
ORIGINAL RESEARCH
published: 15 November 2017
doi: 10.3389/fnagi.2017.00371

Frontiers in Aging Neuroscience | www.frontiersin.org 1 November 2017 | Volume 9 | Article 371

Edited by:

Alessio Avenanti,

Università di Bologna, Italy

Reviewed by:

Umberto Castiello,

Università degli Studi di Padova, Italy

Panteleimon Giannakopoulos,

Université de Genève, Switzerland

*Correspondence:

Elisabetta Farina

efarina@dongnocchi.it

Received: 24 August 2017

Accepted: 30 October 2017

Published: 15 November 2017

Citation:

Farina E, Baglio F, Pomati S,

D’Amico A, Campini IC, Di Tella S,

Belloni G and Pozzo T (2017) The

Mirror Neurons Network in Aging, Mild

Cognitive Impairment, and Alzheimer

Disease: A functional MRI Study.

Front. Aging Neurosci. 9:371.

doi: 10.3389/fnagi.2017.00371

The Mirror Neurons Network in
Aging, Mild Cognitive Impairment,
and Alzheimer Disease: A functional
MRI Study
Elisabetta Farina 1, 2*, Francesca Baglio 1, 3, Simone Pomati 4, Alessandra D’Amico 1,

Isabella C. Campini 4, Sonia Di Tella 3, Giulia Belloni 1 and Thierry Pozzo 2, 5

1Neurorehabilitation Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy, 2 INSERM-U1093,

Cognition-Action-Plasticité sensorimotrice, Campus Universitaire, Dijon, France, 3Neuroimaging Unit, IRCCS S. Maria

Nascente, Don Gnocchi Foundation, Milan, Italy, 4Neurology Unit, Luigi Sacco Hospital, Università degli Studi di Milano,

Milan, Italy, 5Centro di Neurofisiologia traslazionale, Istituto Italiano di Tecnologia, Ferrara, Italy

The aim of the current study is to investigate the integrity of the Mirror Neurons (MN)

network in normal aging, Mild Cognitive Impairment (MCI), and Alzheimer disease (AD).

Although AD and MCI are considered “cognitive” diseases, there has been increasing

recognition of a link between motor function and AD. More recently the embodied

cognition hypothesis has also been developed: it postulates that a part of cognition

results from the coupling between action and perception representations. MN represent

a neuronal population which links perception, action, and cognition, therefore we decided

to characterize MN functioning in neurodegenerative cognitive decline. Three matched

groups of 16 subjects (normal elderly-NE, amnesic MCI with hippocampal atrophy

and AD) were evaluated with a focused neuropsychological battery and an fMRI task

specifically created to test MN: that comprised of an observation run, where subjects

were shown movies of a right hand grasping different objects, and of a motor run, where

subjects observed visual pictures of objects oriented to be grasped with the right hand. In

NE subjects, the conjunction analysis (comparing fMRI activation during observation and

execution), showed the activation of a bilateral fronto-parietal network in “classical” MN

areas, and of the superior temporal gyrus (STG). The MCI group showed the activation of

areas belonging to the same network, however, parietal areas were activated to a lesser

extent and the STG was not activated, while the opposite was true for the right Broca’s

area. We did not observe any activation of the fronto-parietal network in AD participants.

They did not perform as well as the NE subjects in all the neuropsychological tests

(including tests of functions attributed to MN) whereas the MCI subjects were significantly

different from the NE subjects only in episodic memory and semantic fluency. Here we

show that theMN network is largely preserved in aging, while it appears involved following

an anterior-posterior gradient in neurodegenerative decline. In AD, task performance

decays and the MN network appears clearly deficient. The preservation of the anterior

part of the MN network in MCI could possibly supplement the initial decay of the posterior

part, preserving cognitive performance.
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INTRODUCTION

In the current demographic context, aging, and
neurodegenerative diseases linked to aging, have become a
very important social issue. Alzheimer Disease (AD), the most
common form of dementia, is a neurodegenerative disease. The
incidence of AD grows exponentially in aging. As actually there
is no cure, several studies are focusing on prevention. A category
which now represent a preferential target of intervention is Mild
Cognitive Impairment (MCI). As originally defined, MCI was
characterized primarily as an amnestic disorder that represented
an intermediate stage between normal aging and AD (Petersen
et al., 1999). More recently, broader conceptualizations of MCI
have emerged that also encompass cognitive domains other than
memory. The term amnestic MCI (aMCI) was recommended
for individuals in the predementia phase prior to AD as a
separate group from those with MCI preceding other forms of
dementia (Petersen et al., 2001; Petersen and Morris, 2005). Even
if MCI definition has been criticized (the degree of functional
preservation is sometimes difficult to define), MCI is a useful
clinical concept because it is a well-recognized risk factor for
dementia (Busse et al., 2003; Ward et al., 2013) and therefore,
represents a critical window of opportunity to intervene and
alter the trajectory of both cognitive and functional decline in
seniors.

Even if AD and MCI have been characterized as “cognitive”

diseases until now, over the last decade there has been increasing

recognition of a link between motor function and the risk
of developing AD. Both a lower level and more rapid rate

of motor decline in cognitively intact individuals predicts the
subsequent development of MCI and AD, and loss of motor
function can precede cognitive impairment by several years
(Verghese et al., 2008; Buchman and Bennett, 2011). Moreover,
physical activity is recurrently associated to lower incidence of
dementia and to better cognition in affected patients (Groot et al.,
2016; Ginis et al., 2017). Hand and facial movement training
has been used in people with MCI, leading to improvement of
executive functions (Scherder et al., 2005). Hand movements
are known to stimulate areas in the frontal lobe engaged in
sensorimotor and cognitive processes (Binkofski and Buccino,
2006; King et al., 2014). In this context, the study of the Mirror
Neurons (MN) could be of particular interest, as a neuronal
population that links perception and action and also cognition
and motility. The MN represent a distinctive class of neurons
that discharge both when an individual executes a motor act and
when he observes another individual performing the same or
a similar motor act. They were first discovered in a monkey’s
brain, in particular in the ventral premotor area F5 and in the
inferior parietal lobule (Di Pellegrino et al., 1992; Rizzolatti et al.,
2014). In humans, brain activity consistent with that of MN
has been found in the primary motor cortex (M1; Fadiga et al.,
2005), the premotor cortex (posterior regions of the inferior
frontal gyrus—IFG—, considered the human homolog of the
monkey F5) (Kilner et al., 2009; Ferri et al., 2015), and in the
inferior parietal lobule (IPL) (Rizzolatti et al., 2001; Rizzolatti and
Craighero, 2004; Chong et al., 2008; Arnstein et al., 2011). The
MN presence in humans has been studied through neuroimaging

(fMRI) and neurophysiological techniques. fMRI experiments
have shown that a fronto-parietal network, remarkably similar
in monkeys and humans, is activated during observation and
execution of hand grasping acts, as well as during observation
of the act of grasping tools (see Molenberghs et al., 2012 for
a review). However, many neuroimaging studies are based on
action observation alone, rather than on a comparison between
action observation and execution (Turella et al., 2009b). Among
the fMRI studies looking at the true action observation execution
mechanism in humans, Gazzola et al. (2007) found that the
MN system was activated by observing both human and robotic
actions, only if the robotic action was not repetitive. According
to their findings, the goal of an action might be more important
for mirror activation, than the way in which the action is
performed. Turella et al. (2009a), came to similar conclusions;
they investigated whether the “mirror” regions activity was
modulated by the type of view and thus responded in a similar
fashion to the observation of an isolated hand or multiple actions
of a person. The MN system responded in the same way in all
the observed conditions, thus supporting the hypothesis that the
action goal is one of the key areas for the observation of MN
activity.

The discovery of MN has given a biological substrate to the
simulation theory. This is the relatively recent idea, that actions
involve both an overt and a covert stage, the latter being a sort
of dynamic cognitive representation of the future. This includes
the goal of the action, the means to reach it, and to predict
its consequences (Jeannerod and Frak, 1999; Jeannerod, 2001).
A development of this theory is the model of the “Embodied
Cognition” that combines thinking and acting. This is an antidote
to the traditional division between cognition, perception and
action (Barsalou, 1999; Wilson, 2002; Glenberg, 2010; Willems
and Francken, 2012). MN are now thought responsible for
sophisticated human behavior and thought processes such as
language (Rizzolatti and Arbib, 1998; Tettamanti et al., 2005;
Fischer and Zwaan, 2008; Chwilla et al., 2011; Pulvermüller
et al., 2014), empathy (Decety and Jackson, 2004; Iacoboni,
2009; Corradini and Antonietti, 2013), motor memory (Stefan
et al., 2005), and imitation (Bonini and Ferrari, 2011; Oh et al.,
2012).

Characterizing the functioning of the MN network in
neurodegenerative diseases would thus be useful to the better
understanding of functional mechanisms underlining clinical
manifestations. It would also allow to capitalize on these kinds of
neurons in the rehabilitation of motor and cognitive symptoms.
There have been some theoretical proposals about interpreting
neurodegenerative diseases, in particular Amyotrophic Lateral
Sclerosis and Frontotemporal Dementia, as linked to dysfunction
of perception-action circuits including the MN network (Bak,
2013; Taylor et al., 2013; Eisen et al., 2014). However,
direct studies on MN functioning through neuroimaging or
neurophysiological techniques are scarce. Some results on
the MN network, even if still controversial, are available for
Parkinson disease (Tremblay et al., 2008; Albert et al., 2010;
Alegre et al., 2010, 2011; Pelosin et al., 2013; Heida et al.,
2014). Only recently, a seminal paper (Moretti, 2016) was
published, where 74 adult subjects with MCI underwent EEG
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recording and a high resolution morphological MRI. This paper
gives support to the hypothesis that a possible pathological
uncoupling of the MN system with malfunctioning of the IPL
areas could explain the cognitive deficits in prodromal AD. As
far as a possible rehabilitation use is concerned, Eggermont
et al. (2009) is the only published study that focuses on
utilizing the MN system to improve cognitive performance
in people with AD. However, prior to the consideration of
the use of this neuronal system in rehabilitation, it would
be necessary to evaluate the status of conservation, i.e., if
it is decreased or increased in neurodegenerative cognitive
impairment.

The aim of the current study is to investigate the integrity of
theMN network in normal aging, MCI and AD. For this purpose,
three matched groups of subjects (normal elderly people, people
affected by aMCI and AD patients) were evaluated with an fMRI
task specifically constructed to test the MN circuitry (Cabinio
et al., 2010).

On the basis of previous research, we anticipated the
activation of the frontal cortex (Brodmann area BA6 and
precentral gyrus,) the parietal cortex (rostral part of the inferior
parietal lobule, BA40) and possibly the temporal cortex (superior
temporal gyrus BA22 and BA42) if the MN network, and the
associated motor resonance mechanism, in the groups tested,
were preserved. However, it would also be possible to observe
an increased activation of areas belonging to the MN system or
linked to it in the MCI group, as a functional adaptation process,
to counterbalance the neural damage, in the same way that it has
been described in mild Multiple Sclerosis patients (Filippi et al.,
2004; Pierno et al., 2009).

MATERIALS AND METHODS

Subjects
Sixteen AD patients and an equal number of aMCI
subjects and aged healthy subjects (NE) were enrolled
and performed an fMRI study and a neuropsychological
assessment.

Table 1 summarizes the demographic data of the three
groups. Age, education level, and gender was not significantly
different (ANOVA). Probable AD was diagnosed according to
NIA-AA criteria (McKhann et al., 2011). aMCI subjects were
diagnosed according to Petersen’s criteria (Petersen et al., 1999,

TABLE 1 | Demographic data of the three groups (ANOVA)*.

NE MCI AD p

# 16 16 16

Age 73.8 ± 6.8 77.0 ± 4.8 77.8 ± 5.4 NS

Level of education (Primary,

Secondary, High Scool,

University)

0\3\8\5 2\3\9\2 5\5\4\1 NS

Gender: F\M (F%) 9\7 (56.3) 6\10 (37.5) 9\6 (60) NS

*Non-parametric tests (Kruskal—Wallis) give the same results.

NE, Normal Elderly people; MCI, Mild Cognitive Impairment; AD, Alzheimer Disease.

2001). Only MCI subjects with significant atrophy of at least
one hippocampus were included in the study (see later). The
following is the exclusion criteria: patients unable to understand
and/or follow instructions; severe attentional deficits, untreated
psychiatric disorders, joint deformity of arthritic origin, visual or
hearing deficits, previous stroke or other neurological disorders,
contraindications to MRI. Persons with MCI or dementia were
consecutively recruited from the Don Carlo Gnocchi Foundation
Service for Cognitive Disorders and Dementia. Patients were
diagnosed after taking their clinical history and carrying out
medical and neurological examinations, routine blood tests
and neuropsychological assessment. All patients also underwent
either brain CTs or MRIs to evaluate the vascular lesion
load and to exclude rarer causes of dementia (e.g., tumors,
hematomas, etc.). The control group consisted of spouses or
hospital volunteers.

This study was carried out in accordance with the Declaration
of Helsinki. All subjects gave written informed consent. The
protocol was approved by the Don Gnocchi Foundation ethical
hospital committee.

fMRI Experimental Paradigm
During the fMRI scanning, participants were asked to perform
2 block-designed runs (A-B structure): in one run, they were
instructed to observe (observational run−s) and in the remaining
run to execute hand grasping movements (motor run), according
to a paradigm described in Cabinio et al. (2010). Briefly, in the
observation run, all subjects viewed movies of hand grasping
different objects (see Figure 1A). In the motor run, subjects
observed visual stimuli consisting of objects oriented in order to
be grasped with the right hand and they were asked to perform
a grasping movement appropriate to the shape of the object (see
Figure 1B; subjects were asked to perform movements as if they
had the observed object actually in their hand, therefore the
execution condition was amime of the action). Themotor act was
performed continuously during the observation of the image of
each object, with a frequency of about 1Hz and a total number of
27 objects. Examples of objects were a cup, scissors, a screwdriver,
and a torch. Figure 1 shows some visual stimuli presented to
the subjects in each experimental condition. The decision to
use different types of grasp (both observed and executed) was
driven by the need to recruit the highest percentage of mirror
neurons and thus increment the BOLD signal (Ehrsson et al.,
2000; Iacoboni et al., 2005; Cabinio et al., 2010; Marino and
Ricciardelli, 2017). Before the fMRI experiment, the participants
were verbally instructed to execute the movements as if the object
was close to their hand, and to carry out the task only with the
hand and the wrist: repeating this action, until the appearance of
the next picture.

Participants were trained outside the scanner for 15min
before data acquisition. During the training session, subjects
were instructed to keep their gaze on the fixation point for
the entire duration of the experiment, and to execute grasping
movements about once every 2 s. If the training task (that was
conducted with different parallel versions), was not properly
executed by the subjects, they were not included in the
study.
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FIGURE 1 | Visual stimuli presented to the subjects in each experimental condition. (A) Picture used during rest conditions and samples of frames from one of the

videos presented to the subjects during the observation condition. (B) Pictures shown to the subjects during the rest and execution condition.

We used an MR-compatible visual system to present the
stimuli (VisuaStim Digital system, Resonance Technology Inc.).
The use of E-Prime software (E-Prime 2.0 Psychology Software
tool, http://www.pstnet.com) ensured exact timing of prompts
during MR acquisition. The performance was visually checked
by the examiner during the execution of the task. The
examiner maintained accuracy by reporting all the tasks correctly
performed. The design was fully randomized (both blocks and
runs). All the stimuli were projected onto a screen at the front
side of the magnet bore and subjects viewed them through a
mirror attached to the head coil.

MRI Acquisition
Functional images were collected by a gradient echo-planar (EPI)
T2∗ sequence (TR = 3,000ms; TE = 50ms; flip angle = 90◦;
voxel size = 2,8125 × 2,8125 × 4mm; matrix size = 448 ×

448; number of slices = 38; thickness = 4mm) using BOLD
(blood oxygenation level dependent) contrast. Each fMRI session
included two runs of 122 dynamics.

MRI data was acquired on a 1.5 Tesla Siemens Magnetom
Avanto at Santa Maria Nascente Institute IRCCS, Don Carlo
Gnocchi Foundation.

A conventional T2-weighted scan (TR = 2,920ms; TE =

108ms; voxel size = 0.75 × 0.75 × 5.2mm; matrix size =

320 × 320; slice thickness = 4mm; number of slices = 25)
was performed in every subject in order to exclude brain
abnormalities. A 3D T1-weighted FFE scan (TR = 1,900ms;
TE = 3.37ms; voxel size = 1 × 1 × 1mm; matrix size
= 192 × 256; slice thickness = 1mm; number of slices =

176) was acquired to be used as an anatomical reference for
fMRI analysis and to compute hippocampal volumes on every
subject.

Hippocampal Segmentation
Bilateral hippocampi were segmented using a dedicated
software (FSL-FIRST Patenaude et al., 2011). Brain tissue
volume, normalized for subject head size, was estimated

with SIENAX (Smith et al., 2002), part of FSL (Smith et al.,
2004). An ANCOVA analysis was performed to compare
hippocampal volumes between groups. The Scaling Factor,
obtained using SIENAX, was included as a covariate in the
analysis. Results were considered as statistically significant if
surviving p < 0.05 with Bonferroni correction for multiple
comparisons.

fMRI Analysis
fMRI data was analyzed in agreement with the General Linear
Model running on MATLAB 7.6 (MathWork, Natick, MA) and
SPM12 (Wellcome Dept. Cogn. Neurol., London; http://www.
fil.ion.ucl.ac.uk/spm). Images were first corrected for motion,
then they were realigned and movement parameters were
estimated. Anatomical and functional images were then spatially
normalized to theMNI template using a 2× 2× 2 voxel size with
a trilinear algorithm. The normalized functional images were
spatially smoothed using a 8-mm full-width at half-maximum
isotropic Gaussian kernel.

At the first-level, we modeled the expected hemodynamic
response function of the software package with a block design.
Six parameters related to head movement during scanning,
were included as regressors of no interest. For each subject, we
estimated two t-contrasts: observation of a hand grasping (O) and
execution of grasping movements (M).

All contrasts defined in the First Level were included in the
Second Level analysis of the three groups: NE, MCI, and AD.

In order to identify MN areas active during both movement,
observation and execution, we performed on each group a
conjunction analysis, between O and M contrasts. We exclude
from the analysis, voxels not active in both contrasts at a
certain threshold. To this aim, we masked the conjunction
analysis with voxels active in both contrasts used to perform
the conjunction at a threshold of p < 0.05, as done elsewhere
(Cabinio et al., 2010; Cerri et al., 2015). We also included in the
model, age, and MMSE value as nuisance covariates. With this
analysis, we determined voxels active during both observation
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and execution of hand movements. The assumption is that
neurons involved in the MN system are among those activated
during both conditions. Thus, the conjunction analysis can be
considered as a mask through which only those voxels that are
significantly active in the two conditions are selected (O, M),
even if they have different p values (provided that the p values
are above the selected threshold). Moreover, one-way analysis of
variance (ANOVA) was used to determine whether there were
any significant differences between the three groups (NE, MCI,
AD) in the single experimental conditions (O, M) including age
and MMSE value as nuisance covariates in the GLM. F-Contrasts
tested for the difference between the three groups and for mean
activations in the entire sample. All these second-level results
have been considered as statistically significant if surviving a
threshold of p < 0.05 FWE-corrected with a k = 50 contiguous
voxels.

Neuropsychological Assessment
The neuropsychological assessment was centered on functions
considered to be linked to the MN system, such as language
(particularly action naming; Kemmerer et al., 2012) and empathy;
we also tested memory (as memory deficits characterize AD

and aMCI) and attention/executive functions (abilities which are
associated to frontal lobe functioning) (see Table 2 for test list).
Subjects were all right-handed in according to the Edinburgh
Handedness Inventory (Oldfield, 1971).

RESULTS

Hippocampal Volume Measurements
The ANCOVA analysis showed statistically significant differences
in bilateral hippocampal volume between the NE and the MCI
groups, as well as between the Control and the AD groups.
No volumetric differences were observed between the MCI and
the AD groups. Differences were found in both Left and Right
Hippocampi (see Table 3).

fMRI Conjunction Analysis
All subjects correctly performed the fMRI runs. Given the
premise that regions included in the MN network must be
activated both in movement execution and in movement
observation, to identify cortical areas involved in this network
we performed conjunction analysis between activation of the two
conditions M and O. This analysis was carried out separately for

TABLE 2 | List of Neuropsychological tests.

Test Acronym Description References

Mini mental state examination MMSE The most popular instrument to screen dementia and quantify global cognitive level Folstein et al., 1975;

Measso et al., 1993

Free and cued selective reminding test FCSRT A test of verbal memory which controls for individual differences in attention and

cognitive processing through a “controlled learning” study procedure in which the

examinee searches for study items in response to a category cue. The category

cues are then used to facilitate the recall of items not retrieved during a free recall

test phase of the task. The FCSRT has been used to identify MCI, and distinguish

AD from other types of dementia

Grober et al., 1987;

Frasson et al., 2011Immediate free recall FCRST-IFR

Immediate total recall FCRST-ITR

Delayed free recall FCRST-DFR

Delayed total recall FCRST-DTR

Cueing sensitivity index FCRST-CSI

Phonemic fluency PF Assessing the timed production of words after phonemic cues. Novelli et al., 1986

Semantic fluency SF Assessing the timed production of words after semantic cues. Novelli et al., 1986

Trail making test TMT Assessing cognitive abilities such as visual scanning and visual-motor tracking (Part

A), executive function, visuo-conceptual function, visuo-motor tracking and

sustained attention (Part B)

Giovagnoli et al.,

1996Part A TMT-A

Part B TMT-B

Repeatable battery for assessment of

neuropsychological status naming test

RBANS-N The naming test taken from the Repeatable Battery for Assessment of

Neuropsychological Status, a brief battery which measures immediate and delayed

memory, attention, language, and visuospatial skills

Randolph et al.,

1998; Ponteri et al.,

2007

Revised reading the mind in the eyes RRME Testing the ability of inferring others’ mental states. Performance on this test

correlates with an empathic personality

Baron-Cohen et al.,

2001; Vellante et al.,

2013

Action naming AN An ad-hoc task to test of action naming, a function considered to be linked to MN Spada, 2012

TABLE 3 | Hippocampal (HP) volumetric comparison between the three groups.

2 3 1

HP Volume NE MCI AD [MM+SdE] Post-hoc (Bonferroni)

Left HP [MM, SdE] 3521.6542 [123,1601] 2872.3732 [126,4296] 2791.97 [125.35] *p < 001 1 vs. 2, 2 vs. 3

Right HP [MM, SdE] 3718.7444 [111,7622] 3086.8005 [108,872] 2763.1426 [110,804] *p < 001 1 vs. 2, 2 vs. 3

MM, marginal mean; SdE, standard Error; NE, Normal Elderly people; MCI, Mild Cognitive Impairment; AD, Alzheimer Disease.
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the three groups of NE, MCI, and AD subjects. All regions of
significantly increased activation (pFWE < 0.05 at cluster level
with K = 50 contiguous voxels) are summarized in Table 4 and
illustrated in Figure 2, each group separately.

In NE subjects the conjunction analysis showed a
statistical significant [t contrast 3.41; k = 50; pcluster

(FWE-corr) < 0.05] activation of the bilateral fronto-
parietal network (left>righ side) formed by the frontal
cortex (Precentral Gyrus, PrCG, BA6) and the parietal
cortex (Inferior Parietal Lobule, IPL, BA40) along with
activation of the right STG (BA22/42) and the right Fusiform
Gyrus (FuG).

TABLE 4 | Conjunction analysis results respectively, in NE, MCI, and AD.

Cluster Cluster level Z_score Coordinates Brain Region [BA]

[k] p FWE-corr p uncorr x,y,z [mm]

[A] NE

1,719 0.000 0.000 5.48 −42 −36 42 L Inferior Parietal Lobule [40]

5.14 −36 −38 48

4.75 −50 −30 42

591 0.002 0.000 4.79 40 4 28 R Precentral Gy [9 / 6]

4.37 46 12 30

4.11 46 4 40

383 0.013 0.002 4.73 50 −34 54 L Inferior Parietal Lobule [40]

4.14 58 −28 48

3.81 40 −46 58

361 0.017 0.002 4.54 −42 −6 50 L Precentral Gy [6]

3.75 −32 −6 64

3.60 −32 2 62

292 0.038 0.005 4.14 62 −40 22 R Inferior Parietal Lobule [40]

4.06 68 −24 22

3.57 60 −32 20

351 0.019 0.003 4.05 32 −54 −22 R Fusiform Gy

4.04 60 −60 −14

4.03 38 −72 −20

[B] MCI

506 0.004 0.001 5.49 38 2 58 R Precentral Gy [6 / 9]

5.08 46 4 36

4.06 44 2 46

1060 0.000 0.000 5.03 −36 0 58 L Precentral Gy [6]

4.47 −50 4 14 L Inferior Frontal Gy [44]

4.41 −36 6 20

271 0.047 0.007 4.50 30 −60 −18 R Cerebellum / Fusiform Gy

4.19 28 −44 −24

326 0.025 0.004 4.04 −52 −66 −14 L Middle Occipital Gy / Fusiform Gy

4.02 −42 −70 −22 L Cerebellum

3.99 −34 −52 −26

332 0.023 0.003 4.00 −62 −28 26 L Inferior Parietal Lobule [40]

3.78 −56 −24 22

3.53 −52 −34 48

[C] AD

831 0.000 0.000 5.16 36 −62 −18 R Fusiform Gy [37]

4.45 44 −46 −20

4.34 44 −54 −24

1222 0.000 0.000 4.91 −40 −72 −22 L Cerebellum

4.75 −34 −48 −24

4.58 −30 −72 −20 L Fusiform Gy [37]

R, right; L, left; BA, Brodmann area; Gy, Gyrus; NE, Normal Elderly people; MCI, Mild Cognitive Impairment; AD, Alzheimer Disease. Coordinates are expressed in MNI space; statistical

values refer to the conjunction analysis in [A] NE, [B] MCI, [C] AD [t contrast 3.41; k = 50; pcluster (FWE-corr)< 0.05].
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FIGURE 2 | Conjunction analysis (comparing fMRI activation during

observation of transitive hand grasping and execution of grasping movements)

results respectively in (A) Normal elderly (HCs) group; (B) Mild Cognitive

Impairment (MCI) group and (C) Alzheimer’s Disease (AD) group [t contrast

3.41; k = 50; pcluster(FWE-corr) < 0.05 only].

In MCI subjects the same conjunction analysis [t contrast
3.41; k = 50; pcluster(FWE-corr) < 0.05] revealed the
activation of the frontal-parietal network (right<left side)
including also the left Inferior Frontal Gyrus (IFG, BA44), but
activation of BA40 was not as strong as in NE participants.
A bilateral cerebellar activation was also detected (See
Table 4).

Finally, in AD patients the conjunction analysis [t contrast
3.41; k = 50; pcluster (FWE-corr) < 0.05] showed a statistical
significance recruitment in the bilateral FuG and in the left
cerebellum. It found no activations in the fronto-parietal
network.

An additional analysis to investigate potential differences
in brain activation between the three groups for the M or O
condition was carried out separately, and did not reveal any
significant group differences. The Figure 3 and Table 5 report
the statistical results of the main effect in the O condition
[ANOVA, F contrast 14.74; K = 50; p(FWE-corr) < 0.05]
and in the M condition [ANOVA, F contrast 13.48; k = 50;
p(FWE-corr) < .05].

Neuropsychological Tests
The results of AD patients were worse than NE subjects in all
neuropsychological tests. These tests comprised tests of action
naming and empathy, functions attributed to MN network.
The only exception was the object naming test (probably
due to a ceiling effect). aMCI subjects were significantly
different from NE participants only in the episodic memory

test, the FCRST, and in semantic fluency (see Table 6 for
results).

DISCUSSION

We investigated the integrity of MN areas through fMRI in
three groups: NE subjects, people with aMCI and AD patients.
We detected differences among the three groups, suggesting
a progressive weakening of the MN network with respect to
neurodegenerative process. These differences are discussed in the
following sections.

MN Network Alteration
In the NE group, the conjunction analysis (fMRI activation
recorded during observation of hand grasping compared to
overt execution of grasping movements) showed the activation
of a bilateral, though strongly left-lateralized, fronto-parietal
network (PrCG, BA6; IPL, BA40). The fronto-parietal network
activated in our study is considered part of the human MN
network (Rizzolatti and Craighero, 2004), given the established
homology between the BA6 (human) and the ventral premotor
cortex (monkey), the BA40 (human), and PF-PFG (monkey)
parietal cortex (Cook et al., 2014). We also found activation
of the STG (BA22/42) considered an area which is strongly
associated with activation of MN in humans (Aziz-Zadeh et al.,
2006).

fMRI and neurophysiological investigations aimed to study
the MN network in human were mostly performed on young
or adult subjects. We found that the MN network is largely
preserved in aging. Our results are in accordance with those
of Léonard and Tremblay (2007), who analyzed corticomotor
facilitation associated with observation, imagery and imitation
of hand actions in younger and older adults by monitoring
changes of motor evoked potentials elicited in hand muscles by
TMS. They found that corticomotor facilitation in association
with covert action execution was largely preserved with aging,
although with a loss in selectivity for activated muscles. Unlike
the original study of Cabinio et al. (2010), in this study
(where we exactly replicated their procedure), we noted a loss
of selectivity, as the activation of mirror areas was more bi-
lateralized than in the younger subjects. This could be explained
by a specific mode of brain activation in aging. In fact,
fMRI recording in younger, middle-aged and older participants
performing the same unilateral hand movements (Fang et al.,
2005) showed stronger premotor/motor cortex activity in the
contralateral hemisphere in the “older” group when compared
to the younger and middle-aged groups. Therefore, together
with other authors, we concluded that the older brain requires
larger areas to achieve the same task (Fang et al., 2005; Chow
et al., 2017), a hypothesis that could also explain the results
obtained during a task inducing a motor resonance mechanism
(Rizzolatti, 2005). However, in order to exclude any bias,
due to differences in the scanners, it would be worthwhile
recruiting a young subject pool to definitively confirm the
data.

Concerning the MCI subjects, we found a different pattern
at the conjunction analysis in comparison with the NE subjects.
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FIGURE 3 | At the (A): Representation of the cerebral areas involved in the Observed condition vs. the Rest condition in the three groups (NE, MCI, and AD). At the

(B): Representation of the cerebral areas activated in the Movement condition vs. the Rest condition in the three groups (NE, MCI, and AD). In the Observed condition,

visual areas are also highly activated. [Main effect of fMRI task: (A) Observed condition (F contrast 14.74; k = 50; p(FWE-corr) < 0.05); (B) Movement condition (F

contrast 13.48; k = 50;p(FWE-corr) < 0.05)].

The MCI and the NE groups showed similar activation of frontal
and parietal areas. However, in the MCI group the left IPL
(parietal BA40) was activated at a lesser extent than in the
NE group and neither the right IPL nor the STG (BA22/42)
were activated. Moreover, only the MCI participants exhibited
activation of the left frontal area IFG-BA44. Therefore, even if
the MN network is preserved in MCI, it is mainly recorded
toward frontal areas. This suggests a greater resilience to the
aging process of the MN areas located in the anterior part of the
brain vs. posterior areas, and maybe consecutively the capacity of
these areas to take on a part of the “work” done by the posterior
MN regions. Interestingly, we did not observe any activation of
the fronto-parietal network in AD participants. Altogether, our
results suggest that the MN network is progressively affected
in neurodegenerative cognitive decline following a posterior-
anterior gradient. The hypothesis of a posterior-anterior decay
in Alzheimer-type degeneration agrees with recent data obtained
in MCI using EEG and MRI recording (Moretti, 2016). In this
investigation, alpha3/alpha2 frequency power ratio, considered
as a predictor of conversion into AD (Moretti et al., 2011) as
well as cortical thickness at MRI were computed. Three MCI
groups were obtained considering increasing tertile values of
alpha3/alpha2 ratio. From this morphological MRI and EEG
parameter data the author inferred that MN are impaired in
prodromal AD. Conversely, we directly measured the activation

of human MN with a specific fMRI task, thus giving a
functional support to the hypothesis for the MCI and the AD
group.

Motor Cognition and Neurodegenerative
Process
While unexpected, the present results raised several questions.
How to explain the cerebellar activation recorded in AD patients
and to a lesser extent in MCI subjects? Based on models
incorporating the MN system in social learning, the STG-IPL-
IFG circuit would create the motor representation available
for imitation, starting with the visual input (Iacoboni et al.,
1999; Oh et al., 2012). During the imitation phase, the overall
processes are equivalent to those of the observation phase, the
only difference is that, in parallel with the IFG to the IPL
pathway, neural drive is sent to the musculoskeletal system
through M1 to perform the action (Oh et al., 2012; Bassolino
et al., 2013). It has been suggested that the cerebellum provides
the prediction error for the IFG and the IPL to adjust internal
models (Miall, 2003; Oh et al., 2012). In this context, the
AD patient activation of cerebellar neurons involved in the
MN network would correspond to an attempt to compensate
for damage of prefrontal and parietal areas. This mechanism
would already be present in aMCI. The activation of the
cerebellum as a substitute of cerebral cortex alteration has also
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TABLE 5 | Main effect of fMRI task in the Observe run and Movement run.

Cluster Z_score Coordinates Brain Region [BA]

[k] x,y,z [mm]

OBSERVE vs. REST

7,451 7.68 −42 −70 −12 L MTG / MOG

7.58 −34 −44 46 L IPL [40]

7.49 −46 −72 10

3,617 7.34 50 −68 −8 R MTG / MOG

6.97 44 −64 2

6.96 58 −60 6

549 6.83 38 2 58 R PrCG [9 / 6]

6.13 40 6 48

5.86 46 4 40

935 6.79 −44 0 50 L PrCG [9 / 6]

6.33 −34 −2 60

5.80 −48 4 34

736 6.20 44 −38 58 R IPL [40]

5.96 28 −54 44

5.42 38 −50 56

369 6.11 −4 −78 −34 L cbl

5.61 8 −80 −36 R cbl

5.43 −12 −76 −46

MOVEMENT vs. REST

1670 7.11 −40 −20 54 L PrCG / PoCG [6 / 4]

6.69 −32 −18 66

5.29 −56 −30 50

350 6.64 54 14 −8 R IFG

600 6.52 18 −52 −22 R cbl

5.24 38 −72 −22

151 6.36 −50 16 −8 L IFG

1,081 6.33 −2 −6 52 L SMA [6]

6.12 2 6 58

5.75 −4 −6 66

209 6.10 36 −6 60 R MFG [6]

5.51 24 −2 64

5.03 28 −4 48

65 5.86 −42 −72 −22 L cbl

396 5.66 4 −58 20 R PC [23]

4.70 2 −44 30

207 5.33 48 4 46 R PrCG [9 / 6]

5.25 54 4 38

5.06 46 8 30

52 5.28 −64 −26 24 L IPL [40]

4.85 −62 −26 36

R, right; L, left; BA, Brodmann area; MFG,Middle Frontal Gyrus; IFG, Inferior Frontal Gyrus;

PrCG, Precentral Gyrus; PoCG, Post Central Gyrus; SMA, Supplemental Motor Area; PC,

Posterior Cingulate; IPL, Inferior Parietal Lobule; MTG, Middle Temporal Gyrus; MOG,

Middle Occipital Gyrus; cbl, cerebellum; NE, Normal Elderly people; MCI, Mild Cognitive

Impairment; AD, Alzheimer Disease.

Coordinates are expressed in MNI space; statistical values refer to the main effect of

Observe condition [ANOVA, F contrast 14.74; k = 50] and Movement condition [ANOVA,

F contrast 13.48; k = 50], at statistical threshold voxel-wise pFWE-corrected < 0.05.
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been suggested to enhance motor control and motor learning
in functional recovery from a stroke following mirror therapy
(Arya et al., 2017). In conclusion, cerebellar activation in AD
might simply reflect the response of this neural structure
to visual inputs during guided limb movements (Liu et al.,
2003).

Clinical Implications and Limitations
The alteration of the MN motor circuitry in AD patients
raises an interesting question related to the link between
action and cognition and supports an interesting direction of
research. Precisely, it allows the interpretation of AD—as other
neurodegenerative diseases (Bak, 2013; Eisen et al., 2014) in the
light of the action-perception coupling hypothesis. In contrast
to traditional views (considering motor mechanisms as a slave
system of cognition), it is recurrently postulated that a part
of cognition results from the coupling between action and
perception representations, and corresponds to implicit action
simulation (or “motor resonance”) instead of explicit recall
of abstract symbols (Jeannerod, 1994, 2001, 2006; Jeannerod
et al., 1995; Boulenger et al., 2008; Pulvermüller and Fadiga,
2010). Neuropsychological tests exploring cognitive functions
that considered to be tightly linked to the MN system (language
and empathy) were normal in aMCI subjects. The preservation
andmaybe hyperactivation of the anteriorMN network presently
seen in aMCI, might supplement the initial decay of the posterior
part of the neural circuit, thus preserving cognitive performance.
The only “language” test impaired in aMCI was semantic
fluency, but this impairment could be due to semantic memory
damage, rather, than true language impairment. As an alternative
explanation, the preservation/hyperactivation of the anteriorMN
network could not be sufficient to support performance in this
kind of task because it is highly dependent on parietal areas
(Seghier, 2013). In contrast, in the AD group the MN network
appears to be deficient as task performance in both language and
empathy tests deteriorates.

The present study is limited by several factors: the number
of subjects tested and the spatial and temporal resolution of our
measurements (see Oosterhof et al., 2011, 2013; Möhring et al.,
2014; Thibault and Raz, 2016); the fact that in the execution
condition the hand movements were only visually controlled by
the examiner. In particular, our results should now be replicated
on the basis of data collected with different methods dedicated
to record MN activity, as motor evoked potentials induced by
TMS (Gangitano et al., 2004; Fadiga et al., 2005), or the reduction
of magnitude of the mu rhythm at EEG (Fox et al., 2016 for
a review). Furthermore, we have studied task-evoked neural
activity during action observation and execution. Schilbach
et al. (2016), in a recent study, have demonstrated differential
patterns of dysconnectivity in MN and mentalizing networks in
schizophrenia. Further research, therefore, needs to investigate
functional organization of self-related brain networks during a
“resting state.” This clinically available measure of functional
connectivity could provide further knowledge of alterations of
neurofunctional systems in AD.

The results of our study have possible implications in
rehabilitation. Recently, the use of action observation as a
supplementary therapeutic tool for patients who have had
strokes, in order to stimulate brain plasticity and obtain positive
functional results, has been reported (see Carvalho et al., 2013
for a review on this topic). This has been extended to motor
deficits of children with Cerebral Palsy (Sgandurra et al., 2011;
Buccino et al., 2012; Bassolino et al., 2015) and patients with
Parkinson’s disease (Buccino et al., 2011). The concept of
motor cognition, if verified, would provide a clinical support to
cognitive stimulation based on the motor resonance mechanism.
However, the efficiency of such training is only conceivable if the
MN system remains partly achievable. So far, the only published
research of this kind of cognitive training via the stimulation of
the MN in people with AD, showed improvements in attention
and facial recognition (Eggermont et al., 2009) whereas another
research showed negative results (Caffarra, 2016, unpublished,
oral communication at XI Sindem National Congress, Italy).
However, this last study did not test MN system integrity, that
is supposed to be stimulated in the training program. As our data
showed a malfunction in the MN network in the case of AD, our
study explains why that intervention obtained negative results.
A rehabilitative intervention based on the MN system would be
better implemented at the MCI phase.
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