

IBS (Wu et al.22) 0.18 0.05 7.61 × 10−5

Diverticulosis Phecode 562 0.14 0.03 6.58 × 10−5

IBD (Wu et al.22) 0.06 0.04 1.72 × 10−1

We applied Bonferroni adjustment for testing the effects of seven GIT traits on AD (0.05/7= 7.1 × 10−3), and all genetic correlation results surviving this cut-off were considered significant while those
having P < 0.05 were regarded nominally significant.
AD Alzheimer’s disease, GIT gastrointestinal tract, GERD gastroesophageal reflux disease, PUD peptic ulcer disease, IBS irritable bowel syndrome, PGM GWAS combining disease-diagnosis of PUD and/
or GERD and/or medications for their treatments, IBD inflammatory bowel disease, rg genetic correlation, se standard error, P P value, MHC major histocompatibility complex.

Table 3 SECA results: primary test for concordant SNP effects.

Primary test for concordant SNP effects between AD and GIT traits

Trait 1 Trait 2 Direction SNP sets ratio Ppermuted

AD (Jansen et al.21)
Excluding APOE and MHC regions

GERD-UKBB_QSKIN An et al.23 + 144/144 0.001a

PUD (Wu et al.22) + 139/144 0.001a

PGM (Wu et al.22) + 144/144 0.001a

Gastritis-duodenitis Phecode 535 + 144/144 0.001a

IBS (Wu et al.22) + 133/144 0.001a

Diverticulosis Phecode 562 + 130/144 0.001a

IBD (Wu et al.22) + 42/144 0.018a

Primary test for concordant SNP effects between GIT traits and AD

Trait 1 Trait 2 Direction SNP sets ratio Ppermuted

GERD-UKBB_QSKIN An et al.23 AD (Jansen et al.21)
Excluding APOE and MHC regions

+ 144/144 0.001a

PUD (Wu et al.22) + 138/144 0.001a

PGM (Wu et al.22) + 141/144 0.001a

Gastritis-duodenitis Phecode 535 + 135/144 0.001a

IBS (Wu et al.22) + 118/144 0.001a

Diverticulosis Phecode 562 + 73/144 0.006a

IBD (Wu et al.22) + 19/144 0.084

AD Alzheimer’s disease, GIT gastro-intestinal tract, GERD gastroesophageal reflux disease, PUD peptic ulcer disease, IBS irritable bowel syndrome, PGM GWAS combining disease-diagnosis of PUD and/
or GERD and/or medications for their treatments, IBD inflammatory bowel disease, SNP single-nucleotide polymorphism, P P value, MHC major histocompatibility complex.
aThe number of SNP subsets with nominally significant concordant effects is significantly MORE than expected by chance, indicating significant concordance of genetic risk between the pairs of traits.
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P= 4.41 × 10−101) [Supplementary Data 7], hence, we also utilised
it in a meta-analysis with AD. We aimed at identifying SNPs and
loci which were not genome-wide significant in the individual AD
or GIT disorder GWAS (i.e., 5 × 10−8 < PGWAS-data < 0.05) but
reached the status (Pmeta-analysis < 5 × 10−8) following a meta-
analysis. We additionally identified SNPs and loci which were
already established (PGWAS-data < 5 × 10−8) in AD (Sentinel AD
SNPs/loci), but which, following GWAS meta-analyses, were
similarly associated with a GIT disorder, and vice versa. Briefly, our
GWAS meta-analyses identified shared SNPs and susceptibility
loci, some of which are putatively novel for AD or GIT disorders.

First, a meta-analysis of AD and GERD identified a total
of 119 SNPs reaching genome-wide significant association
(Pmeta-analysis < 5 × 10−8, Supplementary Data 8), from which we
characterised seven independent (r2 < 0.1) genomic loci—1p31.3,
1q31.1, 3p21.31, 6p21.32, 17q21.32, 17q21.33, 19q13.32 (Table 4).
Many SNPs reaching genome-wide significance in these loci
were not genome-wide significant in the individual AD and
GIT GWAS we analysed but reached the status in the cross-trait
meta-analyses (Table 3). Given this premise (that is,
PGWAS-data > 5 × 10−8 < Pmeta-analysis), the observation that some
of the identified loci are known for AD or GIT traits (from other
studies) provides support for our cross-trait analysis findings.
Specifically, two of the identified loci: (1p31.3 [near PDE4B], and
3p21.31 [near SEMA3F]) were not previously genome-wide
significant for AD (to our knowledge), indicating they are
putatively novel for the disorder. Similarly, three of the seven loci:
(17q21.32 [ZNF652], 17q21.33 [PHB], and 19q13.32 [TOMM40,
APOC2, KLC3, ERCC2]) are putatively novel for GERD given we
have no evidence they were previously genome-wide significant
for the disorder. A locus at 1q31.1 (near BRINP3) was putatively
novel for both AD and GERD at the time of our analysis but has
now been reported in a recent GERD multi-trait analysis31—
providing support for our finding. The remaining locus, 6p21.32
(near genes HLA-DQA2 and HLA-DRA) is known for both AD32

and GIT disorders—IBD33, ulcerative colitis34 and Crohn’s
disease33—and now (in our study), GERD.

An additional 175 independent SNPs at 121 loci reached a
genome-wide suggestive association (Pmeta-analysis < 1 × 10−5,
Supplementary Data 9), replicating some of the genome-wide
significant loci, including: 1p31.3 (PDE4B, lead SNP: rs2840677)
and 1q31.1 (BRINP3, rs10753964) for AD and GERD. Also, some
of the well-established (sentinel) loci for AD in our GWAS
showed evidence of association with GERD (Supplementary
Data 10) at 8p21.2 (near gene PTK2B, and CHRNA2,
rs28834970). Other AD sentinel loci shared with GERD include:
19q13.32 (near NECTIN2, lead SNP: rs12980613), and 19q13.32
(near KLC3, rs77988534) [Supplementary Data 10]. Known
(sentinel) GERD loci were similarly associated with AD as
summarised in Supplementary Data 10.

Second, following a meta-analysis of AD and PUD GWAS, a
total of 22 SNPs, at six genomic loci, reached a genome-wide
significance (Pmeta-analysis < 5 × 10−8, Supplementary Data 11).
The identified loci here include 2q37.1, 6p21.32, 8p21.1, 17p13.2,
19q13.32 and 19q13.41 (Table 4). Of the loci found in the AD and
GERD meta-analysis, four were replicated in the AD and PUD
meta-analysis. Two of these four loci, the 19q13.32 (near BCL3,
rs28363848), and the 6p21.32 (HLA-DRA, rs9270599), were
replicated at a genome-wide level of significance. The remaining
two loci—HYAL2, 3p21.31, P(FE)= 5.24 × 10−3, rs709210; and
PDE4B, 1p31.3, P(FE)= 2.94 × 10−4, rs6695557 (Supplementary
Data 12)—were replicated at 7.14 × 10−3 level. In addition to the
6p21.32 (HLA-DRA, rs9270599), two of the identified loci: at
8p21.1 (near SCARA3), and 2q37.1 (near ATG16L1) have been
reported for AD (SCARA335, ATG16L121,32,36), and GIT traits
(SCARA3: gastric or stomach ulcer37, ATG16L1: IBD38, ulcerative

colitis and Crohn’s disease33,39). Supplementary Data 13 presents
24 independent SNPs, at 21 genomic loci, reaching genome-wide
suggestive association (Pmeta-analysis < 1 × 10−5) for AD and PUD.

Third, given its large sample size and strong genetic correlation
with GERD and PUD, we performed a meta-analysis of PGM
with AD thereby identifying 42 SNPs (Supplementary Data 14) at
seven independent loci (Table 4) reaching a genome-wide
significance level. This analysis replicated, at a genome-wide
level (Pmeta-analysis < 5 × 10−8), five of the seven genome-wide loci
found in the AD and GERD meta-analysis including 1p31.3,
3p21.31, 6p21.32, 17q21.33 and 19q13.32. Additional loci found
in the AD and PGM meta-analysis such as 16q22.1 and 1q32.2
were at least genome-wide suggestive (Pmeta-analysis < 1 × 10−5) in
the AD and GERD analysis, supporting their involvement in the
disorders. An additional 23 SNPs, at three loci, were genome-
wide suggestive (Pmeta-analysis < 1 × 10−5) in the AD and PGM
meta-analysis (Supplementary Data 15). Of these, the rs33998678
SNP (16q22.1, IL34) is in strong LD (r2= 0.91) with a genome-
wide significant locus found in the AD vs PGM analysis
(rs34644948, at 16q22.1, MTSS2, Table 4), providing more
support for its involvement in AD and GIT traits (GERD and
PUD). Similarly, the rs663576 SNP (at 17q21.32, PHOSPHO1) is
moderately correlated (r2= 0.41) with a genome-wide significant
SNP (rs2584662 at 17q21.33, PHB, Table 4), identified in the
meta-analysis. This locus (17q21.33) was found in AD and GERD
meta-analysis (SNP rs2584662 near PHB), supporting its
involvement in AD and the GIT traits. Supplementary Data 10
summarises the sentinel AD loci associated with PGM and
vice versa.

Association of identified loci with other traits. Seven loci
reached a genome-wide significance in the meta-analysis of AD
and GERD GWAS; most of these loci were replicated in the AD
vs PUD and/or AD vs PGM meta-analysis. We queried each of
the associated loci for pleiotropic associations with other traits
using the GWAS catalogue (https://www.ebi.ac.uk/gwas) and the
Open Targets Genetics (https://genetics.opentargets.org) plat-
forms. For three of the loci—1p31.3 (near PDE4B), 3p21.31 (near
SEMA3F), and 1q31.1 (near BRINP3)—we have no evidence of
their previous association with AD, at a genome-wide level
(P < 5 × 10−8). However, and potentially supportive of our find-
ings, the loci have been reported for AD-related phenotypes such
as cognitive traits.

For example, PDE4B has pleiotropic associations with
intelligence40, educational attainment41, and sleep-related traits
such as insomnia42. The locus is also known for other disorders
including major depression, stress disorders, schizophrenia, and
multiple sclerosis43—putative comorbidities of AD44,45—among
other traits. The loci harbouring SEMA3F and BRINP3 have
similarly been reported for intelligence (SEMA3F46), general
cognitive ability (SEMA3F40), educational attainment
(SEMA3F47, BRINP341), insomnia (SEMA3F and BRINP342)
and BMI (SEMA3F and BRINP3). Sex hormone-binding globulin
levels48 and multi-site chronic pain are some of the traits that
have also been linked with SEMA3F. Interestingly, BMI, cognitive
traits such as intelligence, cognitive performance and even sleep-
related traits have been associated with GERD31. Taken together,
and in further support of their relationship, this observation,
suggests that GERD may share genetic links with certain AD-
related phenotypes including cognitive and sleep-related traits.

Further, our analysis consistently identified and replicated the
19q13.32 locus (mapped genes: TOMM40, APOC2, KLC3,
ERCC2, BCL3, and CD33) as shared by AD and GIT disorders.
While this locus is well known for AD, it has also been linked
with GIT traits including IBD49 (SYMPK, lead SNP: rs16980051,
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GRCh37: 19:46,345,886), and gut microbiota50, thus, highlighting
an association of AD with not only GIT disorders, but also the gut
microbiome. This premise is important given previous evidence
of genetic links between dysbiosis, neurological (AD, for instance)
and GIT disorders15,22,51,52, and may underscore the need for a
renewed focus on the genetics of gut-brain connection (including
the gut microbiome) to better understand the underlying
mechanisms of AD. Similar to other identified loci, the
19q13.32 locus also displays pleiotropic association with many
AD-related phenotypes: intelligence53, cognitive impairment test
score54, t-tau and beta-amyloid 1–42 measurements, hippocam-
pal atrophy rate, memory performance, and educational
attainment41. Supplementary Data 16 and 17 summarise other
traits previously reported for loci at 6p21.32 (near HLA-DRA)
and 17q21.32 (near ZNF652 and PHB).

Shared genomic regions identified in GWAS-PW analysis.
Using a colocalization analysis in GWAS-PW27, we assessed
shared genomic regions between AD and each of GERD and
PGM (Supplementary Data 18). The results of this analysis
confirm all the loci identified in the meta-analyses (except on
chromosome 3) are shared by AD and the respective GIT traits
(model 4 posterior probability [PPA 4] > 0.9, Supplementary
Data 18). While the findings also suggest that the causal variants
might be different (PPA 3 < 0.5), we note that when variants in a
locus are in strong LD, which may be the case in this study,
GWAS-PW is limited in its ability to correctly distinguish model
3 (PPA 3) from model 4 (PPA 4)27. Additional shared genomic
regions, in chromosomes 1, 6, 16, 17 and 19 having PPA 4 > 0.90
were identified for AD and the GIT traits (Supplementary
Data 18). Also, we identified a locus on chromosome 17, having
PPA 3 > 0.80, and implicating the SNP rs2526380 (17q22, near
TSPOAP1) in both AD and GERD. The posterior probability that
this SNP is a causal variant for both AD and GERD under model
327 is high at 0.99 (Supplementary Data 18).

Results of causal association analysis between AD and GIT
disorders. We assessed the potential causal relationship between
AD (as the outcome variable) and GERD (as the exposure vari-
able) using the two-sample MR method. We found no evidence of
a causal relationship between AD and GERD, irrespective of the
direction of the analysis (AD or GERD as the outcome or
exposure variable) [Table 5]. For sensitivity testing, we imple-
mented three additional models of MR analysis—MR-Egger,
weighted median, and the MR-PRESSO (Mendelian Randomi-
zation Pleiotropy RESidual Sum and Outlier). Results from these
methods agree with those of the Inverse Variance Weighted
(IVW) model supporting a lack of evidence for a causal asso-
ciation between AD and GERD (Table 5 and Supplementary
Data 19). We carried out further MR analysis assessing AD
against each of PUD, PGM, IBS, diverticular disease, and IBD,
and vice versa. Findings similarly reveal no evidence for a causal
relationship between AD and each of the GIT disorders assessed
(Supplementary Data 19).

We also used the Latent Causal Variable (LCV) approach29 to
test for a causal relationship between AD and each of the GIT
disorders. The results of LCV suggest a partial causal influence of
gastritis-duodenitis (genetic causal proportion [GCP]=−0.69,
P= 0.0026), on AD (Table 6). The result was in the reverse
direction for diverticular disease (GCP= 0.23, P= 0.000272),
suggesting AD may partially cause diverticular disease. Using
another set of GWAS (Table 6), we tested the reproducibility of
the partial causal association results for gastritis-duodenitis and
diverticular disease, neither of which was reproduced, hence, the
need for the findings to be further assessed in future studies. T
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Conversely, we found a significant association between AD and
lansoprazole use (GCP=−0.38, P= 0.001129).

Gene-based association analysis. Using SNPs that overlapped
AD and GERD GWAS, we performed gene-based analyses in
MAGMA (implemented in the FUMA55 platform), thereby
identifying a total of 18,929 protein-coding genes for each of the
traits. Applying a threshold P-value of 2.64 × 10−6 (0.05/18929—
Bonferroni correction for testing 18,929 genes), we identified 64
genome-wide significant (Pgene < 2.64 × 10−6) genes for AD
(Supplementary Data 20), 44 for GERD (Supplementary Data 21)
and 75 for PGM (Supplementary Data 22). Using the Fisher’s
Combined P-value (FCP) method, a total of 46 genome-wide
significant (PFCP < 2.64 × 10−6) genes shared by AD and GERD
were identified (Supplementary Data 23), 10 of which were not
previously significant in our AD or GERD GWAS, at the
Pgene < 2.64 × 10−6 threshold, adjusting for multiple testing
(Table 7), but are in known AD or GIT trait loci. It is noteworthy

that some of the identified AD and GERD shared genes are in
chromosomal locations found in our meta-analysis, including
1p31.3 (PDE4B), 3p21.31, (SEMA3F, HYAL2, IP6K1), 6p21.32
(HLA-DRA) and 19q13.32 (Supplementary Data 23). Combining
P-values by weighting based on sample size (the weighted
Stouffer's method) produced a similar pattern of results (as the
FCP) for AD and GERD (Supplementary Data 24). We also
replicated a similar pattern of findings in gene-based analysis
(and FCP) using the AD and the PGM GWAS (Table 7 Sup-
plementary Data 25).

Biological pathways and mechanisms shared by AD and GIT
disorders. We performed pathway-based functional enrichment
analyses in the g: Profiler platform56 to functionally interpret
genes overlapping AD and GIT disorders and gain biological
insight from their commonalities. First, we investigated genes
overlapping AD and GERD (at Pgene < 0.05, FCP < 0.02) and
identified several biological pathways that were overrepresented
(Fig. 2 and Supplementary Data 26), implying they have a role in
the mechanisms underlying both AD and GERD. Pathways
related to membrane trafficking and metabolism, alteration,
lowering or inhibition of lipids were significantly enriched
(Supplementary Data 26). These included plasma lipoprotein
assembly, remodelling, and clearance (Padjusted= 2.01 × 10−3),
cholesterol metabolism (Padjusted= 4.99 × 10−2), plasma lipopro-
tein assembly (Padjusted= 3.45 × 10−5), and triglyceride-rich
plasma lipoprotein particle (Padjusted= 5.23 × 10−9), among oth-
ers. Also, lipase inhibitors (Padjusted= 6.08 × 10−3) and the statin
(3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors)
pathway (Padjusted= 3.99 × 10−2) were significantly enriched for
AD and GERD (Supplementary Data 27), suggesting mechanisms
of these medications may find therapeutic application in AD and
GIT disorders.

Pathways related to the immune system were also over-
represented for both AD and GERD as evidenced by the
identification of immune or autoimmune-related disorders such

Table 6 Partial causality assessment using the Latent Causal
Variable approach.

Trait 1 Trait 2 GCP SE P

AD GERD −0.01 0.58 0.64
PUD 0.49 0.32 0.24
PGM −0.45 0.37 0.22
Gastritis-duodenitis
(Main ICD10: K29)

−0.69 0.27 0.0026

IBS 0.35 0.29 0.38
Diverticular disease
(Main ICD10: K57)

0.23 0.10 0.000272

Lansoprazole −0.38 0.17 0.001129

AD Alzheimer’s disease, GCP genetic causal proportion, SE standard error, P P value, GERD
gastroesophageal reflux disease, PUD peptic ulcer disease, PGM GWAS combining disease-
diagnosis of PUD and/or GERD and/or medications for their treatments.

Table 7 Shared genes reaching genome-wide significance for AD and GIT traits.

SYMBOL CHR CYTOBAND START STOP P-AD P-GIT FCP-value

Genome-wide significant genes shared by AD and GERD
MON1A 3 3p21.31 49946302 49967606 2.42E−02 3.14E−06 1.33E−06
IP6K1 3 3p21.31 49761727 49823975 1.47E−02 1.05E−05 2.57E−06
HLA-DRA 6 6p21.32 32407619 32412823 1.38E−05 7.06E−06 2.34E−09
PGBD1 6 6p22.1 28249314 28270326 9.62E−03 4.08E−06 7.08E−07
NKAPL 6 6p22.1 28227098 28228736 1.33E−03 4.64E−05 1.09E−06
ZKSCAN8 6 6p21 28109688 28127250 2.11E−02 3.92E−06 1.43E−06
C6orf10 6 6p21.32 32256303 32339684 2.96E−05 4.20E−03 2.10E−06
TMEM106B 7 7p21.3 12250867 12282993 1.33E−04 1.04E−03 2.32E−06
ZNF689 16 16p11.2 30613879 30635333 9.71E−06 1.55E−02 2.51E−06
FOXA3 19 19q13.32 46367247 46377055 6.31E−04 5.45E−05 6.25E−07

Genome-wide significant genes shared by AD and PGM
CR1L 1 1q32.2 207818458 207911761 2.70E−05 4.47E−03 2.05E−06
HYAL2 3 3p21.31 50355221 50360337 3.63E−02 3.49E−06 2.14E−06
C6orf10 6 6p21.32 32256303 32339684 2.32E−05 3.64E−04 1.65E−07
NKAPL 6 6p22.1 28227098 28228736 1.33E−03 7.31E−06 1.89E−07
CLIC1 6 6p21.33 31698358 31707540 7.64E−04 1.88E−05 2.74E−07
ZSCAN9 6 6p22.1 28192664 28201260 1.92E−03 1.46E−05 5.17E−07
TRIM39-RPP21 6 6p22.1 30297359 30314631 9.07E−03 3.63E−06 6.01E−07
ZSCAN12 6 6p22.1 28346732 28367511 1.10E−02 7.36E−06 1.40E−06
BAG6 6 6p21.33 31606805 31620482 6.68E−03 1.61E−05 1.84E−06
FBXO46 19 19q13.32 46213887 46234162 7.62E−04 4.19E−05 5.83E−07
RSPH6A 19 19q13.32 46298968 46318577 2.76E−04 1.16E−04 5.85E−07

Note: genes reported in this Table were not previously genome-wide in the gene-based analysis for the individual AD and GIT GWAS analysed but reached the status following FCP analysis.
CHR chromosome, P-AD P value for Alzheimer’s disease, P-GIT P value for gastrointestinal tract trait, FCP Fisher’s combined P value, GERD gastroesophageal reflux disease, PGM GWAS combining disease-
diagnosis of PUD and/or GERD and/or medications for their treatments.
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as asthma (Padjusted= 3.53 × 10−3), systemic lupus erythematosus
(Padjusted= 7.88 × 10−3), and type I diabetes mellitus (Padjusted=
2.47 × 10−2). Other immune-related pathways identified include
the intestinal immune network for IgA production (Padjusted=
4.07 × 10−2), programmed cell death protein 1 (PD-1) signalling
(Padjusted= 5.24 × 10−3), translocation of ZAP-70 to immunolo-
gical synapse (Padjusted= 2.44 × 10−3) and interferon-gamma
signalling pathways (Padjusted= 2.45 × 10−2) [Supplementary
Data 26].

Following enrichment mapping and auto-annotation, the
identified biological pathways were clustered into six themes of
biological mechanisms, namely: ‘lipoprotein particle clearance,’
‘receptor signalling pathway,’ ‘side membrane vesicle and cell
adhesion,’ ‘peptide antigen binding,’ ‘intestinal immune network,’
and ‘interferon-gamma signalling’ (Fig. 2). Moreover, a pathway-
based analysis using genes that overlapped AD and PGM GWAS

(at Pgene < 0.05) replicated some of the pathways identified for AD
and GERD, including ‘plasma lipoprotein assembly, remodelling,
and clearance’ (Padjusted= 3.01 × 10−4), ‘peptide antigen binding’
(Padjusted= 2.28 × 10−3), and ‘triglyceride-rich plasma lipoprotein
particle’ (Padjusted= 6.60 × 10−8) [Supplementary Data 27]. Also,
we performed pathway-based analysis separately for GERD and
AD GWAS, the full results of which are presented in
Supplementary Data 28 and 29, respectively.

Discussion
We present the first comprehensive assessment (to the best of our
knowledge) of the shared genetics of AD with GIT disorders by
analysing large-scale GWAS summary data using multiple sta-
tistical genetic approaches. Consistent with previous conventional
observational studies3–9, our findings confirm a risk-increasing

Fig. 2 Clusters of significantly enriched biological pathways for AD and GERD. a KEGG: Kyoto Encyclopedia of Genes and Genomes pathways: intestinal
immune network (allograft rejection, intestinal immune network for IGA production, type 1 diabetes mellitus, systemic lupus erythematous, antigen
processing and presentation, graft-versus-host disease, asthma), and cholesterol metabolism (cholesterol metabolism). b Gene Ontology: Cellular
Components: side membrane vesicle (lumenal side of membrane, MHC class II protein complex, integral component of lumenal side of endoplasmic
reticulum [ER] membrane, clathrin-coated endocytic vesicle membrane, late endosome, ER to Golgi transport vesicle membrane, coated vesicle membrane,
lumenal side of ER membrane, MHC protein complex, COPII-coated ER to Golgi transport vesicle, transport vesicle membrane, late endosome membrane),
and plasma lipoprotein particle (chylomicron, very low-density lipoprotein [VLDL] particle, triglyceride-rich plasma lipoprotein particle, plasma lipoprotein
particle, lipoprotein particle, LDL lipoprotein particle). c Gene Ontology: Molecular Function: peptide antigen binding (peptide binding, peptide antigen
binding, MHC class II receptor activity) and lipase inhibitor activity (lipase inhibitor activity). d Gene Ontology: Biological Pathway: lipoprotein particle
clearance (phospholipid efflux, VLDL particle clearance, regulation of plasma lipoprotein particle levels, plasma lipoprotein particle clearance, chylomicron
remnant clearance, regulation of lipid catabolic process, regulation of VLDL particle clearance, protein-lipid complex assembly, plasma lipoprotein particle
organisation, regulation of phospholipid catabolic process, VLDL particle assembly, regulation of lipid localisation, glycolipid catabolic process, triglyceride-
rich lipoprotein particle clearance, high density lipoprotein particle remodelling), receptor signalling pathway (T cell receptor signalling pathway, interferon-
gamma-mediated signalling pathway, antigen receptor-mediated signalling pathway), membrane adhesion cell (cell-cell adhesion via plasma membrane
adhesion molecules, homophilic cell adhesion via plasma membrane adhesion molecules), and negative regulation type (negative regulation of type I
interferon production). e Reactome, Wiki pathway and Transcription Factor Binding site: assembly clearance plasma (statin pathway, NR1H2 and NR1H3-
mediated signalling, plasma lipoprotein assembly, remodelling, and clearance, plasma lipoprotein clearance, NR1H3 and NR1H2 regulated gene expression
linked to cholesterol transport and efflux, VLDL assembly, VLDL clearance, plasma lipoprotein assembly), interferon-gamma signalling (PD-1 signalling,
generation of second messenger molecules, interferon-gamma signalling phosphorylation of CD3 and TCR ZETA chains, translocation of ZAP-70 to
Immunological synapse), Factor: ZNF2 motif, and ZNF582 motif. Supplementary Data 26 provides additional details about these biological pathways. AD
Alzheimer’s disease, GERD gastroesophageal reflux disease.
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relationship between AD and GIT disorders and provide insights
into their underlying biological mechanisms. In contrast to the
positive genetic correlation between AD and other GIT disorders,
LDSC found no significant genetic correlation between AD and
IBD, which may be due to the relatively small number of cases
and sample size of the IBD GWAS. Based on the effective sample
size estimates, the IBD GWAS is underpowered compared to
other GIT data sets. Supporting this premise, SECA revealed a
significant association between AD (as data set 1) against IBD (as
data set 2), but not the other way around. The AD GWAS has a
larger sample size, providing a more robust association on which
to condition (select independent) SNPs for concordance analysis
which may explain why the significant association was not bi-
directional unlike the case for other GIT traits. Future studies,
nonetheless, need to confirm this relationship, as more powerful
IBD GWAS becomes available.

Evidence of significant genetic overlap and correlation reflects
not only shared genetic aetiologies (biological pleiotropy) but also
suggests a possible causal association between AD and the GIT
traits (vertical pleiotropy). Using LCV, we detected a partial
causal association between AD and gastritis-duodenitis, lanso-
prazole, and diverticular disease. However, this partial causal
association was not evident in reproducibility testing. The
inconclusive LCV findings should be cautiously interpreted, and a
reassessment of the results, in future studies, is warranted. Con-
versely, all MR analyses provided no evidence for a significant
causal relationship between AD and GIT traits, indicating that
shared genetics and common biological pathways may best
explain the association between AD and these GIT disorders.

We performed GWAS meta-analysis, thereby identifying seven
shared loci reaching genome-wide significance for AD and GERD.
The loci, including 1p31.3 (PDE4B), 3p21.31 (SEMA3F, HYAL2),
6p21.32 (HLA-DRA), and 19q13.32 (TOMM40, APOC2, ERCC2,
BCL3, and KLC3), were replicated in AD vs PUD and AD vs PGM
meta-analyses and largely reinforced in colocalisation (GWAS-
PW) as well as gene-based association analyses. Notably, the
independent SNP rs12058296 (1p31.3), mapped to the phospho-
diesterase 4B (PDE4B) gene. Inhibition of PDE4B (or its subtypes)
has shown promise for inflammatory diseases57–60. Indeed, recent
evidence supports the potent anti-inflammatory, pro-cognitive,
neuro-regenerative, and memory-enhancing properties of PDE4
inhibitors (PDE4B, in particular61), making them plausible ther-
apeutic targets for AD59,60 and GIT disorders58. Other identified
independent genome-wide significant SNPs and loci mapped to
genes including CD46, SEMA3F, HLA-DRA, MTSS2, PHB, and
TOMM40. The CD46 gene is a complement regulator which is
bactericidal to Helicobacter (H) pylori62 and was also recently
identified for AD in a transcriptome analysis63, making it a plau-
sible candidate in both AD and GIT disorders.

We identified biological pathways, significantly enriched for
genes overlapping AD and GIT disorder (GERD, and PUD)
GWAS in pathway-based analyses. Notably, lipid-related, and
autoimmune pathways were overrepresented. There is a close link
between autoimmunity and lipid abnormalities64, and consistent
with previous studies65–69, our findings highlight the importance
of lipids homoeostasis in AD and GIT traits. In AD, for example,
hypercholesterolaemia is believed to increase the permeability of
the blood-brain barrier system, facilitating the entry of peripheral
cholesterol into the CNS, and resulting in abnormal cholesterol
metabolism in the brain65,66. Amyloidogenesis, alteration of the
amyloid precursor protein degradation, accumulation of Aβ, and
subsequent cognitive impairment have all been linked with ele-
vated cholesterol in the brain66,70–72. Similarly, while the exact
roles of lipids in GIT disorders are unclear, H. pylori is believed to
cause or worsen abnormal serum lipid profiles through chronic

inflammatory processes, and eradication of the infection enhan-
ces lipid homoeostasis68,69.

The mechanisms of association between AD and lipid dysre-
gulation relate to the ‘gut–brain axis’, alterations in GIT micro-
biota and the immune system10,66. Moreover, lipid dysregulation
is central to the interplay of AD, gut microbiota, and GIT
disorders10,66, thus, suggesting the therapeutic potential of lipid-
lowering medications such as lipase inhibitors and statins
(identified in our study) in AD and GIT disorders. Lipase inhi-
bitors (orlistat) prevent intestinal dietary lipid absorption, and
lower total plasma triglycerides and cholesterol levels73,74, making
them a preferred pharmacological treatment for obesity73. The
connection between AD, lipid dysregulation, dysbiosis and the
‘gut-brain axis’10,66, may, thus, support the potential utility of
lipase inhibitors in AD. Lipases, including monoacylglycerol,
diacylglycerol, and lipoprotein lipases are involved in AD
pathology, and can also effectively be inhibited by orlistat74.
Similarly, statins possess anti-inflammatory, immune-modulating
and gastroprotective properties75,76, and their active use sig-
nificantly reduced PUD risk76 as well as enhanced H. pylori
eradication77. Statins also improve cognitive ability and reduce
neurodegeneration risks, making them potentially beneficial in
AD78,79. However, there is evidence suggesting a paradoxical
predisposition to reversible dementia for statins78,79. While this
finding has been challenged78, it may highlight a need to identify
AD patients for whom statins will be beneficial, consistent with
the model of personalised health.

Our findings have implications for practice and further studies.
First, results highlighting lipid-related mechanisms support the
roles of abnormal lipid profiles in the aetiologies of the disorders,
which may be potential biomarkers for AD and GIT disorders (or
their comorbidity). Second, our findings underscore the impor-
tance of lipid homoeostasis. The dietary approach is one effective
preventive as well as non-pharmacologic approach for the man-
agement of hyperlipidaemia, and overall, this is consistent with
findings in this study. Indeed, adherence to a ‘Mediterranean’ diet
(low in lipids) is recognised as beneficial both in AD80 and GIT
disorders81. Thus, a recommendation for healthy diets, early in
life, may form part of the lifestyle modifications for preventing
AD and GIT disorders. The clinical utility of these recommen-
dations will need to be further investigated and validated. Third,
our study identifies lipase inhibitors and statin pathways in the
mechanisms of AD and GIT disorders, which may be a potential
therapeutic avenue to explore in the disorders. We hypothesise
that individuals with comorbid AD and GIT traits may gain
benefits from these therapies. There is a need to test this
hypothesis using appropriate study designs including randomised
control trials. Fourth, our study implicates the PDE4B, and given
the evidence in the literature58–61, we propose that treatment
targeted at its inhibition may be promising in comorbid AD and
GIT traits. Lastly, while our findings do not necessarily indicate
that AD and GIT disorders will always co-occur, they support
their shared biology; thus, early detection of AD may benefit from
probing impaired cognition in GIT disorders.

The use of multiple, complementary statistical genetic
approaches enables a comprehensive analysis of the genetic
associations between AD and GIT disorders and is a major
strength of this study. Also, we analysed well-powered GWAS
data, meaning our findings are generally not affected by small
sample size, possible reverse causality, or confounders that con-
ventional observational studies often suffer from. Nonetheless,
our study has limitations that should be considered alongside the
present findings. First, the GWAS for AD combined clinically
diagnosed cases of AD with proxies (AD-by-proxy—individuals
whose parents were diagnosed with AD). Given the high

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03607-2

10 COMMUNICATIONS BIOLOGY |           (2022) 5:691 | https://doi.org/10.1038/s42003-022-03607-2 | www.nature.com/commsbio

www.nature.com/commsbio


correlation between the GWAS with and without the ‘AD-by-
proxy’ cases21, we argue as did others21 that combining them is
valid, especially for sample size improvement, which is critical to
ensuring adequately powered GWAS analysis. Second, analyses
were restricted to participants of mainly European ancestry in our
study, thus, findings may not be generalisable to other ancestries.
Third, GIT traits GWAS were combinations of several data
sources: primary care, hospital admission, medication use, and
self-reported records. While there is a potential for misdiagnosis
or accuracy of self-reported data, their use is well justified given
the correlation in effect sizes of the data with other sources22.
Moreover, additional data from other sources including ICD-10
were utilised with consistent results across these GWAS.

In conclusion, this study provides genetic insights into the
long-standing debate and the observed relationship of AD with
GIT disorders, implicating shared genetic susceptibility. Our
findings support a significant risk increasing (but non-causal)
genetic association between AD and GIT traits (GERD, PUD,
PGM, gastritis-duodenitis, IBS, and diverticular disease). Also, we
identified genomic regions and genes, shared by AD and GIT
disorders that may potentially be targeted for further investiga-
tion, particularly, the PDE4B gene (or its subtypes) which has
shown promise in inflammatory diseases57–60. Our study also
underscores the importance of lipid homoeostasis and the
potential relevance of statins and lipase inhibitors in AD, GIT
disorders or their comorbidity. To our knowledge, this is the first
comprehensive study to assess these relationships using statistical
genetic approaches. Overall, these findings advance our under-
standing of the genetic architecture of AD, GIT disorders, and
their observed co-occurring relationship.

Methods
GWAS summary statistics. The GWAS data utilised in the present study are
summarised in Table 1 with further cohort-specific details, including effective
sample size estimates, provided in Supplementary Data 1. The data were sourced
from popular GWAS databases, repositories, and large research consortia/groups.
The GWAS summary data for ‘clinically diagnosed AD and AD-by-proxy’21 (the
largest publicly available AD GWAS) was used as our AD GWAS data. This GWAS
has large sample size (cases= 71,880, controls= 383,378, sample size
[N]= 455,258) and, thus, increased power for detecting genetic variants of small to
moderate effect sizes. More specific details about the data have been published21.
GIT traits including PUD (cases= 16,666, controls= 439,661, N= 456,327), IBS
(cases= 28,518, controls= 426,803, N= 455,321), and IBD (cases= 7045, controls
= 449,282, N= 456,327) were assessed against AD. The GWAS for the traits were
obtained from the recently published GIT GWAS22 and other sources located
through the GWAS Atlas24 (Supplementary Data 1). Clinically, PUD medications
are indicated in GERD and gastritis, accordingly, GWAS combining diagnosis for
PUD and/or GERD and/or medications commonly used for these disorders (PGM)
have been conducted22, potentially identifying people with PUD or GERD. This
GWAS has a large sample size (cases= 90,175, controls= 366,152, N= 456,327),
and as was the case in the original publication22, we utilised the data for analysis in
the present study, as a proxy for PUD or GERD. These GIT GWAS were well
characterised and, where possible, validated as described in the original
publication22.

Additionally, we utilised a well-characterised GWAS for GERD (cases= 71,522,
controls= 261,079, N= 332,601), which combined data sets from the UK Biobank
and the QSKIN study23. Gastritis-duodenitis (cases= 28,941, controls= 378,124,
N= 407,065) and diverticular disease (cases= 27,311, controls= 334,783,
N= 362,094) GWAS from the Lee Lab (https://www.leelabsg.org/resources) were
also used in this study. We utilised additional (available) GWAS summary data
(Table 1 and Supplementary Data 1) sourced from public repositories used for
possible replication of our genetic overlap and correlation (LDSC and SECA)
findings. A comprehensive description of the quality control procedures for each of
the GWAS data and their analysis are available through the corresponding
publications (Table 1 and Supplementary Data 1). Our preliminary analysis
indicates that there is no significant sample overlap between the AD GWAS and
each of the GIT GWAS assessed in this study (Supplementary Data 2), ruling out
the possibility of bias from such occurrence.

Linkage disequilibrium score regression analysis (LDSC). We assessed and
quantified SNP-level genetic correlation between AD and GIT disorders using the
LDSC25 analysis method (https://github.com/bulik/ldsc/wiki/Heritability-and-
Genetic-Correlation). LDSC assesses and distinguishes the contributions of

polygenicity, sample overlaps, and population stratification to the heritability and
genetic correlation between traits25. In the present study, we performed LDSC
analysis using the standalone version of the software and by following the proce-
dures provided by the program developer (https://github.com/bulik/ldsc). The
apolipoprotein E (APOE) region has a large effect on the risk of AD; hence, we
excluded APOE and the 500 kilobase (kb) flanking region (hg19,
19:44,909,039–45,912,650) from the AD GWAS for this analysis. We also excluded
SNPs in the 26–36 megabase region of chromosome six from the data given the
complex LD structure in the human major histocompatibility complex (MHC). To
assess possible sample overlap between AD GWAS and each of the GIT GWAS, we
performed LDSC correlation analysis with the genetic covariance intercept
unconstrained. The result of this analysis indicates that the estimated genetic
covariance intercepts were not significantly different from zero (Supplementary
Data 2), indicating no significant sample overlap between our AD and GIT GWAS.
Thus, we constrained the intercept in the reported genetic correlation analysis. We
applied Bonferroni adjustment for testing the effects of seven GIT traits on AD
(0.05/7= 7.1 × 10−3), and all genetic correlation results surviving this adjustment
were considered significant while those having P < 0.05 were regarded as nominally
significant.

SNP effect concordance analysis (SECA). We used the standalone version of the
SECA software pipeline to perform SNP-level genetic overlap assessment and
statistical tests between AD and GIT disorders. A detailed description of the SECA
software and methods has been published26. Briefly, SECA accepts a pair of GWAS
data (data set 1 and data set 2) as input and performs a range of analyses to assess
concordance in effect direction between a pair of traits—AD and GIT disorders in
the present study. First, we carried out quality control to exclude all non-rsID(s)
and duplicate variants in data set 1 and align SNP effects to the same effect allele
across data set 1 and data set 2. Second we performed two rounds of P-value
informed LD clumping in data set 1 (first clumping: -clump-r2 0.1, -clump-kb
1000; second clumping: -clump-r2 0.1, -clump-kb 10000) using PLINK 1.9030.

Third, SECA partitions independent SNPs resulting from LD clumping into
12 subsets of SNPs according to the P value for data set 1 as follows: P1 ≤ (0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). SECA subsequently performs
Fisher’s exact tests to assess the presence of excess SNPs in which the direction of
effects is concordant across data set 1 and data set 2 (that is, for the corresponding
P value derived 12 subsets of SNPs associated in data set 2, P2). Hence, a total of
144 SNP subsets (a 12 by 12 matrix from data set 1 and data set 2) were assessed for
SNP effect concordance. SECA calculates permuted P value for the number of
significant associations with adjustment for testing 144 associations (based on
permutations of 1000 replicates).

In the present study, we first assessed AD GWAS as data set 1 and each of the
GIT disorders as data set 2. For comparison, we also assessed each of the GIT
disorders as data set 1 against AD as data set 2. Thus, using SECA, we assessed the
effects of AD-associated SNPs on each of the GIT disorders and vice versa. Since
SECA is conditioned on data set 1, the bi-directional assessment is an important
analysis step to account for instances where SNPs that are strongly associated with
AD do not affect GIT traits and vice versa. Further, the bi-directional analysis
(which is not possible with LDSC, for example) enables the assessment of whether
the observed genetic overlap is driven primarily by only one of the traits or both
thereby enhancing a better understanding of their association.

GWAS cross-traits meta-analysis. GWAS meta-analysis pools the results of
GWAS data, thereby increasing the sample sizes and augmenting the detection of
genetic variants with small to moderate effect sizes. In the present study, we used
the GWAS meta-analysis method of pooling AD GWAS with each of the GIT traits
(cross-disorder or cross-trait meta-analysis). We used two models of meta-analysis:
the Fixed Effect (FE), and the modified Random Effect (RE2)82 models. The FE
model estimates the FE P-value using the inverse‐variance weighted method, which
assumes that the AD and each of the GIT disorders’ GWAS are assessing the same
(fixed) effect. The presence of effect heterogeneity is a limitation of the model. On
the other hand, by estimating P-values using the modified random effects, the RE2
model82 allows for differences in SNP effects and the method is powerful in the
presence of SNP effect heterogeneity.

Genomic loci characterisation. Using the outputs of our cross-trait meta-analyses
for AD and each of the GIT disorders, we carried out some downstream analyses
including functional annotation of SNPs, and genomic loci characterisation in line
with practice in the previous studies13,55,83,84. Briefly, SNPs that were not genome-
wide significant in the individual AD and GIT disorder GWAS, but which reached
genome-wide significance following the meta-analysis were identified. From these,
we characterised independent SNPs at r2 < 0.6, and lead SNPs at r2 < 0.1. We
defined the genomic locus as the region within 250 kb of each lead SNP. We
assigned lead SNPs within this region to the same locus, meaning two or more lead
SNPs may be present in one locus. We performed these downstream analyses using
the Functional Mapping and Annotation (FUMA) software (an online platform)55.
We subsequently queried identified loci in the GWAS catalogue (https://www.ebi.
ac.uk/gwas) and Open Targets Genetics (https://genetics.opentargets.org) to assess
their previous identification for AD, GIT disorders or other traits.
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Pairwise GWAS analysis. We performed a co-localisation analysis utilising the
pairwise GWAS (GWAS-PW) method27 to further assess the regions in the gen-
ome shared by AD and GIT disorders. Briefly, GWAS-PW software implements
the Bayesian pleiotropy association test and identifies genomic regions that influ-
ence a pair of correlated traits27. We used this method to assess whether the loci
reaching genome-wide significance in our GWAS meta-analyses were truly shared
by AD and the GIT disorders. Also, we investigated other shared genomic regions
which may not have been found in the GWAS meta-analysis. We combined the
summary data for AD with the data for each of the GIT disorders and estimated
the posterior probability of association (PPA) of a genomic region using the
GWAS-PW software. We modelled four PPAs: (i) that a genomic region is asso-
ciated with AD only (PPA-1), (ii) that a genomic region is associated with the GIT
trait only (PPA-2), (iii) that a genomic region is associated with both AD and the
GIT trait and the causal variant is the same (PPA-3), and (iv) that a specific
genomic region is associated with both AD and the GIT trait but through separate
causal variants (PPA-4)27.

Causal relationship assessment. Using MR28 analysis methods, we assessed the
causal association between AD and each of the GIT disorders in this study.
Mimicking randomised control trials (RCTs), MR analysis incorporates genetics
into epidemiological study designs to assess causality28. The method is based on the
principle of instrumental variables and underpinned by three primary assumptions.
First is the relevance assumption which requires that the chosen instruments are
robustly associated with the exposure variable85. Second is the independence
assumption which states that the instruments must not be associated with con-
founders of the exposure-outcome variables85. Last is the assumption of exclusion
which demands that the instruments influence the outcome only through their
relationship with the exposure variable85.

In the present study, we used the two-sample MR method (https://mrcieu.
github.io/TwoSampleMR/articles/introduction.html) for a bidirectional association
assessment between AD and each of the GIT disorders. In the first round of
analysis (AD as exposure variable), independent (r2 < 0.001) genome-wide
significant SNPs (P < 5 × 10−8) associated with AD were utilised as instrumental
variables (IVs) and assessed against each of the GIT disorders’ GWAS (outcome
variables) analysed in this study. This analysis assesses whether genetic
predisposition to AD is causally associated with any of the GIT traits included in
the present study. Reversing the direction of analysis, independent SNPs robustly
associated with each of the GIT disorders’ GWAS (exposure variables) were
similarly utilised as IVs and assessed against AD (as the outcome variable). In this
instance, we assessed the potential causal effects of GIT traits on AD.

We used the inverse variance weighted (IVW) model of MR as the primary
method for causal association assessment, and for validity testing, we performed a
heterogeneity test (Cochran’s Q-test), a ‘leave-one-out’ analysis, a horizontal
pleiotropy check (MR-Egger intercept) and individual SNP MR analyses. Also, we
used other MR analysis models including the MR-Egger, weighted median86,87, and
the ‘Mendelian randomisation pleiotropy residual sum and outlier’ (MR-PRESSO)88

methods for sensitivity testing. The MR-Egger and weighted median models operate
under weaker assumptions of MR and are designed to provide valid causal estimates
even when horizontal pleiotropy is present in all (MR-Egger) or as much as 50%
(weighted median) of selected IVs86,87. Conversely, the MR-PRESSO method can
detect and correct horizontal pleiotropy by excluding outlier IVs thereby improving
valid causal estimates88. All MR analyses were performed in R (4.0.2).

We performed an additional assessment of the causal or partial causal
association between AD and each of the GIT disorders using the Latent Causal
Variable (LCV) method29. LCV estimates causality proportion (GCP) ranging from
−1 to 1 where a value close to 1 indicates a potential causal association between
two traits in the forward direction and −1 in the backward direction29. LCV
corrects for heritability and genetic correlation between traits and is not limited by
sample overlap29. This analysis was performed in the online platform of the
Genetics of Complex Traits (CTG) virtual laboratory (https://vl.genoma.io/
analyses/lcv)29,89.

Gene-based association analysis. We performed gene-based association analyses
to identify genome-wide significant genes shared by both AD and each of the GIT
disorders assessed in this study. This analysis complements the SNP-based studies.
However, beyond the SNP level, gene-based association analysis provides greater
power for identifying genetic risk variants since it aggregates the effects of multiple
SNPs, and it is generally not limited by small effect sizes or correlations among
SNPs. Moreover, genes are more closely related to biology than SNPs, meaning
gene-level analysis can provide better insights into the underlying biological
mechanisms of complex traits.

In the present study, we carried out gene-based association analysis separately
for AD and GERD using the multi-marker analysis of genomic
annotation (MAGMA) software, implemented in the FUMA (https://fuma.ctglab.
nl/)55 platform. We defined gene boundaries length within ±0 kb outside the gene,
and to ensure that equivalent gene-based tests were performed, we utilised SNPs
overlapping AD and GERD GWAS in analysis separately for each of the traits.
Following a similar procedure, we also performed gene-based analysis using SNPs
overlapping AD and PGM GWAS.

Based on the results of the gene-based analysis, we identified genome-wide
significant genes for each of the traits—AD, GERD and PGM—at an adjusted P
value of 2.64 × 10−6 (0.05/18929: Bonferroni adjustment for testing 18,929 genes).
Further, to identify genes shared by AD and each of GERD and PGM, we extracted
their overlapping genes at gene P value <0.1 (Pgene < 0.1). We combined the
respective P values for AD and the GIT traits using Fisher’s Combined P-value
(FCP) method and thereafter identified shared genes reaching genome-wide
significance for AD and each of GERD and PGM in the FCP analyses.

Pathway-based functional enrichment analysis. For a better understanding of
the potential biological mechanisms underlying AD and GIT disorders or their
comorbidity, we carried out pathway-based functional enrichment analyses using
the online platform of the g:GOst tool in the g-profiler software56. The g:GOst tool
performs analysis on the list of user-inputted genes and queries relevant databases
including Gene Ontology, Human Protein Atlas, WikiPathway, Human Phenotype
Ontology, CORUM, Kyoto Encyclopedia of Genes (KEGG), and Reactome. This
analysis enables us to functionally interpret genes overlapping AD and GIT dis-
orders. We included genes that were overlapping between AD and each of GERD
and PGM at Pgene < 0.05 (FCP < 0.02) in this analysis, and followed established
protocols90. Functional category term sizes were restricted to values from 5 to
35090. For multiple testing corrections, we applied the default ‘g: SCS algorithm’
recommended in the protocol90 and reported the significantly enriched biological
pathways at the multiple testing adjusted P value [Padjusted] < 0.05.

Statistics and reproducibility. We performed statistical analysis mainly in the
Unix environment and the R (https://www.r-project.org/) software. Additional
software including Python (https://www.python.org/), Plink (https://www.cog-
genomics.org/plink/) and online platforms (CTG virtual lab: https://vl.genoma.io/
updates, G-profiler: https://biit.cs.ut.ee/gprofiler, and FUMA: https://fuma.ctglab.
nl) were utilised. Adjustment for multiple testing was carried out using the Bon-
ferroni approach in LDSC, gene-based and meta-analyses. In G-profiler, we applied
the recommended inbuilt ‘g: SCS algorithm’ for multiple testing corrections. To
enable us to test the reproducibility of AD and GIT association, we used available
GIT data for further analysis.

Ethics approval and consent to participate. This study is a secondary analysis of
existing GWAS summary data from public repositories, and international research
consortia. Specific and relevant ethics approval for each of the data utilised is
presented in the associated publications described in the section for GWAS sum-
mary data. No additional ethics approval is required for the conduct of the
present study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated during this study are included in the published article and its
Supplementary section. GWAS summary statistics data analysed were sourced from
international research consortia and public repositories as described in the subsection for
GWAS summary data. The data are freely available and accessible online through the
links and references provided within this study. Supplementary Data 1 provides a
comprehensive description of the data and how to access them.

Code availability
We used publicly available software for analysis in this study. Here, we list the URLs
(some of which are online methods) for the software where details about them including
(where applicable) the computer codes are available: CTG virtual lab (https://vl.genoma.
io/updates), FUMA (https://fuma.ctglab.nl/), G-profiler (https://biit.cs.ut.ee/gprofiler/),
GWAS Catalogue (https://www.ebi.ac.uk/gwas/home), GWAS-PW (https://github.com/
joepickrell/gwas-pw), LDSC (https://github.com/bulik/ldsc), SECA (https://sites.google.
com/site/qutsgel/software?authuser=0), Open Target Genetics (https://genetics.
opentargets.org/), and Two-Sample MR (https://mrcieu.github.io/TwoSampleMR/
articles/introduction.html).
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