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Abstract: Chronic kidney disease (CKD), defined as the presence of albuminuria and/or reduction
in estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, is considered a growing public
health problem, with its prevalence and incidence having almost doubled in the past three decades.
The implementation of novel biomarkers in clinical practice is crucial, since it could allow earlier
diagnosis and lead to an improvement in CKD outcomes. Nevertheless, a clear guidance on how to
develop biomarkers in the setting of CKD is not yet available. The aim of this review is to report
the framework for implementing biomarkers in observational and intervention studies. Biomarkers
are classified as either prognostic or predictive; the first type is used to identify the likelihood of a
patient to develop an endpoint regardless of treatment, whereas the second type is used to determine
whether the patient is likely to benefit from a specific treatment. Many single assays and complex
biomarkers were shown to improve the prediction of cardiovascular and kidney outcomes in CKD
patients on top of the traditional risk factors. Biomarkers were also shown to improve clinical trial
designs. Understanding the correct ways to validate and implement novel biomarkers in CKD
will help to mitigate the global burden of CKD and to improve the individual prognosis of these
high-risk patients.

Keywords: end-stage kidney disease (ESKD); cardiovascular disease; epidemiology; CKD; biomarkers

1. Introduction

A biomarker is defined, by a collaborative working group involved with both the United States
National Institutes of Health (NIH) and the Food and Drug Administration (FDA), as “a characteristic
that is measured as an indicator of normal biological processes, pathogenic processes, or responses to
an exposure or intervention, including therapeutic interventions” [1]. This working group definition
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was formed on the initiative of the NIH with the aim of accelerating the development and clinical
application of reliable biomarkers based on shared definitions. Indeed, an “ideal” biomarker is
defined with the presence of some analytic features: (1) it should be measured and readily available
in biological samples, such as blood or urine; (2) it should be reproducible, non-invasive, and not
expensive [2]. In addition, several clinical features should also be provided to complete the biomarker’s
definition; it needs to allow for an early detection of a disease status, while it also needs to have high
sensitivity and specificity, i.e., the biomarker needs to differentiate the pathologic status from the
normal one and from other clinical conditions, as accurately as possible [3]. The effort made by the
NIH–FDA working group is considerable ever since it forecasted and tried to solve the problems of
biomarker development, from discovery to clinical application. Indeed, once a biomarker is found
to be involved in one or more pathophysiological mechanisms of a disease, it may be introduced
into clinical practice to see whether it offers advantages in clinical management and after completion
of the validation phase that is considered a crucial step [4]. An important example of the pitfalls
of biomarker development is illustrated in the chronic kidney disease (CKD) scenario. CKD is a
chronic disease characterized by a poor prognosis, due to the strong association with the development
of cardiovascular events, all-cause mortality, and renal events such as renal replacement therapies
(RRT, i.e., dialysis or kidney transplantation) [5,6]. The Kidney Disease Improving Global Outcomes
Work Group (KDIGO), in 2012, defined CKD with the presence of either decreased kidney function
(estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2) and/or albuminuria, namely, an
abnormal amount of protein excretion with urine, for at least three months [7]. The global dimension of
the disease is so important that CKD started to be considered a relevant public health problem. Indeed,
according to the Global Burden of Kidney Disease, the CKD incidence and prevalence increased by
88.76% and 86.95%, respectively, from 1990 to 2016 [8]. Moreover, the mortality attributed to CKD
increased by 41.5% between 1990 and 2017, a percentage that exceeded the mortality due to several
neoplasms or cardiovascular (CV) disease [9]. Hence, great effort is advocated toward improving
clinical decision-making and reinforcing treatment and prevention of CKD. The KDIGO working group
proposed a classification called “CGA” that incorporates the cause (C) of kidney disease, as well as the
eGFR (G) and albuminuria (A) levels, to stratify risk in patients with CKD and to better address the
importance of the underlying disease. However, considering eGFR and albuminuria levels in cross-tabs,
like those reported in KDIGO guidelines, does not take into consideration the complex mechanisms
of CKD. In fact, all patients are stratified on the basis of eGFR and albuminuria and allocated in risk
categories for prognostic estimations. This approach was also defined as “reductionist”, since it does
not consider the different etiologies of CKD and many other parameters, including serum or urine
biomarkers, which could help clinical management of CKD [10]. Moreover, although the KDIGO
also suggested considering the causes of kidney disease to predict poor outcomes in CKD patients,
how to incorporate these parameters remains unclear [11]. Few studies included renal diagnoses in
risk prediction models and, when diagnoses are present, they are classified in different ways (i.e.,
four, five, or even six categories) with large heterogeneity between studies, thus making an univocal
interpretation difficult [12,13]. There is also a growing debate regarding the question whether an
eGFR reduction below the threshold of 60 mL/min/1.73 m2 represents the consequence of a physiologic
senescence or a marker of renal pathology [14,15]. In fact, despite the evidence that eGFR reduction
foresees both the onset of end-stage kidney disease (ESKD) and the all-cause death regardless of
age, in large general and high-risk populations, other human studies showed that kidneys undergo
structural and functional change with aging such as nephrosclerosis and a reduction in measured
GFR [14,16]. At the same time, these changes are not associated with a reduction in single-nephron
GFR; this is the likely reason why, in the absence of albuminuria, the GFR reduction alone determines
only a small increased risk for age-standardized mortality and ESKD [16]. Owing to these important
controversies and in an attempt to improve risk stratification and care of CKD patients, as well as
to share clinical findings with the nephrology community, the International Society of Nephrology
(ISN) started an international project called “closing the gaps”, which encompasses a set of activities
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that have to be performed to improve the prognosis of CKD patients [17]. The core of this project is
about the development, implementation, and clinical application of novel biomarkers in CKD patients.
It indeed emerged that, with the exception of cystatin C, which is a filtration marker useful to estimate
the eGFR and to improve risk prediction in CKD, the vast majority of previously tested biomarkers in
CKD did not reach any clinical application [18]. The aim of this review is to report the principal pieces
of evidence regarding biomarker development in CKD, the contribution of these biomarkers to both
observational and interventional (i.e., randomized controlled trials) studies, and the possible strategies
that could be followed to ameliorate this important branch of clinical research.

2. General Classification of Biomarkers

Depending on the intended use, biomarkers are classified as diagnostic, pharmacodynamic/

response, monitoring, prognostic, or predictive [19]. We focus, in the present review article, on
prognostic and predictive biomarkers, as they represent the most developed biomarkers in CKD
patients, while they also incorporate characteristics from other categories of biomarkers. A prognostic
biomarker is used to identify the probability of a clinical outcome in patients who are already suffering
from the disease of interest [1,20]. Furthermore, prognostic biomarkers measure the association
between the disease and clinical outcome in the absence of therapy or with standard therapy that
all patients are likely to receive. On the other hand, predictive biomarkers are used to determine
whether a patient is likely to benefit from a particular therapy. The clinical benefit could be either a
good response to a drug if the biomarker is positive or, alternatively, a lack of benefit from the same
drug, which can save a patient from drug toxicity or unnecessary side effects [1].

3. Prognostic Biomarkers in CKD

The importance of prognostic biomarkers in the CKD setting is crucial. Indeed, CKD is a
multifactorial disease in which risk factors play different roles in different individuals and in different
stages of the disease. It was demonstrated, for example, that the presence of type 2 diabetes leads to
the development of CKD in up to 30% of subjects. This means that, in these patients, the deleterious
pathogenetic mechanisms of diabetes mellitus are sufficient to damage the kidneys with the onset of
typical diabetic glomerulosclerosis. Conversely, it is also possible that, in a portion of diabetic patients,
the kidneys are injured by the co-existence of arterial hypertension, which causes different lesions
(mainly injuring the kidney vessels), with a completely different prognosis.

3.1. Kidney Biomarkers

The assessment of correct risk stratification, i.e., the allocation of CKD patients to the true
risk-of-event categories, always represents a difficult challenge for nephrologists and researchers,
due to the large variability in etiology and prognosis of CKD [21,22]. In order to accomplish this aim,
a growing number of risk prediction models in CKD patients were developed over the past several
years. They show how kidney measures, such as albuminuria (or proteinuria) and eGFR, are strong
prognostic biomarkers. Indeed, an eGFR reduction to levels below 60 mL/min/1.73 m2 or even a
small increase in albuminuria levels is associated with a significantly increased risk for CV events
(CV mortality, coronary heart disease, stroke, heart failure), all-cause mortality, and ESKD (the most
advanced stage of CKD that requires referral to renal replacement therapies such as hemodialysis),
both in the general population and in patients with an already established CKD (Figure 1) [23–25].
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Figure 1. Adjusted risks for end-stage kidney disease (ESKD), death, and cardiovascular (CV) fatal 
and non-fatal events, by 24-h proteinuria (panel A) or estimated glomerular filtration rate (eGFR) 
(panel B) levels. Solid lines represent hazard ratios, whereas dashed lines the 95% confidence 
intervals. Hazard ratios were modeled by means of restricted cubic spline (RCS) due to the 
non-linear association with the endpoints. Knots are located at the zeroth, 25th, 50th, and 75th 
percentiles for proteinuria and 15, 30, 45, 60 mL/min/1.73m2 for eGFR. Risks are adjusted for the 
four-variable Tangri equation [26]: age, gender, eGFR, and proteinuria. Rug plots on the x-axis at the 
top (colored green) represent the distribution of observations. Data source: pooled analysis of six 
cohorts of CKD patients referred to Italian nephrology clinics [27]. 

Albuminuria and eGFR were also recently used to develop individual risk prediction models 
for both CV and renal risk in CKD patients. These models employ statistical measures (such as 
calibration, discrimination, and validation) that represent an essential step before applying risk 
estimates at the individual level [25,26,28,29]. Moreover, risk prediction models are available for 
patients with early, moderate, and severe stages of CKD. The addition of albuminuria and eGFR to 
traditional risk factors included in the model (such as age, gender, presence of diabetes, blood 
pressure, serum cholesterol) was associated with a significant improvement in risk prediction. Even 
more importantly, the contribution of albuminuria and eGFR to the prediction of CV events (CV 
mortality, coronary heart disease, stroke, and heart failure) was found to be greater than traditional 
CV risk factors [24]. This notwithstanding, a main limitation of available risk score is the insufficient, 
even absent, consideration of underlying causes of renal disease, which is a crucial point when 
considering that CKD is a set of multiple etiologies rather than a single disease [12,13]. However, 
these first prediction models established that measuring albuminuria and eGFR is a central step for 
assessing risk stratification in CKD patients. Mechanisms of damage of albuminuria and eGFR were 
partially explained. Albuminuria was shown to exert a direct harmful effect on renal glomeruli and 
tubules [30]. Moreover, it can also be considered as a systemic marker of endothelial dysfunction, 
and this explains the reason for which the presence of proteinuria strictly forecasts the onset of CV 
events in the general population, as well as CKD patients [31]. Similarly, eGFR reduction is linked to 
an increase of uremic toxins that are responsible for kidney and systemic damage. A drop in eGFR 
was also associated with the development of coronary atherosclerosis, regardless of the presence of 
diabetes mellitus, dyslipidemia, previous CV disease, and other comorbidities [32]. Several studies 
showed that an eGFR decrease is associated with the onset of sudden cardiac death (SCD), with the 
data being confirmed from the early stage of CKD, i.e., from eGFR < 60 mL/min/1.73m2 [33–35]. For 
each 10 mL/min decrement in eGFR, SCD risk increased by 11% [33]. SCD accounts for the vast 

Figure 1. Adjusted risks for end-stage kidney disease (ESKD), death, and cardiovascular (CV) fatal and
non-fatal events, by 24-h proteinuria (panel A) or estimated glomerular filtration rate (eGFR) (panel B)
levels. Solid lines represent hazard ratios, whereas dashed lines the 95% confidence intervals. Hazard
ratios were modeled by means of restricted cubic spline (RCS) due to the non-linear association with
the endpoints. Knots are located at the zeroth, 25th, 50th, and 75th percentiles for proteinuria and
15, 30, 45, 60 mL/min/1.73 m2 for eGFR. Risks are adjusted for the four-variable Tangri equation [26]:
age, gender, eGFR, and proteinuria. Rug plots on the x-axis at the top (colored green) represent the
distribution of observations. Data source: pooled analysis of six cohorts of CKD patients referred to
Italian nephrology clinics [27].

Albuminuria and eGFR were also recently used to develop individual risk prediction models for
both CV and renal risk in CKD patients. These models employ statistical measures (such as calibration,
discrimination, and validation) that represent an essential step before applying risk estimates at the
individual level [25,26,28,29]. Moreover, risk prediction models are available for patients with early,
moderate, and severe stages of CKD. The addition of albuminuria and eGFR to traditional risk factors
included in the model (such as age, gender, presence of diabetes, blood pressure, serum cholesterol) was
associated with a significant improvement in risk prediction. Even more importantly, the contribution
of albuminuria and eGFR to the prediction of CV events (CV mortality, coronary heart disease, stroke,
and heart failure) was found to be greater than traditional CV risk factors [24]. This notwithstanding,
a main limitation of available risk score is the insufficient, even absent, consideration of underlying
causes of renal disease, which is a crucial point when considering that CKD is a set of multiple etiologies
rather than a single disease [12,13]. However, these first prediction models established that measuring
albuminuria and eGFR is a central step for assessing risk stratification in CKD patients. Mechanisms
of damage of albuminuria and eGFR were partially explained. Albuminuria was shown to exert
a direct harmful effect on renal glomeruli and tubules [30]. Moreover, it can also be considered as
a systemic marker of endothelial dysfunction, and this explains the reason for which the presence
of proteinuria strictly forecasts the onset of CV events in the general population, as well as CKD
patients [31]. Similarly, eGFR reduction is linked to an increase of uremic toxins that are responsible for
kidney and systemic damage. A drop in eGFR was also associated with the development of coronary
atherosclerosis, regardless of the presence of diabetes mellitus, dyslipidemia, previous CV disease,
and other comorbidities [32]. Several studies showed that an eGFR decrease is associated with the
onset of sudden cardiac death (SCD), with the data being confirmed from the early stage of CKD, i.e.,
from eGFR < 60 mL/min/1.73 m2 [33–35]. For each 10 mL/min decrement in eGFR, SCD risk increased
by 11% [33]. SCD accounts for the vast majority of deaths in CKD patients and is also mediated by
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metabolic and electrophysiological abnormalities [36]. However, both eGFR and albuminuria have
limitations in risk prediction. Albuminuria is not specific for any kidney disease, occurring in ischemic,
diabetic, and tubulointerstitial nephropathies, as well as in the vast majority of glomerulonephritis
and autoimmune diseases [13]. Albuminuria also presents a random variability, since urine protein
excretion follows a circadian rhythm that is influenced by posture, exercise, or dietary factors [37].
The eGFR, albeit associated with a poor prognosis, could also be altered by temporary or reversible
clinical conditions, such as volume depletions or sub-acute tubulointerstitial diseases [11]. Taken
together, proteinuria and eGFR share the limitation of detecting kidney damage often when it is already
established and is, thus, not reversible [15]. Furthermore, urine protein excretion is strictly dependent
on eGFR levels, which are an expression of the number of functional nephrons in the kidney. In fact, we
recently demonstrated that, in a model in which proteinuria is replaced by F-Uprot (proteinuria/eGFR
× 100), an expression of the combination of the two biomarkers, the latter allowed refining risk
stratification for ESKD outcome in all CKD stages, even in more advanced CKD [27]. Albuminuria
levels are strictly dependent and, thus, modified by both systolic and diastolic blood pressure (BP).
As long as the eGFR decreases, a given increase in BP is accompanied by an increase in urine protein
excretion. This phenomenon was observed in both animal and human studies and is caused by the
“remnant nephron effect”, namely, the transmission of systemic hydrostatic pressure to the glomerular
microcirculation [38,39]. Moreover, BP is a clinical parameter characterized per se by high variability,
which is also detectable during 24-h ambulatory BP measurements (short-term variability) [40]. It
was demonstrated that both systolic and diastolic BP variability influence albuminuria levels [41].
Hence, a number of variables were shown to influence albuminuria levels, and this could lead to biased
risk estimation, particularly if the risk prediction is based on a single measurement of albuminuria.
The ISN indeed highlighted that a consensus needs to be found on how often albuminuria should be
measured to warrant a true prediction of cardiovascular and renal endpoints, as well as to monitor
the course of CKD [18]. Owing to the evidence that eGFR and albuminuria are able to provide a
strong but incomplete prediction of cardiorenal endpoints in CKD patients, the next step of prognostic
research focused on the development and assessment of biomarkers that provide useful prognostic
information beyond proteinuria and eGFR. A number of markers of inflammation, oxidative stress, or
tissue remodeling aroused interest in improving CV and renal risk prediction in CKD patients.

3.2. Markers of Oxidative Stress, Tissue Remodeling, and Metabolism

Myeloperoxidase (MPO) is a biomarker of oxidative stress that fosters nitic oxide consumption
and which is associated with the development of atherosclerotic lesions, CV disease, and eGFR decline
in CKD [42,43]. A recent observational analysis of the Chronic Renal Insufficiency Cohort (CRIC),
which enrolled approximately 4000 patients with CKD in the United States (US), showed that serum
MPO levels were associated with the risk of renal outcome, defined as initiation of RRT, 50% eGFR
decline, or eGFR ≤ 15 mL/min/1.73 m2 [44]. The key element of this analysis was that the effect of MPO
was significant even after adjustment for main confounders, such as baseline eGFR and proteinuria
levels. Matrix metalloproteinases (MMPs), endopeptidases involved in tissue development, and
homeostasis through the regulation of cell differentiation, apoptosis, and angiogenesis were shown to
intervene in inflammatory and fibrotic processes across the kidneys [45,46]. Blood and urine levels of
MMPs were linked to renal and CV disease in previous clinical studies in humans. Serum and urine
MMP-2, -8, and -9 levels are increased in patients with diabetic CKD, with MMP-9 being significantly
associated with the severity of albuminuria [47,48]. Increased plasma levels of TIMP-1 (tissue inhibitor
of metalloproteinases-1) predicted the incidence of CKD regardless of inflammatory markers such as
C-reactive protein [49]. MMPs and TIMPs also play a role in accelerating the atherosclerotic process
by increasing cell migration to the plaque fibrous cap that in turn determines plaque inflammation
and rupture [50]. Indeed, the levels of several MMPs (MMP-1, -2, -8, -9) and TIMP-1 were found
to be increased in patients with peripheral arterial disease, including those with aneurysms of the
arterial wall [51]. Fibroblast growth factor-23 (FGF-23), a hormone involved in phosphorus metabolism
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that increases progressively as kidney function declines, was significantly associated with mortality,
atherosclerotic events, heart failure (HF), and ESKD in CKD patients [52,53].

3.3. Cardiac Biomarkers

Several cardiac biomarkers were investigated, mainly for establishing their role in CV and renal
risk prediction in CKD patients. Cardiac troponins (high-sensitivity cardiac troponin (hs-cTnT)) and
natriuretic peptides (N-terminal pro-B-type natriuretic peptide (NT-proBNP)) are largely used in CV
medicine to diagnose coronary artery disease (CAD) and heart failure (HF), respectively. Both these
biomarkers are, thus, an expression of subclinical abnormalities in the heart [54,55]. However, one
major problem that makes their introduction in individual risk prediction difficult is that cardiac
markers are an expression of both cardiac and kidney dysfunction and cannot discern these two
conditions. Natriuretic peptides act by promoting the tubular natriuresis across the kidney and
counteracting the effects of renin–angiotensin–aldosterone system, which is triggered by heart failure,
as well as renal dysfunction [56]. Concerns about the interpretation of hs-cTnT and natriuretic peptides
also derive from the evidence that these marker concentrations are influenced by kidney function
levels [56,57]. So far, cardiac markers found more application in the context of prognostic estimation
of cardiorenal syndromes (CRS), clinical disorders where an acute or chronic dysfunction of one
organ may lead to an acute or chronic dysfunction of the other, thus testifying the strict relationship
between the heart and the kidney [58]. In the general population, hs-cTnT and NT-proBNP were
shown to be strong predictors for incident HF over time [59,60]. In the setting of CKD, an attempt to
evaluate, with appropriate statistical tools, the contribution of cardiac markers to the development of
CV events was made using the Atherosclerosis Risk in Communities study (ARIC) population. In this
study, examining 7682 non-CKD and 970 patients with CKD stage 1–5, hs-cTnT and NT-proBNP were
associated with the development of CV events (defined as the composite of coronary heart disease,
stroke, and HF) independently of kidney measures (eGFR and albuminuria) [61]. The finding was
confirmed for both CKD and non-CKD patients, as well as for patients with or without previous CV
disease. However, the interpretation of these results should be done with caution since the ARIC
cohort was stratified, for this analysis, by the presence/absence of CKD, thus limiting the influence of
kidney measures on CV risk prediction [61]. Results of the association between cardiac markers and
renal outcomes in CKD patients are even more conflicting. The CRIC investigators found, in a cohort
of over 3000 CKD patients, that increased plasma levels of growth differentiation factor-15 (GDF-15,
a member of the transforming growth factor (TGF)-β cytokine family), hs-cTnT, and NT-proBNP were
associated with CKD progression. defined as the onset of ESKD or 50% eGFR decline [62]. However,
when all these parameters were added to the prediction model including traditional CV risk factors,
the model discrimination (i.e., the ability of the model to separate individuals who develop events
from those who do not; see more details in Section 5) did not improve, meaning that their clinical
utility was scarce. Moreover, in the Framingham cohort, hs-cTnT was not associated with a faster
eGFR decline or with incident CKD [63]. There is, overall, a need for future work to assess the role of
cardiac markers in CV and renal risk prediction [61–63].

3.4. Filtration and Urinary Biomarkers

Filtration biomarkers and urinary markers were also investigated. The use of cystatin C to
estimate GFR (eGFRcys) improved the risk stratification for death, death from CV causes, and ESKD
with a large proportion (23%) of patients being reclassified toward true risk estimates when compared
with eGFR estimated from serum creatinine (eGFRcrea) [64]. eGFRcys was also shown to predict the
onset of SCD in elderly CKD patients [35]. The combination of serum creatinine and cystatin C for
estimating eGFR (eGFRcys-crea) allowed clinicians to anticipate the risk prediction of worse outcomes
at 85 mL/min, which is well above the 60 mL/min threshold defined by eGFRcrea. β2-microglobulin,
another filtration marker, showed a statistical power similar to cystatin C in improving prediction of
ESKD, all-cause mortality, and new onset of CV disease beyond eGFRcrea [65]. With respect to urinary
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markers, some evidence, albeit controversial, was provided for the association of urinary markers of
tubule damage (interleukin (IL)-18, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated
lipocalin (NGAL)), repair (human cartilage glycoprotein-40 (YKL-40)), and inflammation (monocyte
chemoattractant protein-1 (MCP-1)) with the risk of ESKD [66,67]. In fact, when risk prediction models
were adjusted for baseline eGFR and albuminuria, the associations of these biomarkers with clinical
outcome were consistently attenuated. However, the highest values of KIM-1, MCP-1, and YKL-40 also
provided useful risk estimation beyond eGFR and albuminuria in a post hoc analysis of the Systolic
Blood Pressure Intervention Trial SPRINT trial [68]. Interestingly, urinary IL-18 and NGAL levels were
shown to predict linear eGFR decline over time, an endpoint of growing interest in clinical research [68].

3.5. Prognostic Role of Proteomics, Metabolomics, and Genomics

Proteomics metabolomics and genomics recently provided great input to the implementation of
novel biomarkers [69–71]. The advantage of these “omics” techniques is to provide a combination of
informative peptides/metabolites that are able to classify patients (hence, the appellation of classifiers)
into significant clinical or risk categories. A well-depicted classifier in CKD patients is the CKD273,
a panel of 273 urine peptides shown to predict, in long-term follow-up cohort studies, eGFR decline with
a strong and independent effect to the onset of albuminuria, particularly in diabetic patients [72–74].
In further risk prediction models, CKD273 was also able to reclassify about 30% of patients compared
with the standard equation that considers eGFR and albuminuria, for the risk of CKD progression [75].
The CRIC investigators described, in a recent manuscript, the association between a panel of 13 urine
metabolites and CKD progression [76]. Results of this analysis are encouraging since the levels of
four metabolites, namely, 3-hydroxyisobutyrate (3-HIBA), 3-methylcrotonyglycine, citric acid, and
aconitic acid, were associated with eGFR decline, with 3-HIBA and aconitic acid levels also significantly
associated with the hard endpoint ESKD. Of particular interest is the prognostic role of the genetic
causes of CKD. Of all CKD cases diagnosed at a young age (<25 years), an actual 30% are determined
by monogenic disorders, and inherited CKD is globally more prevalent (prevalence ranged between
30% and 75%) than previously thought, particularly in the presence of a family history of CKD [77,78].
More importantly, the advent of genome-wide association studies (GWAS) allowed the discovery
of several single-nucleotide polymorphisms (SNPs) associated with an increased risk for CKD or
with a worse prognosis in patients already affected by CKD [78]. Polymorphisms in the Uromodulin
(UMOD) gene region rs4293393, which codifies the most abundant urinary protein in healthy subjects,
namely, uromodulin (also called Tamm–Horsfall protein), are associated with an increased risk of
incident CKD [79]. A similar role in predicting the onset of CKD was exerted by other SNPs such as
Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2 (PRKAG2), Longevity Assurance
Gene Homologs (LASS2), Disabled Homolog 2 (alias DAB Adaptor Protein 2, DAB2), Dachshund
Family Transcription Factor 1 (DACH1), and Stanniocalcin 1 (STC1) [80]. Apolipoprotein L1 (APOL1)
gene variants were also studied in CKD patients. APOL1 encodes apolipoprotein L1, which is involved
in the lysis of Trypanosoma brucei and other trypanosomes [81]. The G1 and G2 variants of APOL1
were associated with an increased risk of eGFR decline and disease progression to ESKD in CKD
populations [82]. Interestingly, information derived from the SNPs were recently combined into a
genetic risk score [78]. This score was shown to be associated with eGFR decline and kidney outcome
regardless of albuminuria and other renal risk factors encompassing diabetes, history of CV disease,
and hypertension. A number of studies assessing the associations between SNPs and kidney measures
were carried-out by the United Kingdom (UK) biobank, a large cohort of over 500,000 participants
enrolled in 2006–2010, from which genotypic information was widely collected [83]. Analyses of the
UK biobank provided a great contribution to the prognostic research in CKD. For example, genetically
predicted testosterone and fasting insulin, with the latter being an expression of insulin resistance, were
found to be associated with CKD and worse kidney function in men, thus highlighting the possible
reasons for discrepancy in CKD prevalence and CKD progression among men and women [84,85].
Intriguingly, a genome-wide association study of UK biobank showed that albumin-to-creatinine



Int. J. Mol. Sci. 2020, 21, 5846 8 of 25

ratio (ACR) is dependent on multiple pathways and that an ACR genetic risk score may improve the
prediction of hypertension and stroke [86].

4. Predictive Biomarkers in CKD

Predictive biomarkers are used in disparate fields of medicine to assess the likelihood of response
to treatments and the individual pathophysiology of the disease. One major example of this strategy
is represented by the large use of predictive biomarkers in oncology. Causative mutations of the
breast cancer genes 1 and 2 (BRCA1/2) were found to be predictive biomarkers for identifying
the response to poly(ADP-ribose) polymerase (PARP) inhibitors [87]. Such a discovery is crucial
as BRCA1/2 provide information on the best drug for the individual patient in order to improve
their prognosis. While, in oncology, a set of pathophysiological mechanisms is crucial for tumor
development, what complicates the application of predictive biomarkers in chronic diseases is that
different mechanisms are active in different stages of the disease itself and in different patients [88].
This means that, if a treatment is started on the basis of a blood/urine biomarker level, the individual
prognosis may remain unchanged or even worsen, due to the presence of other active mechanisms of
damage, as well as, most importantly, different disease entities that cause the chronic decline of renal
function through diverse pathophysiological pathways. Notwithstanding, in chronic disease, great
research effort was also started with the aim of personalizing treatments following the methodological
concept of “the right drug for the right patient”. Hence, the implementation of predictive biomarkers
represents a topic of increasing importance.

4.1. Kidney Biomarkers

In nephrology, the most used predictive biomarkers are eGFR and albuminuria. Both these
biomarkers can be considered as “dynamic” predictive biomarkers. In fact, their levels change over
time with the effects of treatment, such that they can be efficiently used for monitoring the course of
CKD and the appropriateness of the therapy followed by the patient. In the past few decades, several
interventional studies were carried out testing the effect of nephroprotective drugs on hard endpoints
such as mortality, CV events, and ESKD in patients with CKD [89–96]. Although interventions differed
between studies, with principally antihypertensive drugs and albuminuria-lowering agents being
tested, all these trials pointed out that the CV, mortality, and ESKD risk reductions were strictly
associated with a reduction in albuminuria after the start of treatment. Moreover, the magnitude
of treatment effect was greater in patients with higher albuminuria levels at the time of the initial
visit [95,96]. These findings are reinforced by the evidence that albuminuria changes also played a
potentially beneficial role in negative clinical trials. In the Aliskiren Trial in Type 2 Diabetes Using
Cardiorenal Endpoints (ALTITUDE), which failed in demonstrating the advantage of adding Aliskiren
to an angiotensin-converting enzyme inhibitor (ACEi) or an angiotensin-receptor blocker (ARB) on
CV and renal outcomes, patients who showed an albuminuria reduction in the Aliskiren arm (37%)
were largely protected against CKD progression compared with those who did not show a reduction
in albuminuria levels [97]. All these pieces of evidence testified that albuminuria has great predictive
and prognostic power in CKD patients and, although further studies are needed to find the correct
threshold of albuminuria reduction that can confer CV and renal risk protection after an appropriate
treatment, there is a general consensus that a 30% reduction in its levels from baseline to six months
could be acceptable [98]. With respect to eGFR, it was demonstrated that a doubling of serum creatinine
level, which corresponds approximately to a 57% eGFR decline, was able to predict CKD progression
in previous clinical trials in diabetic CKD patients [99]. The importance of that evidence is highlighted
by the fact that, in these previous trials, eGFR decline correlated with renal outcomes after exposure
to nephroprotective treatments, thus affirming its role as a predictive biomarker, in addition to a
prognostic biomarker [100]. Since then, the association of lesser eGFR declines with CKD outcomes
was tested. A post hoc analysis of the Reduction of End Points in Non-Insulin-Dependent Diabetes
with the Angiotensin II Antagonist Losartan (RENAAL) and Irbesartan Diabetic Nephropathy Trial
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(IDNT) clinical trials, two studies that evaluated the efficacy of ARB treatment in patients with diabetes
mellitus and nephropathy, showed that 30% and 40% eGFR declines may improve the power of clinical
trials if the drug investigated does not determine an acute (within three months of the start of treatment)
drop in eGFR [101]. A larger meta-analysis of 37 clinical trials in CKD patients documented a strong
association between 30% and 40% eGFR decline in the first 12 months of treatment and the onset of
kidney disease progression [100].

4.2. Biomarkers of Tissue Remodeling

In addition to proteinuria and eGFR, other promising predictive biomarkers in CKD were
described. A change in serum levels of MMPs after exposure to BB-1101, a synthetic hydroxamic
acid-based inhibitor of MMP, was associated with a reduction in proteinuria in experimental models of
glomerular damage [102]. A similar effect was observed in diabetic CKD patients who underwent
treatment with doxycycline, an antibiotic from the tetracycline family, and who were already treated
with renin–angiotensin–aldosterone inhibitors (RAAS-i) [103]. Moreover, MMPs are also involved in
the mechanism that leads to CV risk reduction exerted by sodium–glucose cotransporter 2 inhibitors
(SGLT2-i) through the activation of RECK (reversion-inducing cysteine-rich protein with kazal motifs),
an endogenous inhibitor of MMPs [104]. That mechanism appeared to be independent of proteinuria
levels and could also be useful for selecting high-risk normoalbuminuric CKD patients to be enrolled
in future clinical trials, who represent a non-trivial proportion of the CKD cohort [21].

4.3. Ultrasound Biomarkers

Evidence is also emerging for a possible role of the renal resistive index (RRI) as a dynamic
predictive biomarker. RRI is a Doppler ultrasonographic index, whose increase reflects both renal
and systemic vascular impairment [105]. RRI was also found to predict the onset of CV and kidney
outcomes in patients with CKD or essential hypertension [106,107]. RRI values are changed over time
by different drug classes, such as RAAS-i and SGLT2-i; novel studies will hopefully reveal in the future
if these treatment-induced modifications could also predict hard CV and renal endpoints [108,109].

4.4. Predictive Role of Proteomics, Metabolomics, and Genomics

A polymorphism of the angiotensin-converting enzyme gene caused by an insertion/deletion
(ACE/ID) modifies the systemic and renal activity of the RAAS, which was recognized to be a trigger
of kidney damage [110]. The ACE/DD–ACE/ID polymorphism was able to predict the response to
losartan in type 2 diabetic patients enrolled in the RENAAL trial, that is, patients with worse prognosis
(D allele carriers) had the best response to losartan [111]. Complex biomarkers and classifiers have a
predictive role, in addition to a prognostic role. A set of 21 serum metabolites were selected from a
larger panel through a penalized regression analysis, and they were shown to correctly predict the
albuminuria response to ARB treatment in type 2 diabetic patients [112]. This classifier revealed that
the enzyme nitric oxide synthase 3 (NOS3) is crucial to forecast the response to ARB therapy in diabetic
CKD, since it is involved in the molecular mechanism of action of these drugs. A proteomic predictive
classifier was developed from the Prevention of REnal and Vascular ENd-stage Disease (PREVEND)
study, using plasma proteomics profiles of fibrosis and kidney damage that allowed predicting the
albuminuria change in patients treated with RAAS-i [113]. The principal characteristics of prognostic
and predictive biomarkers are depicted in Table 1.
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Table 1. Summary of the principal prognostic and predictive biomarkers in chronic kidney disease patients.

Biomarkers Characteristics Prognostic/Predictive values

Cystatin C

Low-molecular-weight protein, produced by all types of nucleated cells, which acts as a
cysteine protease inhibitor.

It is freely filtered by the renal glomeruli, then 99% reabsorbed and metabolized in the
renal proximal tubule; it is not secreted.

Cystatin C improves the estimation of eGFR and risk prediction of CV and renal events.
It also allows a more precise stratification of patients according to their CV and renal

risk [64].

β2-microglobulin

Protein present on the surface of immune cells, as a constant subunit of class I
histocompatibility antigens.

It is also found in blood and other biological fluids, as an expression of cell turnover.
It is filtered by the renal glomerulus and reabsorbed at the tubular level.

It improves the prediction of ESKD, all-cause mortality, and new onset of
CV disease [65].

hs-cTnT
Cardiac troponins are enzymes present in both skeletal and cardiac muscles.

They regulate muscle contraction by controlling the calcium-mediated interaction of actin
and myosin.

It improves the risk prediction of CV events, particularly heart failure regardless of the
level of kidney function [55,57,114,115], as well as the risk prediction of microvascular
events (nephropathy or retinopathy) in diabetic patients and the risk prediction of CKD

progression.

NT-proBNP Amino terminal fragment of the natriuretic type B peptide, normally produced in the
heart and released in the case of cardiac stresses consequent to water overload conditions.

It improves the risk prediction of CV events, particularly heart failure regardless of the
level of kidney function [55,57,114,115], as well as microvascular events (nephropathy

or retinopathy) in diabetic patients and CKD progression.
In the SONAR trial, it was used as a predictive biomarker in order to exclude patients

with sodium retention after treatment with atrasentan [94]

sST2

A soluble form of the ST2 protein. It is a member of the interleukin 1 receptor family.
In the case of myocardial stress, there is an upregulation of the ST2 gene and an increase

in sST2 levels; by interacting with IL-33 (ligand for ST2), it counteracts the
cardioprotective effect deriving from the ST2-IL 33 bond.

It showed an incremental prediction ability (over NT-proBNP) of death and
hospitalizations due to HF in CKD patients [62,116].

It does not predict the risk of CKD progression.

GDF-15
Member of TGF-β cytokine family that is released in response to cellular stress.

It appears to have a role in regulating inflammatory processes, apoptosis, cell repair, and
cell growth.

It improves the risk prediction of both CV and microvascular events [62,116].

FGF-23

A protein belonging to the family of fibroblast growth factors, involved in the metabolism
of phosphates.

It is secreted in response to increased serum phosphate or calciprotein particles (colloidal
nanoparticles of calcium phosphate dispersed in the blood), from osteocytes/osteoblasts.

It acts on the kidneys by reducing the expression of a sodium phosphate transporter
located in the renal proximal tubule, thus increasing the urinary excretion of phosphates.

It was significantly associated with mortality, atherosclerotic events, HF, and ESKD in
CKD patients [52,53].

MMPs Calcium-dependent endopeptidases that contain zinc and that are involved in the various
processes of tissue development and cellular homeostasis.

Serum MMP-2, -8, and -9 and TIMP-1 are associated with atherogenesis, the severity of
kidney damage, and the onset of left-ventricular hypertrophy and peripheral vascular

disease [45–51].
MMPs levels are modified by selective and nonselective drugs. Changes in MMP levels

are associated with a reduction of CV risk [102–104].
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Table 1. Cont.

Biomarkers Characteristics Prognostic/Predictive values

Urinary markers Urinary markers of tubule damage (IL-18, KIM-1, NGAL), repair (YKL-40), and
inflammation (MCP-1)

Increased urinary concentrations of these biomarkers predict a linear decline in eGFR
over time [65–67].

eGFRcrea
eGFRcrea is an estimation of the kidney function level, based on serum creatinine levels,

age, gender, and race.

A reduction of eGFR is a potent predictor of CV and renal endpoints [21–23].
A treatment-induced reduction of eGFR (30% and 40% reduction) is considered to be a

surrogate endpoint of ESKD [73–75].

Proteinuria Presence of an abnormal quantity of proteins in urine. It is considered the principal
marker of kidney damage.

The increase in proteinuria levels is strongly associated with the onset of fatal and
non-fatal CV events [23–25].

In clinical trials, patients who developed a significant reduction in proteinuria levels,
during the first months after treatment, were protected against CV and renal events

over time [89–97].

F-Uprot Proteinuria/eGFR × 100.
It combines the prognostic/predictive power of two biomarkers (proteinuria and eGFR). It improves risk stratification for ESKD outcomes at all the stages of CKD [27].

MPO It is an enzyme belonging to the class of oxide reductase, with bactericidal and
pro-inflammatory action.

It is a prognostic marker of cardiovascular risk, and it is associated with the risk of renal
outcome (RRT, 50% eGFR decline, eGFR ≤ 15 mL/min/1.73 m2) [42–44].

RRI Renal resistive index (RRI) is a ultrasonographic index of intrarenal arteries, defined as
(peak systolic velocity − end diastolic velocity )/peak systolic velocity.

Raised RI levels above have been shown to reflect renal and systemic vascular
impairment and predict CV events in hypertensive and CKD patients [105–107].

Medications as RAAS inhibitors and SGLT2-i reduce RRI levels over time and improve
vascular damage [108,109].

ACE ID/DD Insertion (I)/deletion (D) polymorphism of the angiotensin-converting enzyme (ACE)
gene influences the circulating and renal activity of RAAS.

The D allele patients showed a poor CV prognosis in the RENAAL trial [110,111].
Patients with the DD genotype, despite being at a high risk of CV events, showed the

better response to losartan in the RENAAL study [110,111].

Classifiers A classifier is a combination of the informative markers able to classify patients according
to their risk of developing an outcome or likelihood of response to a treatment.

13 metabolites predicted CKD progression in the CRIC cohort [76].
A panel of 21 metabolites was shown to predict the proteinuric response to ARBs [112].

CKD273

It is the combination of 273 urinary peptides identified as early indicators of molecular
changes that predict the development or progression of CKD.

The main components of CKD273 are collagen fragments and protein fragments,
including proteins involved in inflammation.

It predicts the risk of development or progression of CKD, allowing the implementation
of preventive attitudes.

It is used in clinical trials to predict the development of CKD in response to a
therapeutic approach [72–75].

eGFR, estimated Glomerular Filtration Rate; CV, Cardiovascular; ESKD, End-Stage-Kidney-Disease; hs-cTnT, high-sensitivity cardiac troponin; CKD, Chronic Kidney Disease; NT-proBNP,
N-terminal pro-B-type natriuretic peptide; SONAR, study of diabetic nephropathy with the endothelin receptor antagonist atrasentan; sST2, soluble form of ST2; IL, interleukin; HF,
Heart Failure; GDF-15, growth differentiation factor-15; TGF-β, transforming growth factor β; FGF-23, Fibroblast Growth Factor 23; MMP, Matrix metalloproteinases; TIMP, tissue
inhibitor of metalloproteinases; KIM-1, Kidney Injury Molecule-1; NGAL, neutrophil gelatinase-associated lipocalin; YKL-40, repair human cartilage glycoprotein-40; MCP-1, monocyte
chemoattractant protein-1; MPO, Myeloperoxidase; RRT, Renal Replacement Therapies; RAAS, Renin–Angiotensin–Aldosterone System; SGLT2-i, sodium–glucose cotransporter 2
inhibitors; RENAAL, Reduction of End Points in Non-Insulin-Dependent Diabetes with the Angiotensin II Antagonist Losartan; CRIC, Chronic Renal Insufficiency Cohort; ARBs
angiotensin-receptor blockers.
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5. Implementation of Biomarkers in Observational Studies

Owing to the importance of improving risk stratification beyond traditional kidney measures and
to help clinical decision-making in CKD patients, the evaluation of novel biomarkers acquired great
emphasis in clinical research, as witnessed by the growing number of publications on this topic [114].
However, before a biomarker can find full application in clinical practice, several steps need to be
satisfied and reported. The first questions that should be addressed are the following: What will
be the clinical intended use of the biomarker? Is the assay analytic performance acceptable for the
intended use? To answer these important questions, the development process should start with
assessing the analytic and clinical validity of the biomarker. Analytic validity refers to evaluating
whether the characteristics of the measured biomarker are acceptable in term of precision, accuracy,
and reproducibility [115]. It is indeed important to be aware that biomarker levels may vary in
clinical practice due to factors not linked to the disease of interest being classified as pre-analytical
and analytical factors [116]. Pre-analytical variation depends on several factors that include lifestyle
(exercise, smoking habit, obesity), age, race, influence of gender, specimen collections (fasting, time,
and temperature of storage) [117]. For instance, albuminuria, measured with the available methods,
such as 24-h urine collection or albumin-to-creatinine ratio, is extremely influenced by physical exercise
and other conditions that determine a day-by-day variation, defined as random variation [37]. Urinary
NGAL concentration is stable in urine for up to seven days, but it is increased by the presence of
white blood cells that are an important confounder [118]. Analytic variation is mainly defined by
two parameters, which are bias and precision [119]. Bias is the amount by which an average of
many repeated measurements made using the assay systematically over- or underestimates the true
value. Precision represents the repeatability of measurements under unchanged assay conditions in
a laboratory. While analytic validation is often discussed, it is seldom handled in a proper fashion.
It was suggested to deepen analytic validation, while developing a biomarker, and to report metrics,
such as precision, reproducibility, accuracy, analytic sensitivity, limits of detection and quantification,
linearity, and analytic specificity [120]. A descriptive summary of these measures is reported in Table 2.

Table 2. Principal tools used to assess analytic validation.

Features Definition Statistical Metric

Precision
Intra-assay agreement of a set of results among

themselves. It could be expressed by coefficient of
variation (CV).

CV(%) = (Standard
deviationsamples/Meansamples) × 100

Reproducibility
Concordance between various measurements carried

out in different laboratories and experimental
conditions on the same sample.

Accuracy
Closeness of the agreement between result of a single

measurement and true value obtained using a
reference standard method.

Trueness Concordance between a series of assays and the real
value of analyte concentration.

Bias Systematic difference of the series of measurements
with true value.

Bias(%) = (Meansample − True value) ×
100

Limit of blank Highest apparent analyte concentration founded by
testing specimens without analyte. LoB = Meanblank + 1.645(SDblank)

Limit of detection Average of lowest concentration of analyte which can
be distinguished from a blank sample.

LoD = LoB + 1645(SDsamples)

Limit of quantification Smallest concentration of analyte with an acceptable
accuracy and precision.

Linearity Proportionality between a set of measured values
and true concentration of analyte.

Analytic specificity Ability to measure only and exclusively the analyte
of interest.

Analytic sensibility Ability to measure lowest concentration of analyte.
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Clinical validity is the next important step and consists of demonstrating that biomarker
measurement is associated with a clinical characteristic of interest [115]. The first steps of clinical
validation are the proof of concept and prospective validation [114]. Proof of concept means to assess
whether biomarker levels differ between subjects who develop the event of interest vs. non-events.
This phase is essential since it allows understanding if the biomarker can play a role in the context
of disease, and continuing its development is convenient. To this aim, a cross-sectional design
could be sufficient [121]. Next, it is necessary, in prognostic validation, to evaluate if the biomarker
is significantly associated with the event of interest, with a prospective analysis. Moreover, it is
important that the magnitude of this association is not attenuated when the analysis is adjusted
for traditional risk factors, such as age, gender, and proteinuria and eGFR levels in CKD patients.
This step provides other useful information such as the distribution of the biomarker and, therefore,
how to incorporate the biomarker levels in multivariable analyses. It is suggested to start by adding
to the model the biomarker variable as a continuous variable, before applying a categorization (e.g.,
tertiles or quartiles) [122]. For instance, proteinuria has a skewed distribution and is often added as a
log-transformed variable or restricted cubic spline in CKD prognostic models [27]. The prospective
validation step is also important for selecting variables to be included in the model. This can be done
by using a knowledge-driven (or a priori) method, based on the already known biological association
of the variables with the outcome, or data-driven methods, which are automated tools that select a
small set of variables from a larger one, in order to maximize the model fit [123]. In the case of a large
number of predictors, as often happens during the development of proteomic/metabolomic classifiers,
regularization or dimension reduction methods can be used [124]. The metabolomic classifier for the
prediction of response to ARB treatment, which we described in Section 4, was developed by means
of least absolute shrinkage and selection operator (LASSO), a regularization technique that shrinks
the variables regression coefficients through a tuning parameter and retains the best predictors in the
model. LASSO was also shown to work very well with small sample sizes [112]. The third phase of
clinical validation is focused on the incremental value of the biomarker on the previous assessed risk
models. In nephrology, what is essentially required in biomarker research is to demonstrate that a
biomarker adds information, in the prediction of a defined endpoint, on top of already assessed risk
factors. This process needs a hierarchical assessment, since a likelihood ratio test (LR test) should be
firstly reported to determine if the biomarker remains associated with the endpoint after controlling
for previously established risk factors. Next, three measures of performance should be reported:
discrimination, calibration, and reclassification [125]. These three domains are important to warrant
the applicability of the biomarker predictive performance to the individual patient. Discrimination
refers to the ability of the model to attribute a high risk to patients who develop the outcome of
interest and, accordingly, a low risk to those who do not [126]. A measure that depicts sensitivity
and specificity for all possible thresholds of a biomarker is the receiver operating characteristic (ROC)
curve. To evaluate discrimination, it is, thus, suggested to present the ROC derived from the model
together with the area under the curve (AUC), also labeled the c-statistic [127]. The difference in
c-statistic between models with and without the biomarker should also be presented. Calibration is the
degree of agreement between observed and predicted outcomes. It is suggested to depict calibration
graphically by plotting the mean predicted versus mean observed outcome probability for intervals
(usually deciles) of risk in a predictiveness curve or by representing observed event rates versus
mean predicted risk, thus creating a calibration plot, with points that should lie along a 45◦ line if the
model is well calibrated [126]. Reclassification metrics provide useful information on the proportion
(%) of patients that are reclassified in the true risk category (lower or higher risk), whether or not
the new biomarker is added to a traditional risk prediction model. The most used reclassification
metrics are the net reclassification improvement (NRI), the integrated discrimination index (IDI), and
reclassification tables which directly depict the movement of patients between risk categories based
on the risk predicted by models with and without the biomarker [127]. After showing measures of
performance, it would be necessary to internally or externally validate the model. External validation
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implies that the risk prediction model, including the biomarker, is re-run within an external cohort of
patients with similar characteristics (e.g., CKD patients) to confirm predictive accuracy in all sequences.
Alternatively, several methods of internal validation, such as bootstrapping or cross-validation, can be
computed [128]. The appropriateness of methodology used to develop a biomarker is a key element
to obtain useful clinical results. This is particularly true if we consider that only a few prediction
models in nephrology reported these measures appropriately [129]. However, this is not the only
limitation. Most of the proposed biomarkers are yet to complete the sequence from discovery to clinical
application, because they were developed in studies with a small sample size without validation, thus
providing heterogeneous results. The ISN prompted that biomarker research would take advantage
from the setting up of large, observational cohort studies and possibly a long-term follow-up in
which biomarker development and validation could be strengthened and provide robust evidence for
clinicians [18]. This also requires the standardization of data collection, storage, and database structure
across countries, as well as a collaboration among academia, industry, and regulatory authorities in
order to warrant a correct dissemination of results.

6. Biomarkers in Intervention Studies

Projecting clinical trials, which test the effect of novel pharmacological treatments on prognosis of
CKD patients, is always an important challenge. In the past few decades, all nephrology communities
expressed the need for clinicians to have more therapeutic tools, with each one specific for a particular
etiology of CKD, in order to improve the care of patients with CKD and to deal promptly with the
complexity of kidney disease, abandoning the “reductionist” approach [10,130]. The milestone of
intervention studies in nephrology dates back to the years 1990–2000 when the Collaborative Study
Group, the RENAAL, and the IDNT trials showed the efficacy of RAAS-i (ACEi and ARBs) in reducing
CV and renal risk in patients with diabetes and CKD [76,131,132]. Since then, a number of clinical
trials were carried out with an attempt to reduce the high residual risk in CKD patients, but they
missed the target [133]. The reasons for this breakdown are several and include the enrolment, in
clinical trials, of a large number of CKD patients with heterogeneous etiologies and the add-on strategy.
The add-on strategy consists of adding a pharmacological agent to patients who are already being
treated with a drug belonging to the same class. This was adopted, for example, in the Veterans
Affairs Nephropathy in Diabetes (VA-NEPHRON-D) clinical trial, which tested the effect of dual RAAS
blockade ACEi + ARB, or in the ALTITUDE trial, with the addition of Aliskiren, a renin inhibitor, to
RAAS-i [134,135]. In these studies, the intensification of RAAS blockade did not result in further CV or
renal risk protection and even increased the risk of these endpoints. Hence, a series of initiatives were
started to improve clinical trial designs. The focus is indeed to move from large trials to smaller studies
that enroll similar patients so that the treatment effect can be adequately measured [26]. Biomarkers
play a central role in this context (Figure 2), being useful to enrich clinical trial CKD populations
through at least three important ways called biomarker-based approaches: (1) by identifying patients
at increased risk for developing an event (risk-based enrichment); (2) by selecting a population based
on the response to a drug of interest (predictive response enrichment or adaptive enrichment); (3) by
detecting subgroup of similar patients within a master trial protocol [136].

Risk-based enrichment was used in the proteomic prediction and renin angiotensin aldosterone
system inhibition prevention of early diabetic nephropathy in type 2 diabetic patients with
normoalbuminuria (PRIORITY) study. The PRIORITY study enrolled patients with diabetes mellitus
and normal albuminuria at increased risk for developing albuminuria [137]. High or low risk was
established based on urine CKD273 levels, and only high-risk patients were then randomized to receive
spironolactone or placebo. Although the trials did not show a significant effect of spironolactone
on preventing the development of albuminuria, high-risk patients identified with CKD273 were at
increased risk of CKD progression vs. low risk patients (p < 0.001). PRIORITY was an innovative
design, since it anticipated the treatment of albuminuria in patients who were only likely to develop
albuminuria, but not yet with albuminuria. The adaptive enrichment design consists of exposing all
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patients to a short-term period (usually called run-in) of treatment with the drug of interest before
randomization. In this case, biomarkers could inform on the response/non-response to treatment.
Such a design was adopted in previous trials like the Study of Heart and Renal Protection (SHARP)
study and more recently in the study of diabetic nephropathy with the endothelin receptor antagonist
atrasentan (SONAR) trial [94,138]. Patients enrolled in SONAR underwent a six-month treatment
period with atrasentan, and only patients who manifested a 30% reduction in albuminuria levels
(measured as albumin-to-creatinine ratio) were then randomized. Hence, albuminuria worked as
a biomarker for the prediction of response to treatment. Moreover, the SONAR trial included the
assessment of “secondary” risk markers, such as the B-type natriuretic peptide levels. Patients who
showed a significant increase in this marker during run-in were excluded from the study. This strategy
allows assessing the individual response to treatment, including the effect of a drug on primary and
secondary markers and, thus, to capture in a reliable manner the effect of treatment after randomization.
An extension of the adaptive enrichment trial is given by the master trial protocol [139]. Master
protocols can be planned to test the efficacy of multiple interventions, each targeting a subgroup
of patients defined by a biomarker. Master protocols encompass umbrella, basket, and platform
trials. Platform trials aroused the interest of the nephrology community [136]. The platform is an
experimental cohort of patients followed periodically to assess laboratory and clinical measurements.
Within the platform, multiple treatments can be started or withdrawn and, if a defined treatment
shows benefits in a defined subgroup of the platform, it can be introduced in clinical practice [140].
This approach allows the acceleration of the experimental phase of drug development, to improve
the application of biomarkers and to save time and financial sources. Future perspectives around the
implementation of available biomarkers are depicted in Table 3.

Int. J. Mol. Sci. 2020, 21, 5846 14 of 24 

 

large trials to smaller studies that enroll similar patients so that the treatment effect can be 
adequately measured [26]. Biomarkers play a central role in this context (Figure 2), being useful to 
enrich clinical trial CKD populations through at least three important ways called biomarker-based 
approaches: (1) by identifying patients at increased risk for developing an event (risk-based 
enrichment); (2) by selecting a population based on the response to a drug of interest (predictive 
response enrichment or adaptive enrichment); (3) by detecting subgroup of similar patients within a 
master trial protocol [136]. 

 

Figure 2. Biomarker-based approaches for patient selection in clinical trials. 

Risk-based enrichment was used in the proteomic prediction and renin angiotensin aldosterone 
system inhibition prevention of early diabetic nephropathy in type 2 diabetic patients with 
normoalbuminuria (PRIORITY) study. The PRIORITY study enrolled patients with diabetes mellitus 
and normal albuminuria at increased risk for developing albuminuria [137]. High or low risk was 
established based on urine CKD273 levels, and only high-risk patients were then randomized to 
receive spironolactone or placebo. Although the trials did not show a significant effect of 
spironolactone on preventing the development of albuminuria, high-risk patients identified with 
CKD273 were at increased risk of CKD progression vs. low risk patients (p < 0.001). PRIORITY was 
an innovative design, since it anticipated the treatment of albuminuria in patients who were only 
likely to develop albuminuria, but not yet with albuminuria. The adaptive enrichment design 
consists of exposing all patients to a short-term period (usually called run-in) of treatment with the 
drug of interest before randomization. In this case, biomarkers could inform on the 
response/non-response to treatment. Such a design was adopted in previous trials like the Study of 
Heart and Renal Protection (SHARP) study and more recently in the study of diabetic nephropathy 
with the endothelin receptor antagonist atrasentan (SONAR) trial [94,138]. Patients enrolled in 
SONAR underwent a six-month treatment period with atrasentan, and only patients who 
manifested a 30% reduction in albuminuria levels (measured as albumin-to-creatinine ratio) were 
then randomized. Hence, albuminuria worked as a biomarker for the prediction of response to 
treatment. Moreover, the SONAR trial included the assessment of “secondary” risk markers, such as 

Figure 2. Biomarker-based approaches for patient selection in clinical trials.



Int. J. Mol. Sci. 2020, 21, 5846 16 of 25

Table 3. Validation score and future perspectives in the development of biomarkers in CKD patients.

Biomarkers Validation Criteria Future Perspectives

Proteinuria

Analytic validation: +/− Further studies are needed to establish (1) how this marker should be used
for monitoring disease progression considering, among all factors, its

variability, and (2) what are the true cut-offs for response to treatments.
Inclusion of proteinuria in risk prediction models that include the presence

of renal diagnoses is also needed.

Clinical proof of concept: +
Clinical prospective validation: +

Incremental value of the biomarker: +
Introduction in clinical trials: +

eGFRcrea

Analytic validation: + eGFRcrea is an important marker used to stratify risk in CKD patients.
Further studies could refine the assessment of eGFRcrea as a biomarker of

response to nephroprotective treatments in clinical trials. Inclusion of
eGFRcrea in risk prediction models that include the presence of renal

diagnoses is also needed.

Clinical proof of concept: +
Clinical prospective validation: +

Incremental value of the biomarker: +
Introduction in clinical trials: +/−

Markers of oxidative stress, tissue remodeling, and
metabolism

Analytic validation: + The prognostic role of these markers should be evaluated in larger cohort
studies. Individual prognostic measures should be provided. Although
pilot experimental trials showed promising results, stronger evidence in

CKD patients around the changes in these markers after treatment
initiation is needed.

Clinical proof of concept: +
Clinical prospective validation: +/−

Incremental value of the biomarker: −
Introduction in clinical trials: +/−

Cardiac markers

Analytic validation: +/− Although cardiac markers levels are associated with the severity of CKD,
their assessment is confounded by the coexistence of CV disease, as well as
by the eGFR levels. Further studies are needed to establish the true role of

these markers in CKD patients.

Clinical proof of concept: +
Clinical prospective validation: +/−

Incremental value of the biomarker: +/−
Introduction in clinical trials: −

Filtration and urinary markers

Analytic validation: +/− The prognostic role of these markers should be evaluated in larger studies.
Individual risk prediction models that include these parameters and

intervention studies assessing their changes over time should be
implemented.

Clinical proof of concept: +
Clinical prospective validation: +

Incremental value of the biomarker: −
Introduction in clinical trials: −

Ultrasound markers

Analytic validation: + RRI was found to be associated with CV and renal events in CKD patients,
being a promising marker. However, larger clinical trials evaluating the

association between changes (treatment-induced) in RRI and clinical
outcomes should be performed in the future.

Clinical proof of concept: +
Clinical prospective validation: +

Incremental value of the biomarker: +/−
Introduction in clinical trials: +/−

Proteomics, metabolomics, and genomics

Analytic validation: +
Omics approaches show useful prognostic and predictive information in

addition to traditional risk factors. Improving the inclusion of these
markers in clinical trials may inform on their clinical applicability.

Clinical proof of concept: +
Clinical prospective validation: +

Incremental value of the biomarker: +
Introduction in clinical trials: +/−

+, fully present; +/−, partially present; −, absent. CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; RRI, renal resistive index; CV, cardiovascular.
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7. Conclusions

CKD is a growing public health problem with high morbidity and mortality. The current
classification considers the eGFR and albuminuria levels to classify patients in prognostic categories.
Novel biomarkers were also developed to improve risk stratification and clinical decision-making,
as well as guide CKD patient enrichment in clinical trials. Despite the great efforts made, only a
few biomarkers found a large clinical application to date. More emphasis should be placed on the
development process of biomarkers, which needs to be methodologically rigorous, well validated, and
correctly diffused. A “real-world” assessment of biomarkers that can be performed by analyzing large
databases with long-term follow-up may substantially contribute to understanding whether a definite
biomarker can find clinical application. The implementation of biomarkers in CKD is highly expected
in the future, since they provide information on the mechanisms of kidney disease, improve clinical
practice, and, in most cases, are able to forecast both CV and renal endpoints, which represent the most
frequent events in CKD patients.
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