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Abstract: The rate of incidentally detected pancreatic cystic lesions (PCLs) has increased over the
past decade and was recently reported at 8%. These lesions pose a unique challenge, as each
subtype of PCL carries a different risk of malignant transformation, ranging from 0% (pancreatic
pseudocyst) to 34–68% (main duct intraductal papillary mucinous neoplasm). It is imperative to
correctly risk-stratify the malignant potential of these lesions in order to provide the correct care
course for the patient, ranging from monitoring to surgical intervention. Even with the multiplicity
of guidelines (i.e., the American Gastroenterology Association guidelines and Fukuoka/International
Consensus guidelines) and multitude of diagnostic information, risk stratification of PCLs falls short.
Studies have reported that 25–64% of patients undergoing PCL resection have pancreatic cysts with no
malignant potential, and up to 78% of mucin-producing cysts resected harbor no malignant potential
on pathological evaluation. Clinicians are now incorporating artificial intelligence technology to aid
in the management of these difficult lesions. This review article focuses on advancements in artificial
intelligence within digital pathomics, radiomics, and genomics as they apply to the diagnosis and
risk stratification of PCLs.

Keywords: pancreatic cystic lesions; artificial intelligence; radiomics; endoscopic ultrasound; IPMN;
genomics

1. Introduction

With the reduced cost and increased utilization of diagnostic testing for abdominal
pathologies and an overall aging population, the rate of incidentally detected pancreatic cys-
tic lesions (PCLs) has increased compared with previous decades and was recently reported
at 8% (95% CI: 4–14%) [1]. PCLs present a unique challenge, as some of these lesions are
pre-cancerous, such as mucinous PCLs, cystic neuroendocrine tumors, and solid pseudopap-
illary tumors. A specific subtype of PCLs, branch duct intraductal papillary mucinous
neoplasm (BD-IPMN), is the most common precancerous PCL. BD-IPMNs are increasingly
prevalent with increasing age at around 10% [1,2]. At the other end of the spectrum, some
of the PCLs—such as serous cystadenomas (SCAs) and pseudocysts—represent benign
lesions. Each of these PCLs carries a different risk of malignant transformation, which
is outlined in Table 1 [2–14]. Therefore, it is imperative to correctly identify these cystic
lesions and their characteristics to stratify their malignant potential. Classification systems
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such as the American Gastroenterology Association guidelines (AGA), American College
of Gastroenterology guidelines, United European Gastroenterology guidelines (UEG), and
Fukuoka/International Consensus guidelines (Fukuoka-ICG) rely on demographics, clin-
ical features, fluid cytology, and cyst morphology based on CT, MRI, and endoscopic
ultrasound (EUS) for PCL risk stratification [3,4,15,16].

Table 1. Type, characteristics, and malignant potential of pancreatic cystic lesions.

Cyst Type Characteristics Rate of Malignancy (%)

Main duct IPMN
Mucinous cyst with variable malignant potential, characterized
by main pancreatic duct dilation > 5 mm in the absence of other

causes of obstruction [3]
38–68% [2]

Branch duct IPMN
Mucinous cyst with variable malignant potential, characterized
as a cyst > 5 mm in diameter that is in communication with the

main pancreatic duct. Most common IPMN type [3].
15–17% [3,11]

Mixed IPMN Displays features of both MD-IPMN and BD-IPMN [3] 28-31% [10]

Mucinous cystic neoplasm

Found almost exclusively in middle-aged women. Mucinous
cyst most commonly found in the body or tail of the pancreas.

Usually no communication with the pancreatic duct. Columnar
epithelium with ovarian stroma differentiates from IPMN [5].

10% [6]

Cystic pancreatic
neuroendocrine tumor

Can be solid, cystic, or mixed composition. Can mimic other
cyst types on imaging. Can be associated with Multiple

Endocrine Neoplasia type 1 (MEN1) [13].
6–31% [14]

Serous cystadenoma

More common in women. Benign, usually found in the tail of
the pancreas. Imaging shows microcystic or macrocystic

appearance. Central stellate scar is characteristic but not always
present. Associated with von Hippel-Lindau disease [7].

0.01% [9]

Solid pseudopapillary
neoplasm

More common in younger women, commonly third decade of
life. Can occur anywhere in the pancreas. Small tumors are

usually solid. Large tumors usually have mixed solid and cystic
components. Generally well encapsulated and carry a good

prognosis [12].

10% [8]

Pseudocyst Benign cyst in patients with history of pancreatitis. Typically
high lipase and amylase in cyst fluid. 0% [4]

Patients with PCLs will undergo multiple diagnostic testing modalities, including
standard of care (SOC) imaging (CT/MRI) and EUS-guided fine needle aspiration (FNA).
Some center may offer novel diagnostics that include cyst fluid next generation sequencing
(NGS) analysis, EUS-guided through-the-needle biopsy (EUS-TTNB), and EUS-guided
needle-based confocal laser endomicroscopy (EUS-nCLE), thus providing abundant in-
formation to clinicians [17]. As there are a multitude of PCLs with varied morphologies
ranging from serous to mucinous, clinicians have had difficulty with accurately diag-
nosing and risk stratifying these lesions. Even with the multiplicity of guidelines and
multitude of diagnostic information, risk stratification of PCLs falls short. Studies have
reported that 25–64% of patients undergoing PCL resection have pancreatic cysts with no
malignant potential, and up to 78% of mucin-producing cysts (IPMNs, mucinous cystic neo-
plasms (MCNs)) resected harbor no malignant potential on pathological evaluation [17–19].
This dissonance between risk stratification using SOC and pathological diagnosis is par-
ticularly troublesome in pancreatic surgery, as pancreaticoduodenectomies are associated
with a morbidity of 30% and mortality rates of 2.1–5% [20,21]. While the goal of surgery
in BD-IPMNs is to resect lesions with advanced neoplasia (high-grade dysplasia or carci-
noma), multiple surgical series and a recent international multicenter study showed that
63% of resected BD-IPMNs had low-grade dysplasia (LGD), often representing overtreat-
ment [1,22–25]. Given the difficulty with accurate current risk stratification and the risks of
pancreatic surgery, researchers have utilized novel diagnostic models including computer-
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aided diagnostics with machine learning (ML) and artificial intelligence (AI) in order to
risk-stratify PCLs.

1.1. Artificial Intelligence:

Artificial intelligence has applications across multiple practices and has recently been
used in medicine to detect and diagnose disease. Given the plethora of diagnostic imaging,
genomic information, and endoscopic information in patients being worked up for gas-
troenterological disease, practitioners have begun to use AI adjunctively to aid in detection
and diagnosis of precancerous and cancerous lesions. Since 2010, AI has had multiple
applications in gastroenterology, including endoscopic evaluation of lesions, analysis of
inflammatory lesions on imaging, and assessment of liver fibrosis [20]. For example, in
2021, the FDA approved an AI assistance tool to help endoscopists identify lesions of
concern during colonoscopies. Descriptions of AI terminology can be found in Table 2.
AI lies on a spectrum of complexity ranging from machine learning (ML) to deep learning
(DL). ML uses mathematical algorithms to analyze input values and predict output values
without being explicitly programmed to do so [26]. There are numerous examples of ML,
including linear discriminants, Bayesian networks, random forest, and support vector
machines (SVMs) [26–28]. Each ML method of analysis requires training with data sets that
have input data and outcome data [29].

Table 2. Artificial intelligence (AI) terms.

Term Definition Subset of AI

Machine learning (ML)
Models that use historical data (inputs) to categorize and

predict outcomes (outputs). Requires human intervention via
algorithm training.

ML

Deep learning (DL)
A subfield of ML that uses layered neural networks to

automatically record and categorize data outputs without
human intervention.

DL

Linear discriminants A method used to create a linear combination of characteristics
that separates/characterizes data into two subsets ML

Bayesian networks A probabilistic model that relies on independent/dependent
input variables to identify causal probabilities of scenarios ML

Random forest
A model made up of a large number of decision trees, each

producing their own prediction. Predictions are combined to
formulate a more accurate prediction of an event occurrence.

ML

Support vector machines (SVM) Supervised ML algorithm that is capable of performing
regression, classification, and outlier prediction ML

Artificial neural networks (ANN)

Computing algorithms that mimic the human neuron. Each
ANN has an input layer and an output layer. Between these

layers are hidden layers in which variables are weighted,
similar to action potentials.

ML/DL

Convoluted neural networks (CNN) Type of ANN that allows for unsupervised evaluation of input
data, usually in the form of image, speech, or text DL

Artificial neural networks (ANNs) are AI computing algorithms that mimic human
neurons. Each ANN has an input layer that receives a signal (in the form of data) and an
output layer that categorizes the input signal. Just as the neurons weigh action potentials
to determine propagation of a signal, hidden layers between the input and output layers
of ANNs weigh data characteristics and input from other neurons to determine the out-
put [20,26,29]. DL is comprised of multiple ANNs, allowing for complex processing and
automatic detection of the relevant features of input data [30]. DL can be supervised, semi-
supervised, or unsupervised. DL algorithms have been applied to numerous specialties
within medicine, and convoluted neural networks (CNNs) have recently outperformed
both dermatologists and pathologists in identifying pathologies in photographs [31,32].
Advancements in AI have been applied to detection, classification, and diagnosis of PCLs
in recent years. Artificial intelligence provides clinicians with modalities to process deeper
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layers of data on PCLs that are not discernable to humans. The intersection of AI and
diagnostic modalities for PCLs, including digital pathomics, radiomics, and genomics, will
allow improved risk stratification of these complex lesions. The remainder of this paper
focuses on recent updates of AI utilization in PCL evaluation.

1.2. The Application of AI to Manage Pancreatic Cystic Lesions: EUS

The increased availability of EUS has allowed for enhanced pancreatic pathology
surveillance. Due to the proximity of the transducer to the pancreas, EUS offers more
granularity and improved spatial resolution in pancreatic imaging when compared with
computed tomography (CT) and magnetic resonance imaging (MRI) and can be used to
evaluate lesions as small as 1 cm [33]. The accuracy of CT and MRI in detecting pan-
creatic lesions < 30 mm is 53% and 67%, respectively, while EUS is 93% accurate [34,35].
Further, novel techniques such as contrast-enhanced EUS, EUS elastography, and EUS-
nCLE have improved the diagnostic power of EUS when evaluating PCLs [35]. Given the
amount of information in EUS images that is not perceptible to the human eye, clinicians are
developing unique ML and DL algorithms to aid in PCL diagnosis and risk stratification.

AI has been utilized in EUS evaluation of pancreatic lesions since 2001, when it was
first applied to differentiate focal pancreatitis from malignancy. In this study, a com-
puter algorithm differentiated pancreatitis from malignancy with 73% specificity and 83%
accuracy, compared with a blinded endosonographer with 89% and 85%, respectively
(n = 35) [36]. Early on, AI models mainly employed ML techniques such as linear dis-
crimination, Bayesian theory, and SVM when evaluating EUS images; however, with
advancements in AI, DL concepts such as CNNs are now being applied to assist in the
diagnosis and stratification of pancreatic lesions in EUS images. Multiple studies show that
CNNs and DL models can differentiate between autoimmune pancreatitis, chronic pancre-
atitis, pancreatic ductal adenocarcinoma, and normal pancreas [37–40]. Given their varied
morphologies and echogenicity, PCLs have been difficult to assess with AI until recently.

2. AI and EUS in PCL Risk Stratification

AI serves to help clinicians risk stratify PCLs such as IPMNs and differentiate between
types of PCLs by identifying deeper characteristics in EUS images. A 2019 retrospective
study (n = 50, IPMNs with malignancy = 23) used a DL algorithm to analyze 3790 EUS
IPMN images and to evaluate malignant potential in patients having undergone resection
with a pathological diagnosis. This study found the sensitivity, specificity, and accuracy
of the DL program’s malignant probability to be 95.7%, 96.2%, and 94.0%, respectively.
In comparison, the diagnostic accuracy of human interpretation was 56%, and that of the
presence of an intracystic mural nodule was 68% [41]. AI has also been able to differentiate
between types of PCLs: CNNs have been used to differentiate between EUS morphologies
of MCNs (n = 60) and SCAs (n = 49) with 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930)
area under curve score [42].

3. AI and EUS-Guided Advanced Diagnostics

EUS-nCLE provides additional information that allows for real-time, high-resolution
microscopic imaging of tissue, which facilitates in-vivo histopathology. EUS-nCLE allows
practitioners to differentiate between IPMNs and other PCLs [43–45]. An image of an IPMN
papilla can be seen in Figure 1, highlighting the vascular core and measurements of the
epithelial width and density. Certain characteristics of EUS-nCLE allow for the prediction of
advanced neoplasia in IPMNs. These characteristics include increased papillary epithelial
width and darkness, which reflect cellular stratification and loss of polarity, respectively.
These EUS-nCLE imaging characteristics can be seen with corresponding histopathology
in Figure 2, which shows low- and high-grade PCL dysplasia. The EUS-nCLE images
can be fed into AI algorithms that allow for pixel image processing to stratify based on
epithelial dysplasia. In a 2021 study, researchers developed a CNN algorithm that correctly
differentiated IPMNs with high-grade dysplasia from those without [46]. In this study,
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15,027 EUS-nCLE video frames from 35 consecutive patients with histopathologically
proven IPMN (18 with high-grade dysplasia) were used as inputs, with the model yielding
higher sensitivity, accuracy, and comparable specificity in diagnosing high-grade dysplasia
when compared with international guidelines: sensitivity (model 83.3%, AGA 55.6%,
Fukuoka-ICG 55.6%), accuracy (model 85.7%, AGA 68.6%, Fukuoka-ICG 74.3%), and
specificity (model 88.2%, AGA 82.4%, Fukuoka-ICG 94.1%) [46]. One of EUS-nCLE’s
limitations is lack of widespread adaption. This is likely due to equipment costs (upfront
investment), lack of training and exposure during advanced endoscopy fellowships, subtle
variations in the advanced endosonography techniques of an nCLE procedure, and the
need to learn novel in vivo histopathological imaging.
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Figure 1. EUS-nCLE image of IPMN. A: Left panel: IPMN epithelium and vascular core. Each linear
marking corresponds to a different epithelial thickness, as shown in the adjacent measurement.
B: Right panel: IPMN epithelium and vascular core, with measurements of epithelial density as
proxied by pixel intensity in image, with corresponding histogram of mean pixel intensity.
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Figure 2. A comparison of EUS-nCLE images. Top panel: IPMNs with low grade dysplasia. The thin
and translucent epithelium is noted by red arrows on EUS-nCLE images. Bottom panel: IPMN with
high grade dysplasia. The thicker and darker epithelium is noted by yellow arrows.

4. The Future of AI and EUS

The future of AI application to digital pathomics and EUS lies in real-time analytics.
The aforementioned studies required trained experts to analyze EUS and EUS-nCLE images
to identify regions of interest (ROI), in order to parse out high-utility PCL images from EUS
image series to feed into DL models. This prevents on-the-fly real-time evaluations of PCLs.
However, recent studies have made advancements in this regard. A 2021 study was able to
correctly identify and segment PCL ROIs using DL [34]. Further, a recent study using a
CNN-based model correctly identified areas of high-grade dysplasia in a series of IPMN
EUS-nCLE images, showing concordance with expert validation with an area under the
curve (AUC) sensitivity, and specificity of 0.84, 69%, and 89%, respectively [47].

4.1. Radiomics

Even with the advent of less-invasive options for the assessment of PCLs such as EUS-
FNA and EUS through-the-needle biopsies (EUS-TTNB), there is still a significant morbidity
with these procedures of 2.66–10% and 5–10%, respectively [48–51]. Radiomics, also re-
ferred to as quantitative imaging, is an emerging field within radiology that utilizes feature
extraction and subsequent machine-based analysis of pixels or voxels from cross-sectional
imaging to help create “radiological phenotypes” that can aid physicians in the diagnostic
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workup [50,52–54]. Non-invasive diagnostic options such as radiomics offer the potential
to discern between PCLs without concurrent morbidity or mortality risk exposure.

Previous studies utilizing quantitative imaging with data obtained through computed
tomography (CT) to discern between subtypes of PCLs have been promising, with reported
accuracies of up to 84% [55,56]. When combining these machine-based learning models
with the expertise of clinicians, appropriate identification of PCL subtypes reached near
perfect [57,58]. However, there are limitations to the capabilities of CT. One example is
the identification of isoattenuating lesions, which, for example, can represent up to 10%
of pancreatic ductal adenocarcinomas (PDACs) [59]. This has led researchers to explore
the capabilities of MRI-based radiomics for the identification and prognostication of PCLs.
Udare et al. recently published a comparative analysis between CT- and MRI-based
quantitative imaging to distinguish between benign and malignant PCLs that revealed
comparable sensitivities and specificities [60].

4.1.1. Radiomics and PDAC

Discerning between PDACs and mass-forming chronic pancreatitis (MFCP) is chal-
lenging because of their similar clinical presentations and radiological features; however,
these pathologies have drastically different outcomes, thus making an accurate diagnosis
important. It has been reported that up to 11% of patients who have undergone a pancreati-
coduodenectomy because of concern for PDAC were ultimately diagnosed with benign
lesions of the pancreas [61]. Recently, Deng et al. published models discerning between
PDAC and MFCP using arterial, portal, T1-weighted imaging (T1WI), and T2-weighted
imaging (T2WI) phases of dynamic contrast-enhanced MRI [62]. Notably, these models
performed better than a traditional clinical model as well as radiologists’ evaluation of the
lesion on MRI. This has since been built upon by Liu et al., who developed a multiparamet-
ric MRI radiomics signature model that, when combined with independent clinical risk
factors such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9)
levels, demonstrated an AUC of 0.973 (95% CI: 0.904–0.997) [63]. MRI-based radiomic mod-
els which focus on tumor morphology have also been used to prognosticate and determine
adjuvant therapy response in PDAC [64,65].

4.1.2. Radiomics and PCLs

High-risk PCLs such as IPMNs have also been evaluated with MRI-based radiomic
models, which have proven to be superior in predicting malignant potential compared
with CT models (AUC = 0.940 vs. 0.864, respectively) and yield improved radiometric
feature reproducibility (89.4% for MRI vs. 60.5% and 66.8% in the CT arterial and venous
phases, respectively) [66]. IPMNs with a high probability of malignant transformation
demonstrated high intratumor entropy, and with optimal threshold entropic values set at
>5.27, an accuracy of 83.3% was demonstrated. Similar to PDAC models, the incorporation
of clinical factors such as pancreatic duct dilation, CEA, and CA 19-9 levels improved
radiomic models in predicting high risk IPMNs (AUC = 0.836 vs. 0.903, respectively) [67,68].
Solid pseudopapillary neoplasms (SPNs) are another high-risk subtype of PCLs that confer
a high rate of misdiagnosis, which affects timely treatment strategies and patient outcomes.
Radiologically, these lesions appear very similar to other high-risk PCL subtypes such as
cystic neuroendocrine tumors, as well as SCAs. To discern between these lesions, Gu et al.
created an MRI-based radiomic model utilizing T1WI, T2WI, diffusion-weighted imaging
(DWI), and contrast-enhanced (CE) sequencing that was able to achieve an accuracy of
84.1% when combined, which improved with the addition of clinical factors such as CEA
and CA 19-9 levels [69].

There are some limitations to MRI-based radiomic models that must be considered.
First, most studies have only been single-center analyses, and thus external validity and
reproducibility between hospital systems is needed. Second, there is less standardization
with MRI as compared with CT, and there is a broader range of scanner properties, image
settings and sequences, and feature analyses that exist [70]. However, similar limitations
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also exist for CT-based radiomic models. To expand this field and improve patient outcomes,
the development of standardized protocols and multi-center analyses is paramount.

4.2. Genomics
4.2.1. Current Use of Genomics in PCL Management

Genomic analysis is a sparingly used diagnostic technique in PCL management.
Currently, the two major applications of this technique are diagnosis of cyst type and
malignant risk-stratification. Positive cyst fluid cytology is a surgical indication amongst
all current guidelines because it is highly specific for lesions harboring advanced neopla-
sia, although it is of limited sensitivity [71,72] Genomic analysis via NGS of cyst fluid is
a well-studied method that lends to improved sensitivity while maintaining high speci-
ficity for the diagnosis of mucinous neoplasm and advanced neoplasia. Specifically, the
presence of KRAS and GNAS mutations in cyst fluid has enhanced sensitivity and speci-
ficity for classifying mucinous lesions when compared with CEA and cytology [73,74].
Additional mutations (CDKN2A, SMAD4, PTEN, PIK3CA, and TP53) have been identified
that are able to predict which lesions are at high risk for progression to malignancy with a
sensitivity and specificity of 89% and 100%, respectively [74]. The use of genetics in PCL
management has been clearly shown to be of potential benefit when compared with current
diagnostic methods. The advancement of artificial intelligence brings the opportunity for
improved lesion characterization via AI-based genetic analysis.

4.2.2. AI Genomics in Early Detection of Pancreatic Ductal Adenocarcinoma

Currently, the most utilized biomarker for early detection of PDAC is CA 19-9, but
the sensitivity and specificity are suboptimal [75]. One application of AI is the identifica-
tion of predictive biomarkers for PDAC. For example, one study used an SVM learning
algorithm to identify a nine-gene signature that could identify early-stage PDAC with
an accuracy, sensitivity, and specificity of 97.53%, 97.96%, and 93.22%, respectively [76].
Furthermore, the PancRISK trial demonstrated AI’s ability to analyze data and create risk-
scoring systems. In this trial, three urine biomarkers (LYVE1, REG1B, and TFF1) were used
to train and validate five ML algorithms (logistic regression, neural network, random forest,
SVM, and neuro-fuzzy technology) in stratifying patients as “Normal” or “Abnormal” risk
for PDAC. All algorithms performed similarly (Table 3), but combining PancRISK and CA
19-9 gave a specificity of 0.96 and sensitivity of 0.96 for detecting PDAC, which is better
than the current standard of practice [77].

Table 3. PDAC detection performance of five machine learning algorithms in PancRisk trial.

Method Logistic
Regression Neural Network Random Forest Support Vector

Machines
Neuro-Fuzzy
Technology

Sensitivity 0.81 0.81 0.86 0.82 0.87

Specificity 0.9 0.9 0.82 0.89 0.9

Furthermore, recent studies have utilized mRNA expression, DNA methylation, and
miRNA not only as PDAC diagnostic markers but also to appropriately differentiate tumors
into less and more aggressive subtypes [78–80]. Similarly to PDAC, researchers are applying
AI to identify diagnostic and risk-stratification genetic markers for PCLs.

5. Risk Stratification Using AI + Genomics in PCL

It is important to accurately stratify low-risk from high-risk PCLs to shield patients
with low-risk lesions from the morbidity of pancreatic surgery and conversely appropri-
ately manage and monitor those with high-risk lesions. Through the input of integrated
genomic analysis, clinical characteristics, and imaging features, AI has demonstrated the
ability to risk-stratify lesions as either low-grade dysplasia or advanced neoplasia. A large
multicenter study performed in 2019 by Springer et al. applied a machine learning tech-
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nique to develop CompCyst. CompCyst utilizes cyst fluid genetic analysis, along with
parameters discussed above, to classify patients into one of three groups: surgery, routine
monitoring, or suitable for discharge. CompCyst significantly outperformed current clini-
cal management in identifying patients with low risk for malignancy that could be safely
discharged (60% vs. 19%, p = 1.3 × 10−4) [17]. In the subset of patients without advanced
neoplasia (n = 140), CompCyst accurately recommended surveillance 68% of the time,
whereas the standard of care only recommended monitoring 34% of the time (p = 0.02).
Overall, use of the AI-based CompCyst test could have prevented unnecessary surgery
in 60% of patients in this study. In addition, both standard management and CompCyst
similarly identified lesions that required surgery with high accuracy (89% and 91%) [17].

Machine-learning algorithms have been used indirectly to identify markers related
to the grade of cyst dysplasia to develop a risk stratifying biosignature. Maker et al. used
an SVM-training algorithm to analyze the cyst fluid gene expression of mRNA, miRNA,
KRAS, and GNAS. Through the application of AI, they were able to select appropriate
genetic targets for the creation of a PCR-based assay that could characterize lesions as
low-grade dysplasia or advanced neoplasia. Of all markers that underwent analysis, their
AI algorithm selected the mRNA of IL1β, MUC4, and prostaglandin E synthase 2 to be the
most accurate for discrimination of high-risk vs. low-risk cysts (AUC 0.86, p = 0.002) [81]
There is yet to be significant research into AI-based genomics as the sole diagnostic and risk
stratification tool. Patient outcomes could be further improved through computer-aided
genomic algorithms and optimized biomarker panels.

6. The Future: Integrative Computational Models

At present, risk stratification of PCLs based on SOC variables relies on expert consensus-
based guidelines, such as Fukuoka-ICG criteria [3,4,15,82]. Multiple studies have addressed
the validation of the Fukuoka-ICG criteria and shown a wide range of sensitivity (50–80%)
and specificity (55–85%) for the detection of high-grade dysplasia in BD-IPMNs [83–85].
While these expert-led consensus guidelines are crucial for the management of PCLs, the
non-computational risk assessment of the complex multitude of data may oversimplify
underlying relationships in the input risk predictors. Currently in medical practice, clin-
icians combine available data, apply guidelines such as Fukuoka-ICG, and often confer
in multidisciplinary team meetings in order to estimate the risk of malignancy of PCLs.
While each of the SOC modalities and advanced diagnostics (EUS-nCLE and cyst fluid
NGS) can risk stratify these lesions, an ML/DL-powered integrative computational model
can potentially optimize the combined diagnostic accuracy of the data available to clinicians
in PCL evaluation (Figure 3). New evaluative modalities that use the tools of AI, such as
CompCyst, may allow clinicians to more accurately risk-stratify PCLs and thereby more
effectively and efficiently manage these complex lesions.
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