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Abstract
Several protein structure classification schemes exist that partition the protein universe into

structural units called folds. Yet these schemes do not discuss how these units sit relative to

each other in a global structure space. In this paper we construct networks that describe

such global relationships between folds in the form of structural bridges. We generate these

networks using four different structural alignment methods across multiple score thresholds.

The networks constructed using the different methods remain a similar distance apart

regardless of the probability threshold defining a structural bridge. This suggests that at least

some structural bridges are method specific and that any attempt to build a picture of struc-

tural space should not be reliant on a single structural superposition method. Despite these

differences all representations agree on an organisation of fold space into five principal com-

munity structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated

fold ages onto the networks and find that not only are the pairings of unconnected folds asso-

ciated with higher age differences than bridged folds, but this difference increases with the

number of networks displaying an edge. We also examine different centrality measures for

folds within the networks and how these relate to fold age. While these measures interpret

the central core of fold space in varied ways they all identify the disposition of ancestral folds

to fall within this core and that of the more recently evolved structures to provide the periph-

eral landscape. These findings suggest that evolutionary information is encoded along these

structural bridges. Finally, we identify four highly central pivotal folds representing dominant

topological features which act as key attractors within our landscapes.

Author Summary

Folds are considered to be the structural units which make up the protein universe. Struc-
tural classification schemes focus on the assignment and organisation of protein domains
into folds. However, they do not suggest how different folds might relate to one another in
a global way. We introduce the concept of bridges through fold space: significant similari-
ties between these units. We consider four alignment methods and a dynamic approach to
placing these bridges. A greater consensus between these methods cannot be achieved by
simply increasing the stringency with which edges are assigned. Instead, we emphasise the
importance of considering consensus maps and only report results where there is agree-
ment across all networks. It is possible that a study of the bridges may reveal evolutionary
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relationships. Based on a phylogenetic analysis of structures, we find that bridges consis-
tently fall between folds which evolved at similar times. Moreover, the landscapes all con-
sist of a core of older folds, with younger structures more often seen at the periphery.
Finally we identify four pivotal folds in the landscapes. They contain topological motifs
which unite disparate regions of fold space.

Introduction
The vast repertoire of proteins which exist in nature are testament to billions of years of evolu-
tionary change. The nature of their relationships and how these have evolved are questions
which continue to fascinate the scientific community [1–4]. Protein structure classification
schemes such as SCOP [5] and CATH [6] partition the protein universe into different struc-
tural units known as folds or topologies. Yet relationships between these folds and topologies,
and how they sit relative to each other in a global structure space, are largely undiscussed by
these schemes. For example, it is highly unlikely that the current repertoire of folds evolved
independently of each other [7]. The evolutionary trajectory of new folds may well be through
the adaptation of already existing structures. In fact, recent studies have uncovered such distant
relationships between different fold units [8]. This concept has implications for protein struc-
ture classification, and more broadly within the field of protein design. A global view of the
protein universe which incorporates inter-fold relationships can provide examples of efficient
and evolutionary viable transitions between very different structures. More particularly, how
this universe has, and continues to, evolve can be used to simulate directed evolution
approaches to protein design [9, 10].

Different techniques have previously been explored in order to generate global representa-
tions of protein structure space (see, for example, [11]). Commonly, these approaches utilise
structural similarities between protein domains, which produce complex, multi-dimensional
data structures. The process of deriving a global landscape from these data can vary and will
inevitably involve assumptions about the nature of the underlying relationships and the extent
to which structural alignments can reproduce them. For example, using multi-dimensional
scaling or principal component analysis can produce lower dimensional embeddings of an
array of similarity scores [12–21]. In these spaces, two or three dimensional maps can be visual-
ised which approximate the similarity between any two structures as closely as possible by their
distance on the reduced axes. An alternative is to use networks to capture relationships result-
ing from significant alignments [13, 22–30]. Unlike multidimensional scaling approaches, net-
work constructions do not assume that structural similarity between protein domains is
transitive [11]. On the other hand, they do require a score threshold to be set: above which an
alignment is considered significant.

Networks and embeddings can both be built using a variety of inputs to the similarity score
[14, 27, 30]. For example, sequence information can be used to provide the similarity score or
supplement structural alignments [12, 14, 15, 29, 31], as can functional annotations [24, 25, 32].

Despite the fact that the above studies construct visualisations of the protein universe using
a wide range of different methods, they present a generally consistent picture of this space. In
particular, a striking partition between structures based on their secondary structure content is
immediately evident [12–14, 17, 21, 26, 29, 32]. Broadly speaking, this partition agrees with the
class level classifications of SCOP and CATH, which consist of all-α domains, all-β domains
and mixed αβ domains. In SCOP, mixed domains are further split into the parallel stranded α/
β class and the anti-parallel α + β class. Protein space representations reveal interesting
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relationships within and between these groups. Several studies comment on the densely clus-
tered group of α/β structures [26, 31, 32], and the more dissipated α + β structures [12, 29],
with all-α and all-β domains tending to congregate in between these two extremes [26]. Sec-
ondary structure seems to be one of the dominant forces within these spaces. Even when
sequence signal alone is used to determine the global landscape, the main secondary structure
classes, as well as other classes such as membrane proteins, divide along secondary structure
lines [29]. Functional studies also point to the importance of secondary structure. For example,
a recent paper exposed a functionally diverse region, at the centre of structure space, which
largely overlaps with the α/β cluster [32].

Visualisations of structure space can also allow us to consider the distribution of protein
domains across this space. In particular, highly dense and connected portions of the space
can be used as evidence for a continuous landscape [28, 33–35]. This conclusion has implica-
tions for the very foundations of our understanding of proteins and their evolution. A contin-
uous protein space indicates that a partitioning of protein structures into folds and
topologies is itself meaningless, as these represent discrete units of structure. The initial moti-
vation behind the concept of a discrete fold derives from the fact that structure is a highly
conserved property during evolutionary change [36]. As highly correlated to its function, the
structure of a protein tends to constrain the variation which is tolerable for that domain to
remain operational. The abundant structural similarities between different folds however,
have stimulated a debate as to whether this is truly the case [33, 37, 38]. A third view has also
developed, that protein space displays both discrete and continuous characteristics [31, 33,
34, 39]. In particular, it has been argued that discrete and continuous paradigms of fold space
do not necessarily contradict one another but form complementary descriptions of the evolu-
tionary and structural landscapes respectively [39]. This distinction between structural and
evolutionary relationships has also been implemented in the new SCOP2 prototype [40],
which separates the hierarchical structure of traditional SCOP where evolutionary units
superfamilies are contained within structural units of folds into two distinct categories. It is
this dual view of fold space that we will adopt here, and in particular, supplement the discrete
classification of domains into folds with summaries of their geometric similarities to other
folds to establish a global landscape within which these folds sit. In doing so, it is important
to note the assumptions this model makes. The first, which has been stated above, is that
there is a duality within the underlying dynamics of the space, where both fold classifications
and structural alignments between different folds are meaningful. The second is that the
methods we use to capture the discrete units and the continuous relationships are correct.
We use the SCOP classification to capture the collapse of the domain universe to discrete
folds. While SCOP is well established in the literature, it is by no means the only such scheme.
As we have mentioned, CATH describes a complementary scheme [6]. There are also other
structural schemes such as FSSP [41], and purely sequence-based classifications, such as
Pfam [42]. Similarly, there is no single established method for structural alignment and there
are still many unsolved problems in the field [43, 44].

In this paper we present several possible sets of inter-fold relationships, which we term brid-
ges through fold space. Each set of bridges is visualised as a network over 631 SCOP folds. To
build these networks we have used four different structural alignment algorithms and with
each several different thresholds of similarity. We find that with all methods, the resultant
organisation of structure space is at least a partial relic of the alignment algorithm used to gen-
erate it. While structural alignment programs have continued to improve in quality over recent
years, generating relevant alignments consistently remains an unsolved problem [44]. By
examining the areas of consensus between these maps we can more easily identify features with
a higher confidence than relying on a single method in isolation.
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We show that such consensus spaces are vital to an appreciation of the underlying structural
relationships between folds as, even at stringent threshold, a proportion of edges in a network
will always be an artefact of the alignment method. Nevertheless, the different networks agree
on a well defined partition of fold space into five principal community structures: all-α, all-β
sandwiches, all-β barrels, α/β and α + β.

We have previously used a phylogenetic analysis of fold usage to estimate an evolutionary
age for different folds [45, 46]. Age estimates relate to the emergence of a fold’s structural
ancestor and are guided by its prevalence on a diverse set of completely sequenced genomes
from across the tree of life. In a previous publication we found that different age estimates dem-
onstrated particular preferences in terms of the properties exhibited by their fold structures
[46]. Projecting these age estimates onto the structure space networks could provide the poten-
tial to examine the relationship between structure and evolution in a more global way. To
explore this hypothesis, we examine properties of the nodes and edges of these networks in the
context of their estimated age. In particular, we examine the difference in the age of two folds
connected by bridges. We also look at the distribution of fold ages across the networks and
how these relate to the centrality of a fold in the network’s architecture. Finally, we examine
four highly pivotal ancient folds, each of which exhibit different topological properties which
act as structural attractors between disparate regions of the network spaces.

Methods

Domain dataset
Domain coordinate files for structures from the four main SCOP classes (all-α, all-β, α/β and α
+ β) were taken from the ASTRAL database (version 1.75) and filtered to< 40% sequence
identity [47]. To ensure these structures were of sufficient quality we removed any file with an
assigned aerospaci score of< 0.4, as suggested by Brenner et al. [47]. Due to the requirements
of the structural alignment algorithms the dataset was further refined by omitting structures
with only backbone Cα coordinates, and those which contained one or more chain breaks.
Chain breaks were assigned using the Bio.PDB module in BioPython where successive Cα

atoms were further than 4.3Å apart [48]. This resulted in a dataset of 4,098 domains, compris-
ing 793 from the all-α class, 948 classified as all-β, 1,215 α/β domains and 1,142 from α + β.
These domains represent a total of 631 folds.

Pairwise comparisons
Four different methods were used to generate structural alignments between domains in this
dataset. These methods have all been previously published and are available as open source
programs or code. They are Mammoth (MAMMOTH) [49], jFatcat (FATCAT) [50], TM-align
(TM-ALIGN) [51] and Elastic shape analysis (ESA) [52]. These methods were chosen as com-
putationally efficient yet methodologically dissimilar representatives from the wide array of

structural alignment approaches. For each of these methods, 8; 394; 753 ¼ 4098
2

� �
pairwise com-

parisons were computed. Each method was run using the default parameters. ESA character-
ised each domain backbone as a curve of N points, where N is the average length of each pair of
domains. FATCAT was run in flexible mode and TM-ALIGN used a TM-score normalised by
the average length of the domains.

Alignment scores
TM-ALIGN measures the strength of each alignment through the TM-score, and ESA gener-
ates an elastic metric. However, both MAMMOTH and FATCAT alignments produce multiple
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similarity scores for each alignment. For example, the MAMMOTH program generates a Z-
score, E-value, TM score and PSI score. In these cases we chose the score that maximised the
area under the ROC curve, when comparing how well each score correctly identified fold sib-
lings under the SCOP classification. As a result of this analysis MAMMOTH alignments were
summarised using the Z-score and FATCAT by the p-value (−ln(p)).

Significant alignments as structural bridges
Networks were constructed from the pairwise comparisons by extracting those entries repre-
senting strong similarities between different folds. What constituted a strong similarity was
determined by examining each score’s distribution and by assessing its ability to discriminate
between SCOP folds. We employed a Bayesian analysis to each score, similar to that outlined
in [53]. Explicitly, we considered the posterior probability that two domains were representa-
tives of the same fold (F = 1) if their similarity S was measured above a candidate threshold �s:

PðF ¼ 1jS > �sÞ ¼ PðS > �sjF ¼ 1ÞPðF ¼ 1Þ
PðS > �sjF ¼ 1ÞPðF ¼ 1Þ þ PðS > �sjF ¼ 0ÞPðF ¼ 0Þ

The prior probabilities P(F = 1) and P(F = 0) were assumed to be the proportion of pairs in the
domain dataset representing SCOP fold siblings and unrelated domains respectively. The con-
ditional probabilities PðS > �sjFÞ were estimated as the proportion of either the set of fold sib-
lings or the set of pairs of unrelated domains in the dataset with similarity scores greater than s.
Each pairwise alignment was thus associated with a posterior probability between zero and
one, based on the relative strength of its score. For example, Fig 1a shows the relationship

Fig 1. Using the posterior probability to standardise the construction of fold space networks. (a) TM-scores from alignments using TM-ALIGN and
their corresponding posterior probabilities. Lines are drawn at probabilities of 0.5, 0.6, 0.7, 0.8 and 0.9. (b) Schematic of the network collapse from the set of
domain alignments at a posterior probability threshold of 0.9 to a fold space network. In the final fold network, bridges between folds are defined by the
alignment associated with the highest posterior probability. For example, the bridge between fold b.84, shown in blue, and d.58 in pink, derives from the
alignment between domains d3etja1 and d2cvea2 with a probability of 0.958 and a TM-score of 0.554.

doi:10.1371/journal.pcbi.1004466.g001
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between the TM-scores of TM-ALIGN alignments and their posterior probabilities. For the
purposes of this work we considered only scores associated with a probability� 0.5. We varied
this cutoff between 0.5 and 0.9 to show that both the network behaviour and our results
remained robust to this choice. As suggested by the FATCAT team, we calculated the signifi-
cance of comparisons involving all-α domains separately to those between the other SCOP
classes. This resulted in two different thresholds at each posterior probability: one applicable to
alignments involving an all-α domain and one for all other alignments. The scores which were
used in this analysis and the effective cutoff equivalent to different probabilities are given in
Supplementary S1 Table.

Network construction
Networks of fold relationships were built by collapsing the 4098 × 4098 pairwise array of
domains to a 631 × 631 array N of folds. Each entry of this array N(A,B) is characterised by the
structural alignment between the pair of representative domains of folds A and B with the
highest posterior probability. As the probability threshold decreased from 1 to 0.5 dynamic net-
works were constructed with folds as nodes and edges between two nodes where any two of
their representative domains produced a similarity score which was associated with a probabil-
ity above the threshold. For probability thresholds of 0.5, 0.6, 0.7, 0.8 and 0.9 static networks
were also built. Furthermore at each of these thresholds we constructed consensus networks
built from edges between folds appearing in all four networks at that threshold. In total 25
static networks were constructed representing the four alignment methods and their consensus
at the five different probability thresholds. Fig 1b shows a simplified schematic of the fold net-
work construction process from pairs of representative domains whose alignments correspond
to a posterior probability of at least 0.9.

Edge weights
Weights were added to each edge and were used to represent a measure of the distance between
the folds at its endpoints. The MAMMOTH Z-score and the FATCAT p-value are statistical
values and we therefore felt they were inappropriate as quantitative distances between two
structures. Instead, we used the TM score as edge weights in both the FATCAT and MAM-
MOTH networks. TM-scores are generated as part of MAMMOTH’s output, and we calculated
an approximate TM-score from FATCAT’s opt_rmsd score and the domain lengths. The TM-
score was also used as weights in the TM-ALIGN network and the inverse of the elastic metric
was used in the ESA network. Weights in the consensus networks were calculated by first cen-
tering weights corresponding to an individual alignment method by dividing them by their
mean. Consensus weights were then calculated by averaging the respective normalised weights.

Network visualisation
Networks were visualised using Cytoscape [54]. Dynamic networks as the posterior probability
on edges decreased from 1 to 0.5 were visualised as animations using the DynNetwork plugin.
Static visualisations were calculated using a spring embedded layout, while the prefuse layout
was used in the dynamic representations.

Network analysis
Community structures were detected using the Louvain method for non-overlapping commu-
nities in weighted networks [55]. Network analysis was performed using the tnet package [56]
in R [57]. Shortest path lengths d(i,j) between nodes i and j were calculated as the minimum
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sum of reciprocal weights whk along the series of edges connecting the two nodes as proposed
by Dijkstra [58]:

dði; jÞ ¼ min
1

wih

þ . . .þ 1

whj

 !

The centrality of a node i was calculated using degree (CD(i)), closeness (CC(i)) and between-
ness (CB(i)) measures in weighted networks as suggested by Opsahl et al. [56]. Respectively,
they are defined:

CDðiÞ ¼
X
j2N

wij CCðiÞ ¼
X
j 6¼i

1

dði; jÞ CBðiÞ ¼
X
j;k6¼i

sjkðiÞ
sjk

where N is the set of nodes connected by a single edge to i, wij is the weight along the edge ij, d
(i,j) is the shortest path length between nodes i and j as defined above, σjk(i) is the number of
shortest paths between nodes j and k which go through i, and σjk is the total number of shortest
paths between j and k. Closeness and Betweenness were calculated for nodes in each connected
component separately. Central and peripheral sets of folds were identified for each measure as
follows. Central folds were the top 30% of nodes ranked by their centrality measures. Periph-
eral folds defined by closeness were the bottom 30% of nodes ranked by closeness. Degree and
betweenness measures followed a skewed distribution with large numbers of nodes calculated
to have very low values and far fewer folds being assigned a high degree or betweenness. There-
fore, folds with peripheral degree were those with either one or no neighbour in the network.
Similarly, peripheral folds by betweenness were those with a betweenness value of zero.

Fold age
Evolutionary age estimates were calculated for each fold following the method outlined in [45],
and more recently in [46]. These ages use a parsimony algorithm on the predicted fold content
of 1014 genomes from across the sequenced tree of life to predict a relative estimate of its struc-
tural ancestor. Ages are normalised to lie between zero and one where zero corresponds to a
recent ancestor, while an age of one indicates an ancestral fold predicted to exist in the last uni-
versal common ancestor. All statistics are calculated assuming an underlying phylogeny of
these species as traced from the NCBI taxonomy database [59]. Populations’ age distributions
were compared using the MannWhitney U test [60].

Results
We constructed five dynamic networks representing the structural relationships between 631
well characterised SCOP folds from the four main classes (all-α, all-β, α/β and α + β). Each net-
work summarised the results of the pairwise alignments of 4098 high quality structures repre-
senting these folds. Alignments were calculated using four different methods: MAMMOTH,
FATCAT, TM-ALIGN and ESA. Four separate networks were built corresponding to each of
these methods and one for their consensus, where nodes represented the 631 folds detailed
above and edges represented a significant structural similarity resulting from the pairwise
alignments. These edges can be seen as structural bridges through fold space, uniquely defining
the resultant landscapes. The process of determining significant similarity was standardised
across the different methods by the introduction of a posterior probability attached to each
method’s score, which quantified its effectiveness in characterising fold level relationships (see
Methods for details). Networks were drawn for each method at five different probability
thresholds ranging from 0.5 to 0.9, representing increasingly stringent thresholds for
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determining similarity, and are shown in Fig 2. At each cutoff a consensus network was also
built, capturing edges detected by all four methods. In each network bridges were weighted
with a similarity measure appropriate to each method.

The networks were further visualised dynamically, as the cutoff for deducing similarity
decreased in stringency. Movies displaying dynamic visualisations of these networks as the
threshold varies can be found in the Supplementary Information (S1–S5 Videos). They capture
both how the landscapes and their consensus are constructed and how robust their organisa-
tion is to the probability threshold. These movies can also be found online at http://www.stats.
ox.ac.uk/research/proteins/resources#bridges. At high thresholds, the landscapes display an

Fig 2. Fold space networks for the four structural alignment methods at increasingly stringent probability cutoffs, ranging from 0.5 to 0.9.Nodes
are coloured by their SCOP class (all-α: red, all-β: yellow, α/β: green, α + β: blue) and have a size proportional to their evolutionary age estimate (an age of
0.0 (younger folds) corresponds to a smaller node size, while folds with an age of 1.0 (ancient folds) are larger). Only connected nodes are shown in these
representations.

doi:10.1371/journal.pcbi.1004466.g002
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early organisation into disconnected clusters, predominantly of the same class. As the thresh-
old decreases, these components coalesce into a giant component somewhere between a thresh-
old of 0.9 and 0.8. As the threshold decreases still further the overall organisation of the
networks remains relatively stable.

Network collapse
The landscapes of structural bridges described above represent similarities at the inter-, rather
than the intra-fold level. As such, the method involves a collapse from the set of relationships
across 4098 protein domains to those between their 631 different SCOP folds. This process of
collapse is an important one as it imposes relationships between domains from an external
classification scheme. It is also relevant in the context of comparing our networks to other fold
space representations in the literature: some of which consider relationships between domains,
and others those between folds. In order to illustrate the stages of the network collapse Fig 3
shows network representations of the TM-ALIGN alignments at a posterior probability thresh-
old of 0.7. These relationships are collapsed first to the SCOP family level, then to superfami-
lies, and finally to folds. Evident at all stages of collapse is the distinction between the different
secondary structure classes. Noticeable too is the relative similarity between the superfamily
and fold networks, and a more striking visual difference between the network of domains and
that of families. The differences between these early stages of collapse potentially derive from
the effects of multiple domains representing a small number of families.

Structural bridges: Landscape and consensus
For each method the structural bridges at each probability threshold collectively determine a
landscape for the global organisation of fold space. Some general network statistics relating to
each construction can be found in S1 Fig. As the probability threshold increases, networks
become less connected. The number of folds connected to another structure decreases (S1a
Fig), and even within connected components, shortest path lengths connecting two folds
increase (S1f Fig). The number of edges in the landscapes vary from 5,571 in the MAMMOTH
network at a 0.5 threshold to 250 in the ESA network at a threshold of 0.9 (S1b Fig).

An important observation is the significant differences between the alignment algorithms,
as well as their areas of agreement. In a single network generated from ESA, MAMMOTH or
FATCAT alignments, about 50% of the edges were only identified by that method. For the
TM-ALIGN networks, this proportion was somewhat lower at 20–30% of edges (S1c Fig).
Moreover, this figure does not improve with increased stringency (i.e. increasing values of the
posterior probability). In fact, as the similarity threshold increases, this proportion remains rel-
atively constant, and even increases in the TM-ALIGN and ESA networks. In other words, net-
works constructed using different alignments remain the same distance apart regardless of
similarity threshold. Taken in isolation, a proportion of edges in these networks will always be
an artefact of the alignment method, emphasising the importance of considering a consensus
network.

Traversing fold space
As mentioned previously, connected nodes congregate, in most cases, in a single dominant
connected component up till a probability threshold> 0.8 (see also S1i Fig). The exception to
this is the consensus network, where all-α folds are separated from the largest connected com-
ponent. While there are separate smaller components within the networks (S1h Fig), the vast
majority of nodes are either part of a single connected component or are completely uncon-
nected to other structures. This observation supports previous work suggesting that the
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Fig 3. The collapse of the TM-ALIGN network at a probability threshold of 0.7.Networks are drawn for (a) 4098 domains, (b) 1964 families, (c) 1025
superfamilies and (d) 631 folds. For each network, edges are drawn between nodes where any alignment between representative domains yields significant
similarity. Classification of domains into families, superfamilies and folds are taken from SCOP. Nodes are coloured by their SCOP class (all-α: red, all-β:
yellow, α/β: green, α + β: blue).

doi:10.1371/journal.pcbi.1004466.g003

Structural Bridges through Fold Space

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004466 September 15, 2015 10 / 20



proportion of unconnected nodes in structure networks sets these structures apart from ran-
dom models [23], and that fold space can be partitioned into either highly continuous or highly
discrete sections [31]. It is also significant regarding the discussion of traversing fold space. A
previous study emphasised the short path lengths between structures in fold space as indicative
of a continuous space [28]. Within largest connected components we found that average path
lengths were less than 5.5 (S1f Fig). While the increase of unconnected nodes is largely respon-
sible for the lack of traversability of networks at higher probability thresholds, it is also interest-
ing to note that, even within connected components, average path lengths between two folds
increase. This indicates that the dynamic networks transition from more continuous, con-
nected landscapes at lower probability thresholds to more unconnected spaces at higher
thresholds, although both extremes contain densely connected regions and completely uncon-
nected folds.

Previous results have indicated that α/β structures dominate the highly connected section of
fold space [31]. Our results do not find such a dramatic distinction, with all four classes found
within the connected component. We do however find that far fewer unconnected folds are α/
β and, within the α/β cluster shortest path lengths are shorter than those of other classes.

Secondary structure communities within fold space
Despite these differences, several properties remain conserved across every landscape. In gen-
eral, and in concert with previous observations, the networks partition fold space into the four
secondary structure classes. The α/β folds form densely packed clusters, as too, to a lesser
degree, do the all-α folds. On the other hand, folds with anti-parallel β sheets, belonging to the
all-β and in particular to the α + β classes are more dissipated throughout the space. Neverthe-
less, applying a community detection algorithm to these landscapes identifies five predominant
communities with a higher density of structural bridges within each group, and sparsely con-
nected externally. These communities can be generally defined as all-α, α/β, α + β, all-β sand-
wiches and all-β barrels by the prevailing population of folds within these clusters. Fig 4 shows
the communities in the consensus network which include these five groups along with smaller
communities resulting from the smaller connected components of the network. The all-β sand-
wiches and barrels tend to remain partitioned from each other even at the least stringent proba-
bility threshold of 0.5 and are often closer in the landscapes to the α + β community than they
are to each other. While the majority of previous visualisations of fold space have noted a four
class clustering into SCOP classes [17, 21, 26], one study also saw a division between all-β
structures [13]. However, in this case β-meanders and β-zigzags were found to form the basis
for this distinction. Meander structures connected to α + β structures and zigzags included
both sandwiches and barrels. This is markedly different from the clusters we find here, where
the basis of the division is strictly delineated by a domain’s characterisation as a barrel or sand-
wich. While some α + β folds appear within the sandwich and barrel clusters, in these cases
they consist of well segregated α and β regions, with the β regions demonstrating the appropri-
ate structural feature.

Fold ages and the fold networks
Edges in these networks represent, not simply the phenomenon of structural similarity between
proteins, but structural bridges between folds: thought to be distinct and separate structural
units. We projected fold age estimates, as calculated in [46], onto the folds in each network.
These ages estimate the emergence, on a tree of sequenced life, of a fold’s structural ancestor.
Each age estimate falls between zero and one, where an age of one represents an ancestral fold
emerging at the root of the tree, and an age of zero signifies an ancestor at its leaves. We were

Structural Bridges through Fold Space

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004466 September 15, 2015 11 / 20



thus able to consider the difference in age attributed to each of the bridges in our networks. As
edges were undirected we considered the absolute difference in age of the endpoint folds to
each edge (bridge). We investigated the distribution of age differences, comparing those of
structural bridges to a background distribution of random pairs of dissimilar folds.

As described above, a large number of these bridges were identified by just a single align-
ment method so we examined separately the distribution of age differences on edges found on
one, two, three and four networks to those found on none. Fig 5a shows a boxplot of these age
differences on the set of networks built at a probability cutoff of 0.6. Distributions for the other
networks are similar. Not only are the pairings of unconnected folds associated with higher age
differences than bridged folds, but this difference increases with the number of networks

Fig 4. The community structure of the consensus network at a probability threshold of 0.5 as calculated using the Louvainmethod for weighted
networks. Nodes have a size proportional to their age and are coloured by their SCOP class (all-α: red, all-β: yellow, α/β: green, α + β: blue). Clusters are
circled and manually assigned labels based on each community’s fold content.

doi:10.1371/journal.pcbi.1004466.g004
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displaying the edge. Bridges identified by at least two different methods had a median age dif-
ference of zero as opposed to the 0.25 of unconnected folds.

The ancestral core of fold space
The prominence of each fold within these landscapes was calculated using three different cen-
trality measures: degree, closeness and betweenness. For each measure on each network, we
identified two populations: central and peripheral folds, and compared the age distributions of
these two populations. In every network, including the consensus networks, and by all three of
these measures central nodes were found to be significantly older than more peripheral nodes
(see S2 Fig). This tendency was true regardless of how we partitioned the nodes. While the
three measures produced rankings for the nodes which correlated positively with each other,
they all define the concept of centrality slightly differently. Fig 6 illustrates these differences on
the MAMMOTH network at a threshold of 0.6.

While these measures interpret the central core of fold space in varied ways they all identify
the disposition of ancestral folds to fall within this core and the more recently evolved struc-
tures to provide the peripheral landscape.

A previous study found that clusters in structure networks could be associated with func-
tional fingerprints [24]. Based on the assumption that older proteins will be represented by
more popular clusters within the domain network, they found that older clusters were matched
by a greater heterogeneity in function space. This concept of a functionally diverse ancestral

Fig 5. Edges and their age differences in networks with a probability cutoff of 0.6. (a) Boxplot of the age differences between pairs of folds distinguished
by the number of alignments methods which assign a bridge to the pair at a probability threshold of 0.6. The median age difference for pairs of unconnected
folds is 0.25. This falls to 0 for pairs of folds connected in at least two networks. (b) Concentric circles with an area proportional to the number of edges in
each set. There are 9336 edges appearing in just one network, 2250 in just two, 1566 in three, and 678 in all four.

doi:10.1371/journal.pcbi.1004466.g005
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core to structure space was also noted by [32] who found that this region of functional diversity
largely derived from a cluster of α/β domains, which are known to be older folds [19, 45]. We
show here that the central core to our networks of structural bridges is significantly older than
the peripheral nodes. It is interesting to note that these central, older folds are not in fact

Fig 6. Node centralities in the MAMMOTH network at a probability threshold of 0.6. For each measure of
centrality sets of folds with high and low centralities are identified as described in the Methods. These sets
are shown projected onto the network. Low centralities are coloured in blue. High centralities are shaded from
red (lowest) to yellow (highest). Nodes with intermediate centralities which are not counted as either central
or peripheral are shown in grey. Also shown is a cumulative percentile plot for the fold ages of central and
peripheral nodes. These graphs show a preference for central nodes to be older than peripheral folds. a)
Node centrality by degree. b) Node centrality by closeness. c) Node centrality by betweenness.

doi:10.1371/journal.pcbi.1004466.g006
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dominated by the α/β class. In fact, folds from the four classes are almost equally represented
in these sets. Despite this, our results agree in noting the importance of ancient protein folds
within fold space.

Pivotal folds
The above network centrality analysis further exposed certain pivotal folds, which were calcu-
lated as highly central in all networks, including the consensus network. Here we examine four
examples of pivotal folds: the long α-hairpin (a.2), the Immunoglobulin-like β-sandwich fold
(b.1), the Flavodoxin-like fold (c.23) and the Ferrodoxin-like fold (d.58). These folds are all
ancient, with a fold age of 1.0, and are represented strongly in proteins found right across the
tree of life. S3 Fig shows the situation of each pivotal fold within the consensus network at a
threshold of 0.5. a.2 and c.23 remain strongly central to the communities of all-α and α/β folds
respectively. They are evident as central folds at the highest thresholds of the dynamic net-
works. On the other hand b.1 and d.58 together connect much more diverse neighbourhoods
within the landscapes. In particular, they have an edge between them, and their shared neigh-
bourhood incorporates 61 structural bridges connecting together four distinct communities in
the network: the α/β, all-β sandwiches, all-β barrels and the α/β cluster. We visit these folds in
more detail in S1 Text. In particular, specific topological features of each fold are specified as
instrumental to their highly central positions. Such features include a left-handed α-hairpin,
the greek key motif and the α-β-α switch.

Discussion
We have proposed and constructed a dynamic network representation of fold space to capture
variations in its organisation resulting from different methodologies and similarity thresholds.
While a vast array of different techniques have been applied to visualise the structural organisa-
tion of the global protein universe, very little has been done to ensure such landscapes are
robust to differences in the alignment methodology which generates them. We have shown
that, in terms of network representations using four dissimilar methods, there are several dis-
agreements as to where bridges between different folds in the global space lie. We also found
that these disagreements cannot be overcome by simply increasing the threshold at which a
structural bridge is determined for each method.

Nevertheless, the four different methods and their consensus networks do converge on cer-
tain properties of fold space. In particular, the consistent division between secondary structure
classes into five predominant communities: all-α, α/β, α + β, all-β sandwiches and all-β barrels.
Moreover, folds tend to fall either within a dense and easily traversable connected component,
or are completely unconnected. As the probability threshold changes, the balance between
these two populations shift as expected, although there remain significant numbers of each at
both low and high thresholds.

Structural bridges could exist for a variety of reasons. It is possible they are the result of a
misannotation of fold boundaries, or that fold space is wrongly assumed to be discrete. They
may also be the result of convergent evolution to a particularly favourable confirmation. They
could also represent the structural relic of an evolutionary transition from one fold to another.
Whatever their cause, such inter-fold similarities are deserving of further study, to illuminate
the overall structure and dynamic of naturally occurring fold space. Moreover, the significant
number of these bridges, especially in consensus networks representing the agreement of all
four methods, suggests that structural classification, while an important and useful construct,
might be a misrepresention of the true nature of the protein universe.
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Another feature of the core structure space is the population of ancestral folds at highly cen-
tral positions within its landscape. Using each different alignment method separately, as well as
in consensus, and at different levels of significance, we examined the age distributions of cen-
tral and peripheral folds. We calculated the centrality of folds as nodes in each network using
three different centrality measures, each with a different interpretation of the priority of a node
within the landscape. In all these cases, key locations within the landscapes tend to be occupied
by older folds than those at the periphery of the space. A previous study identified a function-
ally diverse core within fold space [61]. This core was predominantly characterised by α/β
folds, which have also been identified as predominantly ancient [19, 45]. The central folds we
identify here, on the other hand, represent all four SCOP classes, and form key structural brid-
ges both within and between the class communities. To illustrate this diversity we identified
four highly central pivotal folds. These folds represent dominant structural features, such as
the greek key motif, the α-β-α switch and the α hairpin which act as key attractors within our
landscapes.

Structural alignment in general remains an unsolved problem, and much has been written
about the inaccuracies of current methodologies. For example a recent study demonstrated a
high level of evolutionary inconsistency when comparing several alignment methods, including
MAMMOTH, FATCAT and TM-ALIGN [44]. However, despite their limitations, these align-
ments can give us clues as to a global structure space, in ways in which common classification
systems cannot. The representations we have included here cannot be claimed to be accurate
depictions of this global space. However, there does appear to be a well defined core to this
space where different alignment methods agree on the architecture and general properties of
fold space. Moreover, the fact that structural bridges at the heart of this core consensus tend to
fall between folds of similar age estimates lends support to the argument that evolutionary
information may be encoded along these bridges.

Supporting Information
S1 Video. Dynamic visualisation of the ESA network as the posterior probability decreases
from 1.0 to 0.5.Nodes represent folds and edges occur between these folds at the probability
value associated with their closest representative domains. Nodes are coloured according to
their SCOP class and have a size relative to their estimated fold age.
(MP4)

S2 Video. Dynamic visualisation of the FATCAT network as the posterior probability
decreases from 1.0 to 0.5. Nodes represent folds and edges occur between these folds at the
probability value associated with their closest representative domains. Nodes are coloured
according to their SCOP class and have a size relative to their estimated fold age.
(MP4)

S3 Video. Dynamic visualisation of the MAMMOTH network as the posterior probability
decreases from 1.0 to 0.5. Nodes represent folds and edges occur between these folds at the
probability value associated with their closest representative domains. Nodes are coloured
according to their SCOP class and have a size relative to their estimated fold age.
(MP4)

S4 Video. Dynamic visualisation of the TM-ALIGN network as the posterior probability
decreases from 1.0 to 0.5. Nodes represent folds and edges occur between these folds at the
probability value associated with their closest representative domains. Nodes are coloured
according to their SCOP class and have a size relative to their estimated fold age.
(MP4)
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S5 Video. Dynamic visualisation of the consensus network as the posterior probability
decreases from 1.0 to 0.5. Nodes represent folds and edges occur between these folds at the
probability value associated with their closest representative domains. Nodes are coloured
according to their SCOP class and have a size relative to their estimated fold age.
(MP4)

S1 Text. Pivotal folds within the fold space networks. These four folds were identified as
highly central, in terms of degree, closeness and betweenness measures in all the networks of
our study, including the consensus networks. Their topologies as well as their neighbours in
the consensus network at threshold 0.5 (shown in S3 Fig) are discussed.
(PDF)

S1 Fig. Some basic statistics for the four networks as the probability threshold changes.
Plots of network statistics for different methods at different thresholds. The statistics are calcu-
lated using the tnet package in R. (a) The number of nodes in a network refers to the number
of folds connected by at least one bridge. (b) The number of edges is the number of bridges
determined as significant by each method at the threshold. (c) Unique edges are edges found in
a network at a particular probability threshold which are not found in any other network at
that threshold. (d) The density is the proportion of all possible pairs between the set of con-
nected nodes (nodes in (a)) which are bridges. (e) Average neighbours is the average number
of bridges connecting a fold in the network. (f) The shortest path between any two nodes is cal-
culated as the smallest sum of weights along bridges forming a path between those folds. The
average shortest path for a network is the average of these path lengths across all pairs of nodes
in its largest connected component (lcc). (g) The clustering coefficient is the proportion of trip-
lets of connected folds which have bridges connecting all three. (h) Connected components are
groups of nodes (> 1 node) which are linked to each other by edges, but which have no edges
to nodes outside the component. The number of such components in each network is given
here. (i) The number of connected components with at least 20 nodes. This gives an estimate of
how many larger components each network consists of.
(TIF)

S2 Fig. Plots showing the mean fold age of the central and peripheral folds within each net-
work. These populations were identified for each network as in the Methods. In each case the
central nodes are found to be older than the peripheral nodes (significant at the 0.01 level with
the Mann-Whitney U test). For simplicity, only points corresponding to networks with one
giant component containing all SCOP classes, are included. This is due to the need to consider
connected components separately for closeness and betweenness centralities. However, the
same signal is seen for the different components of the remaining networks: separate networks
at a threshold of 0.9 and consensus networks at all thresholds.
(TIF)

S3 Fig. Pivotal nodes and their neighbours in the consensus network with a probability
threshold of 0.5. The background consensus network is shown in grey with nodes given a size
proportional to their fold age. Pivotal nodes are highlighted as diamonds and coloured accord-
ing to their SCOP class (a.2: red, b.1: yellow, c.23: green, d.58: blue). Neighbouring folds are
coloured according to the pivotal fold they share a bridge with. Folds in orange share a bridge
with both b.1 and d.58 and those in purple are connected to c.23 and d.58. Additionally, car-
toon representations of representative domains from each pivotal fold demonstrate their topol-
ogies.
(TIF)
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S1 Table. Effective cutoffs for alignment scores at different probability thresholds. For pos-
terior probabilities PðF ¼ 1jS > �sÞ ranging from 0.5 to 0.9, alignment score values �s were
identified as thresholds for network construction. For example, an alignment with a TM-score
of 0.5 will translate to a bridge in the TM-ALIGN networks at probability values 0.5 − 0.8 but
not in the network corresponding to a probability of 0.9. The elastic metric of ESA’s algorithm
is a distance rather than a similarity measure. The cutoffs are therefore upper limits, whereas
for the other methods they are lower limits.
(TIF)
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