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Introduction
One of the largest challenges in modern biology is to 
understand precisely how gene expression is controlled during 
embryonic development. In the model organism, Drosophila 
melanogaster, as in many other species, this process is regu-
lated at the molecular level by transcription factor (TF) pro-
teins selectively binding to DNA sequences in cis-regulatory 
modules (CRMs) to activate or repress the transcription of 
target genes.1–7 Therefore, comprehensively identifying the 
nature of the DNA sequences that such TFs bind to will facil-
itate a more complete understanding of the genetic control 
of development. There are several experimental techniques, 
including DNaseI footprinting, protein-binding microarrays, 
and chromatin immunoprecipitation (ChIP),8–11 that provide 
information about specific TF–DNA interactions. In general, 
regulatory proteins do not bind to just one DNA sequence. 
Though many TFs have a consensus binding site, they fre-
quently bind to a number of other sequences as well.12 Further 
complicating matters, the binding affinity between a TF and 

a DNA sequence motif may vary and, as a result, each distinct 
binding site has its own probability of being bound by a specific  
regulatory protein.13

One commonly used approach to model the preferred 
binding sequences for a given TF is the position weight matrix 
(PWM).14 This is a matrix of size 4 × lw, where lw is the length 
of each of the aligned binding site sequences obtained directly 
from experimental data. The rows in the matrix represent each 
of the four possible nucleotides, A, C, G, and T, each col-
umn in the matrix represents a distinct nucleotide position 
in a binding site motif, and, most frequently, each element of 
the matrix represents the log-likelihood of observing a certain 
nucleotide at that position.13–19 Unfortunately, there are several 
significant shortcomings of the standard PWM approach,20–22 
the most important of which may be the assumption that the 
frequency of a nucleotide at any given position in the matrix is 
independent of the nucleotide frequencies at the neighboring 
positions.23 This underlying assumption of mononucleotide 
matrix models is particularly problematic, given that TFs can 
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have more than one DNA-binding domain and may be capable 
of contacting many nucleotides in parallel.4,20,24–27

There are a number of proposed methods to improve 
PWMs, including developing more advanced statistical algo-
rithms for PWM construction,21 considering higher order 
Markov models for the background model28 and extending 
the PWM model by scoring dinucleotides and creating 16 
by lw − 1 matrices, analogous to mononucleotide PWMs.14,23 
For example, comparison of mononucleotide and dinucleotide 
weight matrices in predicting the GC-box binding motif for 
the human Sp1 TF revealed that the dinucleotide matrix 
performed with greater specificity and sensitivity.14 A more 
recent study compared 26 different methods for the prediction 
of binding sites of 66 different TFs in mouse.21 These methods 
included more sophisticated algorithms for generating simple 
mononucleotide PWMs and dinucleotide PWMs and per-
forming analyses using multinucleotide (n-mer) matrices of 
arbitrary length. The results indicate that, though in many 

cases simple mononucleotide PWMs perform similar to more 
complex models, robust predictions for a subset of TFs require 
a more complex n-mer model.21

One important limitation of the existing n-mer models 
is that they consider groups of n nucleotides simultaneously, 
ascribing equal consideration for each nucleotide.29–31 As a 
result, the predictions from such a model may be skewed by 
the consideration of nucleotides that are functionally irrele-
vant. We approach this problem by developing a new method 
that considers all possible gapped n-mer matrices,22 including 
n-mer matrices as well as those that do not consider some of the 
n nucleotide positions. This approach allows for the possibil-
ity of ignoring several nucleotides within each frame without 
introducing bias into the matrices selected for analysis.22 Our 
goal is to build matrices that have greater predictive efficacy 
than existing models without using a particularly sophisticated 
construction algorithm or filtered dataset. To our knowledge, 
the performance of such matrices has not been investigated to 

Figure 1. Comparison of a traditional mononucleotide frequency matrix and the gapped n-mer approach. (a) the traditional mononucleotide frequency 
matrix considers each of the eight nucleotides (m) in the BiCoid binding site independent of the others, sliding across the sequences with a window 
frame size of one nucleotide. the 4 × 8 frequency matrix constructed contains the observed frequencies of each base over the 8 bp binding site for 
BiCoid, obtained from in vivo binding data. (B) Visualization of the standard mononucleotide matrix approach at a BCd binding site. Highlighted 
nucleotides represent those that contribute to the score of each binding region. note that each nucleotide in the 8 bp binding region contributes to the 
score. (C) the gapped n-mer approach uses an ln-length window frame that considers some nucleotides (m) while ignoring others (k). the gapped 
n-mer mkkkkm, shown as an example, considers only the two outermost nucleotides in each frame while ignoring the inner four. note that in this case, 
ln = 6. this generates a 16 × 3 matrix, representing the frequencies of the 16 possible nucleotide pairs that can be found separated by a distance of 
four nucleotides within the binding motif. the three columns correspond to the three possible positions of the mkkkkm window sliding over the 8 bp 
BiCoid binding region. note that an analogous frequency matrix can be constructed from any possible gapped n-mer, with composition dependent on 
the gapped n-mer used. (d) Visualization of the gapped n-mer mkkkkm at a BCd binding site. only the base frequencies of the highlighted nucleotides 
contribute to the score of each binding site. note that the middle two nucleotides in the 8 bp binding region do not contribute to the score produced by 
this particular matrix.
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date. Herein, we present a systematic evaluation of 32 distinct 
gapped n-mer matrices for modeling the DNA sequence 
specificity of 15 different TFs that regulate gene expression 
in early Drosophila development. Our results show that many 
of these regulatory proteins have their own preferred set of 
gapped n-mer matrices based on sequence specificity and that 
in many cases these gapped n-mer matrices perform better 

than simple n-mers or mononucleotide PWMs. In addition, 
two distinct groups of TFs are identified, which demonstrate 
radically different scoring profiles.

results
experimental approach. To investigate the ability of 

distinct matrix models to predict the DNA sequence speci-
ficity of Drosophila TFs, we employ our previously developed 
MARZ algorithm and the associated RZ scoring method.22 
The MARZ algorithm utilizes a systematically constructed 
set of 32 matrices to perform an unbiased analysis of TF bind-
ing sequences. The matrices include the simple mononucle-
otide model, m (Fig. 1A and B), and all possible gapped n-mer 
matrices with a reading frame of length less than or equal to six 
nucleotides. The gapped n-mer matrices only consider a sub-
set of nucleotides (represented by an m) and ignore the other 
nucleotides (represented by a k) in the frame. For example, the 
mkkkkm matrix considers only the two outside nucleotides in 
a six-nucleotide frame (Fig. 1C and D). In total, 15 different 
Drosophila TFs were analyzed, each of which is known to play 
an important role in regulating early embryonic development 
(Table 1). The experimentally determined binding sites for 
these 15 TFs range in size from 7 to 15 bp and are variable in 
sequence, resulting in PWMs with different overall informa-
tion content (Fig. 2).

When determining whether a potential binding site 
scores high enough to be defined by MARZ as a predicted 
binding site, the algorithm uses a threshold position, x (rang-
ing from 0 to 1). The scoring threshold is then determined by 
identifying the highest threshold at which 1 − x percentage of 
the experimentally determined binding sites are identified as 
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Figure 2. Sequence logos for the 15 tFs in this study. Sequence logos are a visualization tool to represent the information content of each nucleotide at 
each position in a (mononucleotide) PWm for a particular tF. the sequence logos were constructed using the software developed by Crooks et al.58 and 
experimentally verified binding sites45,56,57 as described in the “methods” section.

Table 1. the 15 Drosophila tFs studied the tFs and their 
corresponding abbreviations and classifications by spatial expression 
profile are listed. 

abbreviations: aP, anterior–posterior; dV, dorsal–ventral; PR, pair-
rule.
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the predicted binding sites. Thus, a high threshold position 
only allows for the prediction of strong binding sites, while 
a low threshold position allows for the prediction of a wide 
range of weak and strong binding sites.

MArZ analysis reveals two distinct groups of tFs. 
The RZ score measures the ability of a matrix model to cor-
rectly predict the genuine binding sites identified in ChIP 
peaks taken from the Drosophila genome.22 For the 15 TFs 
analyzed, two distinct scoring profiles are observed (Fig. 3). 
Ten of the TFs (D, DL, GT, H, HB, HKB, PRD, RUN, 
SHN, and SLP – Group A) show very similar profiles with 
a number of shared features, as follows. (i) The matrix scores 
monotonically decrease as the threshold position increases.  
(ii) There is a very narrow range of scores observed (0.50–0.55) 
for almost all TFs across all thresholds. (iii) Matrix perfor-
mance tends to be more variable at lower threshold positions 
and becomes more uniform as the threshold position increases. 
In contrast, the five other TFs (BCD, CAD, FTZ, KNI, and 
KR – Group B) show scoring profiles that do not contain the 
shared Group A-identified features and are also quite dis-
tinct from one another. Comparison of the known expression 
patterns in the embryo, the regulatory network to which they 
belong, or the characterized DNA-binding domain(s) in each 
of the TFs in either Group A or B fails to identify any obvious 

biological motivation for this observed grouping based solely 
on these criteria (Table 2).

Group A tFs – shared common features. It is clear 
that the scoring profiles of Group A TFs share a number of 
key features. The simple mononucleotide matrix, m, performs 
relatively well for the majority of TFs (rank #1–5), with the 
exception of H and HB (Table 3). In addition, the dinucle-
otide matrix, mm, performs worse than the m matrix, except 
in the case of H, HB, and SLP. Matrices containing strings 
of ungapped nucleotides (eg, mmm, mmmm) or contain-
ing few gaps relative to total matrix length (eg, mmkmmm, 
mmmmkm) also perform relatively poorly (Table 3). In con-
trast, some of the n-mer matrices containing many gaps rela-
tive to matrix length consistently perform well for this group 
of TFs, notably, mkkm, mkkkm, and mkkkkm. However, it 
should be noted that for all Group A TFs, the narrow range 
of overall scores (0.50–0.55) across all thresholds signifies 
that all of the 32 different matrix models score similarly 
(Fig. 3), suggesting that their predictive power is also quite 
similar. Taken together, these features indicate that in most 
cases for these 10 TFs matrices with fewer nucleotide inter-
dependencies appear to perform just as well as, or better than, 
more complicated matrices (Table 3). If we only examine the 
top five scoring matrices for each TF, we see a clear repeti-
tion of the pattern observed across all 32 matrices, namely, 
a monotonic decrease in the predictive score as the thresh-
old increases, within a relatively narrow overall range of  
scores (Fig. 4).

These results suggest that the TFs in Group A have 
similar preferences for nucleotide interdependencies in their 
respective binding site sequences. In fact, the relative strength 
of the performance of the m matrix, combined with the 
weaker performance of the mm and longer strings of ungapped 
m matrices, suggests little interdependency between the indi-
vidual adjacent nucleotides in the binding sites. The inability 
of the vast majority of the 32 matrix models to outperform the 
simple mononucleotide m model supports this conclusion and 
indicates that there may be limited value in using any of the 
more complex matrix models to predict in vivo binding sites 
for this set of TFs.

Group b tFs – distinct scoring profiles. Unlike the rel-
atively uniform scoring profiles shared by all of the Group A  
TFs, the profiles for the five TFs in Group B are much more 
distinct. We no longer observe the threshold-dependent mono-
tonic decrease in RZ scores that characterizes the Group A  
TFs, but rather each of the Group B factors exhibit somewhat 
distinctly shaped profiles (Figs. 3 and 4). Despite these indi-
vidual differences (which are discussed in more detail below), a 
few general trends are observed for the Group B TFs. (i) There 
is greater variability in scores from different matrix models at 
lower threshold positions, which is reduced at higher thresh-
olds. (ii) Greater overall variability in scores is observed for 
many of the Group B matrices, when compared with Group A.  
(iii) The overall range of scores (0.30–0.66) is much larger 

Table 2. Grouping of the 15 Drosophila tFs by overall matrix 
performance.

Note: The TFs are listed and classified by their spatial expression profile 
and the identity of their primary dna-binding domain. the tFs fall into two 
distinct groups when the RZ scores of all 32 matrices are analyzed, as shown 
in Figure 3. Group a consists of 10 tFs that show a relatively narrow range of 
values following a simple pattern of monotonically decreasing RZ scores with 
increasing threshold value. in contrast, tFs in Group B (BCd, Cad, FtZ, 
Kni, and KR) show more complex patterns across the range of thresholds.
abbreviations: aP, anterior–posterior; dV, dorsal–ventral; PR, pair-rule.
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Figure 3. Comparing the performance of the 32 gapped n-mer matrices for all 15 tFs. in each graph, the x-axis corresponds to the threshold position used 
for each run of the maRZ algorithm. the y-axis corresponds to the RZ score obtained from each run (see “methods” section for details). at a given threshold, 
the central mark (a red line) represents the median RZ score of the 32 gapped n-mer matrices, the blue boxes enclose the 25th to 75th percentiles of the data 
set, the whiskers extend to all other points not considered outliers, and the outliers are plotted separately (red crosses). in random simulations, the RZ scores 
obtained are approximately 0.5.22 thus, we have included a dashed line at 0.5, representing the score obtained in the case of nondiscrimination.
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Figure 4. Performance of the top five matrices over the full range of thresholds for all 15 TFs. In each graph, the x-axis corresponds to the threshold 
position used for each run of the maRZ algorithm. the y-axis corresponds to the RZ score obtained for each run (see “methods” section for details). 
The RZ scores of the five highest-scoring matrices are shown, with the rank of each matrix indicated in parentheses. The standard mononucleotide (m) 
and dinucleotide (mm) matrices are also included for comparison. For many of the tFs, all matrices consistently outperform the no-discrimination case 
(dashed line), especially at low threshold values. the top matrices for a number of tFs (see BCd, Cad, FtZ, Kni, and KR) show complex performance 
variation with threshold position.
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than the range found in the Group A TFs. (iv) Performance  
at any given threshold varies considerably with the matrix 
type. (v) Performance of each matrix changes in response 
to the threshold used (although often in a unique fashion). 
Given the radically different scoring profiles for each of the 
five Group B TFs (Fig. 4), we will discuss the details of each 
TF profile individually.

bIcoId. BCD is a homeodomain TF that, in common 
with other homeodomain-containing TFs, is thought to bind 
strongly to the canonical TAAT recognition sequence32–34 
observed in the center of its 8 bp PWM (Fig. 2). Therefore, it 
is a strong candidate for nucleotide interdependencies within 
its binding site sequences. This is supported by the fact that 
some of the best performing matrices for BCD are models 
with extended gaps, including mkkmm, mkkmmm, and mkkm 
(Table 3) that exhibit nonadjacent nucleotide dependencies. 
However, even these top-ranked matrices do not perform 
uniformly well over all threshold values (Fig. 4), emphasizing 
the need for careful consideration of the stringency at which 
predictive analyses are run. In addition, it is clear that longer 
nongapped matrices, including mmm and mmmm, which are 
ranked 25th and 24th, respectively, out of the 32 different 

models, do not perform well for BCD (Table 3). This may 
indicate that extended stretches of adjacent nucleotide depen-
dency are not a feature of BCD binding sites.

cAUdAL. The CAD TF also contains a DNA-binding 
homeodomain25,35 with a relatively robust T(A/T)AT motif 
represented in the center of its 8 bp PWM (Fig. 2). In the 
case of CAD, the top five ranked gapped n-mers all contain 
six positions (Fig. 4). Noticeably, the mononucleotide m model 
performs very poorly (ranked 28th out of 32), while mmmm, 
mmmmm, and mmmmmm are all ranked in the top 11 models 
(Table 3). Together, these results may be indicative of a wide 
amount of nucleotide dependence in CAD binding sites. If we 
only consider n-mer models that contain gapped (k) positions, 
an interesting additional observation about CAD is revealed. 
The mmkkkm model is ranked 3rd, while its reflection mkkkmm 
is 25th (Table 3). This large difference in predictive ability 
implies that the orientation of gaps considered in the bind-
ing sites is significant. The actual nucleotides being considered 
when using the mmkkkm model are visualized in Figure 5. 
A further feature of the CAD matrices is that they perform 
relatively consistently across the entire range of threshold values 
(Fig. 3) when compared with the other TFs in Group B.

FUsHI-tArAZU. FTZ is the third homeodomain 
TF36,37 in Group B and also has a characteristic (T/C)AAT 
motif represented in the center of its 8 bp PWM (Fig. 2). The 
profile for FTZ shows a relatively large range of RZ scores 
(0.42–0.66), which is generally larger in the lower half of 
threshold values and decreases at higher thresholds (Fig. 3). 
The m matrix performs poorly (ranked 21st), while gapped 
n-mer matrices with nonadjacent nucleotide dependencies 
perform the best: mkkm, mkmm, and mmmkkm are ranked 1st, 
2nd, and 3rd, respectively (Table 3). These results suggest that, 
like the other homeodomain TFs, nonadjacent nucleotide 
dependencies are important in FTZ binding sites. However, 
the exact arrangement of gapped positions considered in the 
binding site also appears to be critical, as the mkkkkm model 
performs the worst of all 32 matrices (Table 3).

KNIrPs. KNI contains a characterized C4-type zinc 
finger (ZF) DNA-binding domain,38,39 and its corresponding 
PWM is unusual in that it contains four adjacent nucleotide 
positions with high information content accompanied by four 
nucleotides with very little information content (Fig. 2). This 
may, in part, be the result of KNI binding to multiple distinct 
motifs.20 Therefore, it is perhaps not surprising that all of the 
top five performing matrix models for KNI contain at least 
four nucleotide positions [one has four positions (mmmm), two 
have five positions (mmkmm and mmkkm), and two have six 
positions (mkmmkm and mkmkmm); Table 3]. Of these five 
matrices, the top three ranked models all contain an mkm 
motif within them, suggesting that nonadjacent nucleotide 
dependencies are present in the KNI binding sites (Fig. 2). 
This is supported by the fact that the dinucleotide model mm, 
which only considers adjacent dependencies, performs very 
poorly (ranked 25th). Of note is the very broad range of scores 
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Figure 5. Visualizing the nucleotides included in a gapped n-mer 
model. (a) a standard sequence logo for Caudal, corresponding 
to the nucleotide frequencies in a traditional mononucleotide model, 
constructed using the software developed by Crooks et al.58 and 
experimentally verified binding sites45,56,57 as described in the “methods” 
section. (B) a series of sequence logos to represent the nucleotides 
considered in each sliding window used with the best performing model, 
mkkkkm, to predict 8 bp binding site for Caudal.

http://www.la-press.com
http://www.la-press.com/journal-gene-regulation-and-systems-biology-j26


Transcription factor binding sites in the Drosophila genome

29Gene ReGulation and SyStemS BioloGy 2016:10

(0.32–0.65) for the top five ranked models across different 
thresholds (Fig. 4), once more suggesting that the stringency 
at which the analysis is carried out is critically important to 
the predictive ability of different matrix models.

KrUPPeL. KR has a C2H2-type ZF DNA-binding 
domain.40,41 Its PWM represents a 9 bp binding site with 
relatively low information content at all positions when com-
pared with many of the other TFs in our study (Fig. 2). In the 
case of KR, the simple mononucleotide model m is ranked 4th 
overall, suggesting that nucleotide interdependencies may not 
be prevalent in its binding sites. However, the scoring profile 
for KR shows some subtleties that may underlie a more com-
plex DNA-protein binding regime. All of the top five ranked 
models (with the exception of the mononucleotide matrix) 
contain six nucleotide positions (Table 3) and the top three 
all have nonadjacent dependencies separated by a string of k ’s 
(mmkkmm, mkkkkm, and mkkkmm). As was the case for KNI, 
a large range of scores are seen in the overall profile (0.31–
0.64), with the general trend of a wider range of scores at low 
thresholds and a corresponding narrowing of score range at 
higher thresholds (Figs. 3 and 4).

Identification of known KrUPPeL binding sites in 
crMs. To directly compare the predictive ability of a gapped 
model to the simple mononucleotide and dinucleotide models, 
we investigated the identification of experimentally verified 
KR binding sites by the top-ranked mmkkmm matrix in three 
different well-characterized Drosophila CRMs, namely, even-
skipped stripe 2 enhancer (S2E42), Abdominal-B IAB5 enhancer 
(IAB543), and Abdominal-B IAB7b enhancer (IAB7b44). In 
each case, the ability of the different models to rigorously 
identify the known functional KR binding sites (true positives) 
and avoid false-positive predictions using the lowest possible 
threshold value (see “Methods” section) is assessed (Table 4). 
The S2E contains three known KR binding sites, which are 
successfully identified by the m and mm models. However, at 
this permissive threshold value, these models also identify 630 
and 274 false-positive binding sites on the two DNA strands 
in the 480 bp enhancer, respectively (Table 4, S2E). In con-
trast, the mmkkmm matrix only identifies 17 false-positive 
binding sites, but does fail to identify one of the known KR 
binding sites. The difference in the performance of the mod-
els is also illustrated by the specificity (or true-negative rate), 
calculated as TN/(TN + FP) (where TN is true negatives and 
FP is false positives), of these three matrices (m: 0.336; mm: 
0.711; and mmkkmm: 0.982). The IAB5 and IAB7b enhancers 
both contain two known KR binding sites, which are success-
fully identified by all the three models. Once more, the false 
positive rate is drastically reduced and the specificity is greatly 
increased (m: 0.316 and 0.352; mm: 0.692 and 0.690; and 
mmkkmm: 0.996 and 0.997, respectively) for both enhancers 
when the mmkkmm model is applied when compared with the 
simple models (Table 4, IAB5 and IAB7b), indicating that 
the gapped model is outperforming the m and mm models at 
this threshold.

Performing the same analysis at the threshold values at 
which the m, mm, and mmkkmm models received their high-
est RZ score (see “Methods” section) reveals similar results 
(Supple mentary Table 1), albeit the false-positive rate is reduced 
for all three models. This result once again emphasizes that 
the stringency at which the analysis is carried out is critically 
important to the predictive ability of different matrix models.

discussion
The results of our study demonstrate that, in order to increase 
the accuracy of predicting in vivo binding sites for transcrip-
tion factors (TFs), it is critical to carefully consider which 
gapped n-mer models to employ and the threshold level at 
which the analysis is performed. In many cases, complex 
gapped n-mer matrices outperform traditional simple mono-
nucleotide or n-mer models.  In addition, two distinct groups 
of TFs are identified with radically different scoring profiles, 
suggesting that optimal model selection may depend on TF-
specific protein-DNA interaction regimes.

Advantage of using the MArZ algorithm. In comparison 
to a number of previous bioinformatics tools used for the 
identification of transcription factor binding sites (12, 14–19, 
21, 23), the MARZ algorithm offers one clear advantage; 
a systematic and unbiased consideration of all gapped and 
non-gapped nucleotide dependence. MARZ enables the user 
to compare the performance of complex gapped n-mer matri-
ces to traditional simple mononucleotide or n-mer models and 
reports a clear scoring profile (Table 3). In addition, the algo-
rithm systematically tests all models and therefore also allows 
for the detection of cases where simple, more traditional 
matrices outperform more complex gapped matrices.

tF profiles fall into two distinct groups. The scoring 
profile for all five of the Group B TFs (BCD, CAD, FTZ, 
KNI, and KR) differs substantially from the shared profile fea-
tures of TFs in Group A (D, DL, GT, H, HB, HKB, PRD, 
RUN, SHN, and SLP; summarized in Fig. 3 and Table 3). 
By considering the ratio between each matrix model’s aver-
age ranked performance on the Group A TFs and the Group 
B TFs, we directly compare the overall performance of each 
individual model (Table 5). Accordingly, a ratio ,1 indicates 
that the model performs better on Group A TFs and a ratio 
.1 indicates that the model performs better on Group B TFs 
(Table 5). Using this metric enables us to identify some key 
patterns. First, simpler matrices, represented by independent 
nucleotides (including the mononucleotide matrix) and more 
gaps, more accurately predict the binding sites for Group A 
TFs. Correspondingly, more complex matrices, represented 
by higher numbers of nucleotide interdependencies, are more 
accurate predictors of binding sites for Group B TFs (Table 5). 
This indicates that the binding sites for the Group A TFs pre-
dominantly contain arrangements of nucleotides that are inde-
pendent of each other and that utilizing complex matrix models 
to search for binding sites may be unnecessary in these cases. In 
contrast, many of the complex gapped n-mer models perform 
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relatively well for Group B TFs, suggesting that the binding 
sites for these proteins do in fact harbor a number of critical 
nucleotide interdependencies. However, it should be noted that 
the predictive ability of individual models tends not to be sys-
tematic across the five Group B TFs (Table 5), emphasizing, 
emphasizing the need for careful analysis of any particular TF 
under investigation.

Although we have included TFs with a wide variety of 
different DNA-binding domains (Table 2), it is of note that all 
three homeodomain-containing proteins (BCD, CAD, and 
FTZ) included in our analysis fall into Group B. In the case of 
each of these TFs, the homeodomain is thought to be largely 
responsible for mediating protein–DNA interactions,32,45 pre-
dominantly via contact with an evolutionarily conserved core 
consensus TAAT motif.32,33,35–37 This motif is represented in 
the center nucleotide positions (3–6) of the 8 bp PWMs for 
all three TFs in our study (Fig. 2). Given the demonstrated 
importance of this TAAT binding sequence, it is there-
fore reasonable to expect some degree of dependence among 
nucleotides within 3 bp of one another in the binding sites for 
BCD, CAD, and FTZ. Such a hypothesis is supported by the 
fact that for all three TFs, complex matrix types, that consider 
many nucleotide positions, demonstrate relatively strong pre-
dictive performance (Table 3). Intriguingly, the gapped matri-
ces that perform well for these three homeodomain TFs may 

also offer some insight into the physical mechanisms underlying  
the nucleotide interdependencies in their DNA-binding sites 
and the associated binding affinity with the protein TF. All 
three TFs are thought to not only mediate binding interac-
tions in the major groove of DNA using the homeodomain 
recognition helix but also additional DNA contact in the 
minor groove via the relatively unstructured N-terminal 
domain.32,36,37,46 Therefore, it is possible that when consider-
ing binding site specificity, the identity of the nucleotides in 
the transition positions between the major and minor groove 
may not be as important as the nucleotides in the grooves 
themselves. There is support for this idea from the fact that 
the best performing matrices for each of the three TFs contain 
extended nucleotide gaps, namely, mkkmm (BCD), mkkkkm 
(CAD), and mkkm (FTZ) (Table 3).

A complex gapped matrix model outperforms tradi-
tional models for KrUPPeL. Direct comparison of the 
predictive ability of the top-ranked gapped n-mer model 
(mmkkmm) with the traditional mononucleotide (m) and dinu-
cleotide (mm) models reveals that the gapped model is much 
more selective at identifying the known KR binding sites in 
three well-characterized Drosophila CRMs (Table 4). In the 
case of the even-skipped stripe 2 enhancer (S2E), the gapped 
model predicts over an order of magnitude fewer false-posi-
tive binding sites when compared with the two simple models 
(Table 4) at the lowest threshold value. Intriguingly, this selec-
tivity also results in the mis-identification of one of the three 
known KR sites as a false negative, suggesting that there may 
be a potential trade-off in the predictive ability. In the case 
of the IAB5 and IAB7b enhancers, all three models correctly 
identify the known KR binding sites, but again the gapped 
model greatly outperforms the two traditional models in terms 
of predicting fewer false-positive sites (Table 4). Comparison 
of the model predictions at the threshold values at which the 
m, mm, and mmkkmm matrices receive their highest RZ score 
reveals a similar pattern of results (Supplementary Table 1). 
However, in these cases, the false-positive rate is reduced for 
all three models, indicating that the threshold stringency at 
which the analysis is performed can influence the predictive 
ability of different matrix models.

conclusions
Given the considerable difficulty in developing reliable meth-
ods to identify TF binding sites in complex metazoan genomes, 
the MARZ algorithm will be a useful addition to the cur-
rently available repertoire of bioinformatics tools. Of note is 
the similarity of our results with a previous study investigating 
the performance of different predictive models for mammalian 
TFs.21 In the earlier study, 26 models were applied to predict 
binding sites for 66 different mouse TFs. The results indicated 
that models based on simple mononucleotide PWMs perform 
similarly to more complex models for most of the mouse TFs 
examined, but do not perform as well in some cases (,10% of 
the TFs examined).21 In our current study, we find an analogous 

Table 4. KRuPPel binding site predictions in CRms. 

Notes: the ability of the mononucleotide (m), dinucleotide (mm), and gapped 
(mmkkmm) matrix models to identify the known KR binding sites at the 
lowest threshold value. Predicted binding sites in each of the three CRms are 
classified as true positives (TP), false positives (FP), false negatives (FN), 
or true negatives (tn). in each case, the performance of the gapped matrix 
is compared with the mononucleotide matrix (red, performs worse; blue, 
performs equally; green, performs better). For all three CRms, the complex 
gapped matrix predicts many fewer false-positive sites.
abbreviations: even-skipped stripe 2 enhancer (S2e), Abdominal-B iaB5 
enhancer (iaB5), and Abdominal-B iaB7b enhancer (iaB7b).
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situation – for the 10 Group A Drosophila TFs, there is very little 
difference between the performance of the 32 different mod-
els in the MARZ algorithm. However, for the five Group B  
Drosophila TFs, the best performing models are those that 
include complex gapped matrices with nucleotide interde-
pendencies. Investigation of the underlying biological impli-
cations of the performance of these different models will be 
critical in future studies. In particular, expanding the stud-
ies to examine the performance of the MARZ algorithm on 

additional datasets for Group B TF binding, including in 
vivo ChIP-seq47 and in vitro PBMs,9 will be informative in 
further dissecting the key nucleotide interdependencies in 
the binding sites. Given that the sequences in ChIP peaks 
often contain binding sites for multiple TFs,48,49 it may also 
be possible that some of the interdependencies detected by the 
MARZ algorithm represent overlapping sequences from two 
different binding sites. In future studies, it will therefore be 
important to explore other salient features of TF binding sites 
in CRMs,50 including their spatial arrangement,51–53 rela-
tive binding affinities,8,30,54 and the biophysical constraints of 
protein–DNA interactions,55 in combination with the applica-
tion of gapped n-mer matrix models, in order to further refine 
overall predictive efficacy.

Methods
data used. In this study, we investigate 15 TFs promi-

nent in embryonic Drosophila development. These were chosen 
based on the degree of their characterization, the quality and 
quantity of the corresponding data, and the range of their spa-
tial expression profiles (Table 1).

For each TF, ChIP-chip data were obtained from 
MacArthur et al.49, corresponding to regions of DNA in which 
the given TF binds. To reduce any potential noise in the data, 
only the center 100 bp of each ChIP peak are considered. Any 
ChIP peak of fewer than 100 bp of length is discarded, thus 
all trimmed ChIP peaks used are exactly 100 bp in size. These 
trimmed ChIP peaks, combined with aligned sequences from 
in vivo binding data,45,56,57 are then used as the input to the 
MARZ algorithm.22

MArZ algorithm. The MARZ algorithm combinatori-
ally analyzes all possible gapped n-mer matrices (where n # 6) 
for each studied TF. A gapped n-mer is defined as a string of 
k’s and m’s such that any nucleotides located at an m contribute 
to the score of the potential binding sequence and are therefore 
assumed to depend on one another (see Fig. 1 and Ref. 22 for 
details). Due to the varying length and composition among the 
gapped n-mers, each encodes different assumptions about nucle-
otide dependence/independence in putative binding sites. The 
MARZ algorithm as described in the study by Zellers et al.22 
can thus be used to determine which assumptions are most suit-
able for analyzing a given TF at a given threshold value.

Threshold value. When analyzing a given TF, the 
MARZ algorithm identifies as binding sites those that 
score above a given threshold. To determine a threshold, T,  
a threshold position, x (ranging from 0 to 1), is used. This cor-
responds to the highest threshold at which the best-scoring 
1 − x percentage of aligned sequences are all identified as 
binding sites. Thus, a high threshold position only allows for 
the prediction of strong binding sites, while a low threshold 
position allows for the prediction of a wide range of weak and 
strong binding sites.

weight matrices and rZ scores. MARZ constructs 
a weight matrix from aligned binding sequence data by 

Table 5. Heat map ranking each matrix/tF Group combination by 
average RZ score. 

Notes: this chart shows the average ranks of each gapped n-mer matrix 
across all tFs in each of Groups a and B. these are color-coded such that 
green (lower) entries indicate relatively strong performance, whereas red 
(higher) entries indicate relatively poor matrix performance. the ratio of 
the average rank of each matrix across group a to its average rank across 
group B is also shown; in this section, blue (lower) entries denote a stronger 
performance across Group a, while white (higher) entries indicate stronger 
performance across Group B. Gapped n-mers have been ordered according 
to their ratio of average rank across Group a to its average rank across 
Group B.
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constructing first a frequency matrix from the aligned 
sequences, and then comparing this with a background matrix 
constructed from the entire Drosophila genome. Similar to 
how traditional PWMs are constructed, we then construct a 
weight matrix with columns that represent the contributions 
of each possible nucleotide composition of the gapped n-mer 
at each sliding frame along a potential binding site. Using this 
matrix, if a string of nucleotides is scored greater than or equal 
to the threshold T, it is predicted to be a binding site.

The RZ score is a measure of the effectiveness of a gapped 
n-mer weight matrix at a given threshold. It is a value in the 
range [0, 1] that corresponds to the ability of a weight matrix 
to differentiate real from scrambled ChIP peaks at a given 
threshold. Note that if the number of predicted binding sites 
on a true ChIP peak is greater than the average number of 
predicted binding sites on the corresponding scrambled ChIP 
peaks, 1 point is added to the score. If the average number 
of predicted binding sites on the scrambled ChIP peaks is 
greater than the number of predicted binding sites on the 
corresponding true ChIP peak, 0 is added to the score. If 
scrambled and true ChIP peaks have exactly the same number 
of predicted sites, 0.5 is added to the score. This score is then 
divided by the number of ChIP peaks to give a measure of 
effectiveness in the range [0, 1]. An overall value of 0.5 cor-
responds to a matrix that offers no predictive power.22

For each TF, MARZ computes the RZ scores over all 
gapped n-mers and threshold positions. We also provide a 
ranking of all gapped n-mers for a given TF. Since gapped 
n-mers exhibit varying performance over different thresh-
olds, we order the gapped n-mers used to predict binding 
sites for a given TF according to their peak RZ score over 
all threshold positions. The raw RZ scores used to assemble 
Table 3 can be found in Supplementary Table 2.

KrUPPeL binding site predictions. The minimal CRM 
DNA sequences and the location of experimentally verified 
KRUPPEL binding sites were obtained from previous studies 
for even-skipped stripe 2 enhancer (480 bp S2E42), Abdominal-
B IAB5 enhancer (425 bp cIAB543), and Abdominal-B IAB7b 
enhancer (154 bp 2F2K region of IAB7b44).

statement on data and regent Availability
The MARZ algorithm code is available upon request.
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