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ABSTRACT
Toll-like receptor (TLR) agonists are being developed as anti-cancer therapeutics due to their potent 
immunostimulatory properties. However, clinical trials testing TLR agonists as monotherapy have often 
failed to demonstrate significant improvement over standard of care. We hypothesized that the anti- 
cancer efficacy of TLR agonist immunotherapy could be improved by combinatorial approaches. To 
prevent increased toxicity, often seen with systemic combination therapies, we developed a hydrogel 
to deliver TLR agonist combinations at low doses, locally, during cancer debulking surgery. Using tumor 
models of WEHI 164 and bilateral M3–9-M sarcoma and CT26 colon carcinoma, we assessed the efficacy of 
pairwise combinations of poly(I:C), R848, and CpG in controlling local and distant tumor growth. We show 
that combination of the TLR3 agonist poly(I:C) and TLR7/8 agonist R848 drives anti-tumor immunity 
against local and distant tumors. In addition, combination of local poly(I:C) and R848 sensitized tumors to 
systemic immune checkpoint blockade, improving tumor control. Mechanistically, we demonstrate that 
local therapy with poly(I:C) and R848 recruits inflammatory monocytes to the tumor draining lymph nodes 
early in the anti-tumor response. Finally, we provide proof of concept for intraoperative delivery of poly(I: 
C) and R848 together via a surgically applicable biodegradable hydrogel.
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Introduction

The first successful immunotherapy was reported in the early 
19th century following intratumoral injection of bacterial 
extracts, Coley’s toxins, to a patient with sarcoma.1 Today, 
interest in intratumoral immunotherapy remains high, with 
promising results reported using immunotherapeutics includ-
ing cytokines, immune checkpoint blockade (ICB) antibodies, 
and innate immune agonists.2 Toll-like receptors (TLRs) are 
pattern recognition receptors (PRRs) expressed on a range of 
immune cells. TLRs sense microbial products and initiate and 
co-ordinate innate immune responses via mediators including 
inflammatory or immunomodulatory cytokines.3 There is 
ongoing interest in TLR agonists as anti-cancer therapeutics.4 

Numerous pre-clinical5 and clinical studies6 have demon-
strated the anti-cancer potential of such agents. However, 
despite promising results, they have not been readily translated 
into the clinic, often failing in phase II/III clinical trials.7,8

Most pre-clinical and clinical studies assessing TLR agonists 
have used them as single agents. However, pathogens carry 
multiple pathogen-associated molecular patterns, which may 
simultaneously activate different PRRs, resulting in enhanced 
immune cell activation.9 Signaling through multiple PRRs can 
work in cooperation, with subsequent cross talk between 
downstream signaling pathways leading to enhanced cytokine 

expression, which is important for generating a robust immune 
response.9–12 To date, the few studies assessing TLR agonists in 
combination have demonstrated promising anti-cancer effi-
cacy in preclinical studies.11,13,14 However, several questions 
remain unanswered, including, which TLR agonists direct 
optimal systemic anti-tumor immunity, what is the nature 
and phenotype of the induced response,15 and how best to 
deliver such agents. Additionally, there is increasing evidence 
that priming strong local anti-tumor immunity may enhance 
response to systemic ICB.16 Here, we set out to identify an 
effective combination of TLR agonists, delivered intraopera-
tively using a controlled release hydrogel, which provides both 
local and systemic cancer control with the goal of improving 
the clinical translatability of this approach.

Materials and methods

Cell lines

CT26 was obtained from the National Institutes of Health 
Tumor Repository. WEHI 164 was obtained from CellBank 
Australia. M3–9-M was kindly gifted by C. Mackall (Stanford 
University, Stanford, CA). Cell lines were maintained in 
Roswell Park Memorial Institute (RPMI) 1640 medium 
(Invitrogen) supplemented with 10% fetal bovine serum 
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(FBS) (Fisher Biotech), 20 mM N-2-hydroxyethylpiperazine- 
N-2-ethane sulfonic acid (HEPES), 0.05 mM 2-mercaptoetha-
nol, and 100 U/ml penicillin and streptomycin (all Invitrogen). 
Cell lines were validated yearly for strain specific major histo-
compatibility complex (MHC) class I alleles and tested for 
mycoplasma.

Tumor models

All animal experiments were carried out in accordance with 
institutional guidelines from the Animal Ethics Committee at 
the Harry Perkins Institute of Medical Research. BALB/cJAusb 
and C57BL/6J mice (all female, 8–12 weeks) were purchased 
from the Animal Resource Centre (Murdoch, WA) or bred 
onsite at the Harry Perkins Institute for Medical Research and 
maintained under specific pathogen-free conditions, with 12- 
hour light/dark cycle.

Mice were inoculated subcutaneously (s.c.) with 5 × 105 cells 
in 100 µl sterile phosphate buffered saline (PBS) on the right 
flank for single-tumor experiments or on both right and left 
flanks for bilateral tumor experiments. Once established, right 
flank tumors were treated intratumorally (i.t.) with single or 
pairwise combination of vaccigrade TLR agonists: poly(I:C), 
high molecular weight (HMW), cat# VAC-PIC; Resiquimod 
(R848), cat# VAC-R848; CpG ODN 2395, cat# VAC-2395-1; 
monophosphoryl lipid A (MPLA), cat# VAC-MPLS, (all from 
InvivoGen), daily for 6 days. For combination of TLR agonists 
and ICB treatment, mice received three intraperitoneal (i.p.) 
injections of 200 µg anti-programmed cell death protein-1(PD 
-1) (BioXcell, Clone RMPI-14), every 2 days, starting on day 8 
after tumor inoculation in addition to i.t. treatment with com-
bination of TLR agonists.

To assess the anti-tumor efficacy of poly(I:C)-R848 hydro-
gel after incomplete tumor resection, once right flank tumors 
were established, 90% of the right flank tumor was removed 
under anesthesia using isoflurane (4% isoflurane in oxygen, 
flow rate of 1 L/min for induction and 0.5 L/min for mainte-
nance) while the left flank tumor was left intact. 200 µl of 
hydrogel loaded with either poly(I:C) or R848 or poly(I:C) 
and R848 was applied in the wound bed before closure with 
tissue glue (3M, VetbondⓇ).

Mice were monitored for tumor growth and tumor size was 
measured using calipers as length x width. Tumor sizes at 
randomization for treatment are given for each model in 
Supplementary Table 3. Mice were euthanized once tumors 
reached a size of 100 mm2.

Flow cytometry staining and FACS analysis

After 4 days of i.t. treatment with TLR agonists, mice were 
euthanized and bilateral CT26 tumors and tumor-draining 
lymph nodes (tdLNs) were harvested into fluorescence-acti-
vated cell sorting (FACS) buffer (PBS with 2% v/v FBS). 
Tumors were manually disrupted using a scalpel and disso-
ciated using the gentleMACS and Mouse Tumor Dissociation 
Kit (Miltenyi). tdLNs were passed through a 70 µM nylon filter 
to obtain single cell suspensions. Murine Fc block (anti-CD16 
/CD32, BD) and Fixable Viability Stain 780 (BD) were 

incubated for 20 min. Next, cells were incubated with antibo-
dies for surface markers (Supplementary Tables S1 and 2) for 
30 min. The FoxP3 transcription factor staining buffer set 
(eBioscience) was used, according to manufacturer guidelines, 
prior to intracellular staining for 30 min. All incubations were 
carried out on ice, in the dark. Samples were resuspended in 
FACS buffer and data acquired on LSR Fortessa X-20 (BD) and 
analyzed using FlowJo (V10.8.1). For gating strategy, see 
Supplementary Figure S6.

Preparation of hydrogels

Hyaluronic acid (HA) hydrogels were prepared as previously 
reported17 with slight modification to form R848-HA conju-
gated hydrogels. Briefly, 20 mg HA (Cat# FS-HA-ME0.5, 
Freshine Chem) was dissolved in 2 mL ultrapure water, then 
4 mg (0.0128 mmol) of R848 (Cayman Chemical) was added 
into the solution followed by 2.4 mg (0.0172 mmol) of 1-ethyl- 
3-(3-dimethylaminopropyl) carbodiimide hydrochloride while 
adjusting pH to 4.75. Next, 0.9 mg (0.00104 mmol) of 3,3’- 
Dithiobis (propanoic hydrazide) (DTPH) was dissolved into 
the solution while stirring and maintaining pH at 4.75, for 
1 hour, then left overnight. After overnight reaction, the pH 
was adjusted to 7.0 before addition of 1.8mg of dithiothreitol 
(0.057 mmol). The pH was adjusted to 8.5 and left overnight to 
reduce disulfides to free thiols. The product was then dialyzed 
by using a dialysis tube (3.5 kDa) in 0.1 M NaCl adjusted to pH 
3.75 with 1 M HCl and then deionized water, before being 
lyophilized. HA-R848-DTPH polymer was stored in 
a desiccator at room temperature for further use.

To form 2.5% w/v empty HA hydrogels or HA-R848 conju-
gated hydrogels, in a typical representative reaction, 850 µl water 
and 100 µl 10× PBS and 50 µl DMSO were added to 25 mg of 
either HA-DTPH or HA-R848-DTPH lyophilized polymer and 
mixed by gentle inversion for 1–2 hours until completely dis-
solved, yielding a colorless, viscous solution. Poly(I:C)-loaded 
hydrogels were prepared by encapsulating 2500 µg poly(I:C) per 
ml of hydrogel solution using HA-DTPH polymer. Hydrogels 
containing both poly(I:C) and R848 were prepared by encapsulat-
ing 2500 µg poly(I:C) per ml in HA-R848-DTPH polymer. 
Hydrogels were aliquoted in 200 µl aliquots and allowed to set 
for 48 hours at room temperature, before being stored at 4°C.

Statistics and data analysis

GraphPad Prism v9.5.0 was used for all statistical analyses. 
FACS data were analyzed using FlowJo (v10.8.1).

Results

Local, low-dose intratumoral therapy with TLR agonists 
exhibits differential anti-tumor efficacy

We assessed TLR agonists poly(I:C), MPLA, R848, and CpG 
for their efficacy in controlling tumor growth as monothera-
pies. Local delivery of immunotherapy can induce immune 
activation within the tumor microenvironment (TME) at 
lower dosages compared to systemic delivery.2 Therefore, we 
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delivered agonists via intratumoral injection (Figure 1a) at 20% 
of the commonly reported systemic dosage.18–20 The three TLR 
agonists, poly(I:C), R848, and CpG, that target endosomal 
TLRs demonstrated strong anti-tumor effect against WEHI 
164 tumors, whereas MPLA, the agonist for TLR4, provided 
no survival benefit (Figure 1b, Supplementary Figure S1).

Because metastatic disease is the major cause of cancer- 
related death,21 we next assessed the ability of poly(I:C), 
R848, and CpG as monotherapies to control distant tumor 
growth, using a bilateral tumor model22 (Figure 1c). Both 
poly(I:C) and CpG provided strong local tumor control. 
However, treatment with poly(I:C) did not control distant 
tumors, whereas CpG or R848 treatment could induce 
regression of distant tumors (Figure 1d). Interestingly, the 
strong CpG-induced local response did not universally 
translate into a strong response against the distant tumor. 
While R848 showed less robust local tumor control, there 

was a consistent symmetry of response for the treated and 
distant tumor (Figure 1d). These data demonstrate that 
strong local tumor control is not always an indicator of 
distal efficacy, suggesting that combination of different TLR 
agonists may be needed to achieve the full potential of 
TLR-targeted immunotherapy.

Combination of intratumoral poly(I:C) and R848 
demonstrates additive effect in controlling distant tumors

The efficacy of combination TLR agonists for local tumor con-
trol has been demonstrated elsewhere.14,23 We focused on their 
ability to control distant CT26 adenocarcinoma and M3– 
9-M rhabdomyosarcoma tumors. Established bilateral tumors 
(Supplementary Table S3) were treated by injecting the right 
flank tumor with single or pairwise combination of poly(I:C), 
R848, or CpG ODN, daily for 6 d (Figure 2a). Tumor size was 
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Figure 1. Repetitive, local, low dose of TLR agonists shows different efficacy in controlling local and distant tumors. (a) Established tumors were treated by i.t. injection 
with either poly(I:C), 10 μg/d; CpG, 10 μg/d; R848, 8 μg/d; MPLA, 4 μg/d; or vehicle daily for 6 days. (b) Survival curves of WEHI 164 tumor-bearing mice; n = 4–5 mice per 
group. (c) For bilateral tumors, mice were inoculated with 5 × 105 WEHI 164 cells on the right and left flanks. The right flank tumor was treated by i.t. injection with either 
poly(I:C), R848, CpG ODN, or vehicle, daily for 6 days using same doses as in (a). (d) Tumor growth curves for the right and left flank tumors; n = 4–5 mice per group. In 
(b), statistical analysis was performed using Log-rank (Mantel–Cox) test. **P < 0.005. ns: not significant.
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Figure 2. Intratumoral injection with pairwise combinations of TLR agonists delays distant tumor growth in immunotherapy-resistant models. (a) On day 5 (M3-9-M) 
or day 11 (CT26), the right flank tumor was treated with single TLR agonist: poly(I:C), 10 μg/d; R848, 8 μg/d; or CpG ODN, 10 μg/d; or vehicle, or pairwise combination of 
TLR agonists, daily for 6 days. (b) Size of contralateral CT26 tumors on day 23 when all control tumors had reached endpoint. (c) Tumor growth curves for contralateral 
CT26 tumors. n = 8–10 mice per group. (d) Size of contralateral M3-9-M tumors on day 17 when all control tumors had reached endpoint. (e) Tumor growth curves for 
contralateral M3-9-M tumors. n = 5 mice per group. In (b) and (d), statistical analyses were performed by Brown–Forsythe and Welch ANOVA tests. *p ≤ 0.05, **p ≤  
0.005, ***p ≤ 0.0005.
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compared at day 22 (CT26) or day 17 (M3–9-M), the timepoint 
when all distant tumors in control groups had reached experi-
mental endpoint. All monotherapies were ineffective in control-
ling distant tumor growth. The combination of poly(I:C) with 
R848 and CpG with R848 delayed outgrowth of local and distant 
CT26 tumors (Figure 2b–c). All pairwise combinations demon-
strated a strong local control (Supplementary Figure S2). 
Although the anti-tumor effect was less pronounced against 
M3–9-M tumors, the R848-poly(I:C) and R848-CpG combina-
tions again delayed distant tumor outgrowth (Figure 2d–e). 
Together, these data demonstrate that local delivery of poly(I: 

C) and R848 can improve local and distant tumor control in the 
two models tested.

TLR7/8 agonist R848 recruits inflammatory monocytes to 
local and distant lymph nodes

To determine the impact of local poly(I:C) and R848 therapy on 
the immune compartment, we assessed infiltrating immune cells 
in local and distant tumors, as well as their tdLNs, after 4 d of i.t. 
treatment (Figure 3a). We chose an early time point because, later, 
the strong response against the local tumor made analysis of the 
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populations across different treatment groups in the contralateral tdLNs. (e) Graphs showing the proportion of CD11b+ Ly6C+ cells in contralateral and treated tumors. 
(f) Representative FACS plot showing GZMA expression on CD8+ T cells in contralateral tumors. (g–h) Graphs showing GZMA expression in tumors (g) and tdLNs (h). (i) 
Representative FACS plot showing exhausted CD8+ T cells (Lag3+ TOX+) in contralateral tumors. (j) Graphs showing exhausted T cells in tumors. (k) Graph showing CD8/ 
Treg ratio in contralateral tumors. Data are mean ± s.d.; n = 3 mice per group. Statistical analysis was performed using one-way ANOVA with Tukey’s multiple 
comparison test. *p ≤ 0.05, **p ≤ 0.005, ***p ≤ 0.0005, ****p ≤ 0.0001.
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tumor-infiltrating leukocytes impossible. Most strikingly, 
a significant increase in the number of immature (CD86low) 
inflammatory monocytes (CD11b+Ly6c+) was observed in both 
the treated and contralateral tdLNs of mice treated with R848 
alone or in combination with poly(I:C) (Figure 3b–d) and in 
contralateral but not treated tumors (Figure 3e). R848 treatment 
alone or combined with poly(I:C) also increased the percentage of 
dendritic cells (MHCII+CD11c+) and macrophages (CD11b+F4/ 
80+) in contralateral, but not treated, tdLNs (Figure 3b,c) and 
decreased PD-L1 expression on these populations (Figure 3c). 
However, PD-L1 expression on tumor cells remained unchanged 
regardless of treatment (Supplementary Figure S3h) and expres-
sion of CD86, Arg-1, and CD206 on F4/80+ macrophages did not 
vary across treatment groups (Supplementary Figure S3a, b, e–g).

CD8+ T cells in tumors and tdLNs demonstrated significant 
upregulation of the cytotoxic molecule Granzyme A, which was 
driven primarily by R848 in contralateral tumors and both poly 
(I:C) and R848 in treated tumors (Figure 3f–h). Consistent 
with their increased function, CD8+ cells had significantly 
reduced expression of exhaustion markers LAG3 and TOX 
after all TLR agonist treatments in contralateral tumors but 

not in treated tumors (Figure 3i,j). We also observed 
a significant increase in the CD8:Treg ratio in contralateral 
tumors but only after treatment with R848 alone or combined 
with poly(I:C) (Figure 3k). CD8+ T cell expression of effector/ 
memory markers CD44 and CD62L was unchanged across 
treatment groups, while conventional CD4+ T cells had con-
sistently reduced expression of the activation markers CD25 
and ICOS (Supplementary Figure S3C/D).

Combination of local poly(I:C) and R848 sensitizes tumors 
to systemic ICB

Combination therapy with poly(I:C) and R848 is reported to 
enhance STAT1-IFN signaling with increased pro-inflammatory 
cytokine production9 and local IFN signaling sensitizes tumors to 
ICB.19 Therefore, we designed experiments to test whether com-
bination of local poly(I:C) and R848 with systemic anti-PD-1 ICB 
(Figure 4a) could further increase anti-tumor efficacy against M3– 
9-M and CT26 tumors. Combination of local poly(I:C) and R848 
with ICB significantly increased survival of mice bearing M3– 
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9-M tumors compared to TLR agonists or ICB alone (Figure 4b), 
inducing strong local control and sensitizing distant tumors to 
respond to ICB therapy (Figure 4c–d). Notably, there were several 
partial responses in the combination therapy group, where distant 
tumors initially regressed but later grew out (Supplementary 
Figure S4). CT26 tumors demonstrated stronger responses after 
combination TLR and ICB therapy, with 28% and 33% of mice 
surviving in anti-PD-1 and TLR agonist single arm therapy 
groups, respectively, compared to 85% in the TLR agonist and 
ICB combination group (Figure 4e,f). These data suggest that local 
therapy with low-dose TLR agonists sensitizes tumors in a fashion 
that is supportive of combination with systemic 
immunotherapies.

Intraoperative delivery of poly(I:C) and R848 via 
a surgically optimized hydrogel

Current challenges associated with local intratumoral immu-
notherapy include invasiveness of injections, repetitive dosing, 
and lack of access to the tumor site for viscerally located 
cancers.24 Therefore, we adapted a published hydrogel plat-
form for intraoperative delivery of immunotherapy,17 to deli-
ver poly(I:C) and R848 intra-operatively during incomplete 
local tumor resection25 with the presence of a smaller distant 
tumor, inoculated 4 d after the primary, to model undetected 
metastatic disease.

Poly(I:C), a high molecular weight dsRNA, can be easily 
encapsulated within porous hydrogels for sustained release. 
R848, a small-molecule agonist, easily diffuses out of such 
matrices. To overcome this, R848 was covalently conjugated to 
functional groups on the HA polymer, allowing for targeted 

delivery while tying R848 release kinetics to the degradation of 
the biomaterial (Figure 5a). This method allowed for a maximum 
of 9 µg of R848 to be conjugated per 200 µL of hydrogel. 
Conjugation efficiency was characterized by proton nuclear mag-
netic resonance (1H NMR) spectroscopy, showing distinct peaks 
characteristic of R848 and HA (Figure 5b). The degree of con-
jugation and R848 recovery were characterized by UV spectro-
photometer at 320 nm using an R848 standard curve 
(Supplementary Figure S5a).

We assessed the ability of the poly(I:C)-R848 loaded hydro-
gels to control both local and distant tumors after incomplete 
tumor debulking and intraoperative delivery. Using CT26 
bilateral tumors and a 90% surgical debulk of the right flank 
tumor (Figure 5c), poly(I:C)-R848 hydrogel provided strong 
control of residual local disease (Supplementary Figure S5b), 
with modest improvement against distant tumor growth com-
pared to either single poly(I:C) or R848-loaded hydrogels 
(Figure 5d). One complete and three partial responses were 
observed with the poly(I:C)-R848 hydrogel compared to 
a single complete response with the R848-hydrogel and 
a partial response with the poly(I:C)-hydrogel (Figure 5d). 
Importantly, the hydrogel itself does not show anti-tumor 
effect above the background effect of surgery alone 
(Supplementary Figure S5c). These data demonstrate the utility 
of biomaterials for local application of combination immu-
notherapies, in the surgical context.

Discussion

In this study, we assessed local delivery of pairwise combinations 
of clinically advanced TLR agonists, poly(I:C), R848, and CpG, for 
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their efficacy in controlling local and distant tumor growth. 
Therefore, we chose a setting where development of robust sys-
temic anti-tumor immunity is required to control distant tumors, 
and models where contralateral tumors do not respond to single- 
agent TLR therapy. We demonstrate that local delivery of the 
TLR3 agonist poly(I:C) in combination with the TLR7/8 agonist 
R848 can slow the outgrowth of local and contralateral tumors and 
sensitize them to systemic ICB. A similar synergistic effect for 
combination of innate immune agonists was reported by Alvarez 
et al.26 In this study, the authors demonstrate that a combination 
of a nanoplexed poly(I:C) and STING agonist, 5,6-dimethyl-
xanthenone-4-acetic acid (DMXAA), resulted in local and distant 
anti-tumor effect against MC38 and B16.OVA tumors.

Our data demonstrate an increased number of inflammatory 
monocytes in tdLNs after treatment with R848, supporting the 
idea that specific immunotherapeutics can enhance the priming 
of systemic anti-tumor immunity, outside the local TME. R848 
increased infiltration of myeloid cells including inflammatory 
monocytes, dendritic cells (DCs), and macrophages in tdLNs 
alone or in combination with poly(I:C). Additionally, we identi-
fied reduced PD-L1 expression on populations of antigen pre-
senting cells in the contralateral tdLNs in both R848 and R848- 
poly(I:C) treated groups, which may improve T cell priming. 
However, expression of M1 and M2 macrophage markers CD86, 
Arg-1, and CD206 remained consistent across treatment groups 
at the timepoint analyzed and did not suggest a repolarization of 
macrophage subsets, at odds with a previous study demonstrat-
ing that a combination of poly(I:C) and R848 polarized macro-
phages toward an M1-like phenotype with improved anti-tumor 
efficacy.14 Further in-depth phenotyping of the innate immune 
populations observed in this study may help to elucidate their 
role during local therapy and response to ICB.

We found that local low-dose R848-poly(I:C) combination 
could drive abscopal responses in untreated tumors on the 
contralateral flank as previously reported for this class of 
agents27,28 and sensitize the TME to systemic anti-PD-1 ther-
apy, in CT26 and M3–9-M tumor models. Similar results have 
been demonstrated with i.t. delivery of poly(I:C) + DMXAA in 
combination with systemic anti-PD-1 in the B16.OVA 
model.26 However, there are challenges regarding the transla-
tion of STING agonists into the clinic, due to the high toxicity 
of these agents.4 Preclinical studies do suggest that the addition 
of local therapy with innate agonists could open new patient 
populations to effective ICB therapy and enhance response 
rates in cancer types where ICB is already indicated.29,30

Local cancer immunotherapies currently require repeated 
i.t. injections, which can be invasive for patients and com-
plex to administer. Therefore, we designed a biomaterial 
hydrogel to deliver poly(I:C) and R848 together during 
tumor debulking surgery. HA hydrogels are biomaterials 
that can be tuned for prolonged release of immunotherapies 
and specific degradation when applied intraoperatively.17 

However, delivering multiple agents in a single formulation 
presents challenges, as different therapeutics may require 
unique spatial and temporal dynamics. In this study, we 
chemically conjugated the small molecule R848 to the HA 
polymer using the carbodiimide chemistry,31 which has been 
used to conjugate cytokines such as TGFβ and other small 
molecules.32 With this conjugation strategy, we could only 

conjugate a relatively low dose of R848 (9 µg per 200 µL 
hydrogel) to the HA polymer. Nonetheless, our data show 
that this strategy can result in anti-tumor responses against 
unresected distant tumors, albeit with a moderate response. 
Further studies are required to optimize the delivery of 
nucleic acid and small-molecule drugs in the same bioma-
terial, including modification of biomaterials properties (e.g., 
pore size, viscosity, functional groups)33 or the development 
of novel delivery strategies.34

This study demonstrates the potential of local immunother-
apy with combinations of TLR agonists, to drive unique and 
differing effects on systemic anti-tumor immunity. Further, 
preclinical studies are required to fully elucidate the underlying 
mechanisms behind these responses. In addition, the utility of 
biomaterials for delivery of such agents into the TME remains 
to be explored. With clinical translation in mind, it will be 
critical to conduct comprehensive analyses of toxicology and 
pharmacokinetics using biomaterial delivery, similar to recent 
work by Zúñiga et al.35 who assessed a slow-release depot 
formulation for prolonged delivery of a TLR agonist. 
Focusing on solid cancers, the advantage of biomaterials to 
deliver a prolonged release depot of innate receptor agonists 
raises the opportunity of using surgery as a window opportu-
nity to target drugs more precisely to the TME.
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