
RESEARCH ARTICLE

Molecular characterization and clonal

dynamics of nosocomial blaOXA-23 producing

XDR Acinetobacter baumannii

Sabrina Royer1*, Paola Amaral de Campos1, Bruna Fuga Araújo1, Melina
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Abstract

The emergence of infections associated to new antimicrobial resistance in Acinetobacter

baumannii (Ab) genotypes represents a major challenge. In this context, this study aimed to

determine the diversity of resistance mechanisms and investigate clonal dissemination and

predominant sequence types (STs) in multidrug-resistant Ab strains of clinical (tracheal

aspirate, n = 17) and environmental (surface, n = 6) origins. Additionally, the major clones

found in clinical (A) and environmental (H) strains had their complete genomes sequenced.

All strains were submitted to polymerase chain reactions (PCR) for the detection of the

ISAba1/blaOXA-51-like and ISAba1/blaOXA-23-like genes, while the expression of genes encod-

ing the carO porin, AdeABC (adeB), AdeFGH (adeG), and AdeIJK (adeJ) efflux pumps was

determined by real time PCR (qPCR). Most of the strains were characterized as extensively

drug-resistant (XDR) with high minimal inhibitory concentrations (MICs) detected for tigecy-

cline and carbapenems. Associations between ISAba1/OXA-51 and ISAba1/OXA-23

were observed in 91.3% and 52.2% of the strains, respectively. Only the adeB gene was

considered hyper-expressed. Furthermore, most of the strains analyzed by the MuLtilocus

Sequence-Typing (MLST) were found to belong to the clonal complex 113 (CC113). In addi-

tion, a new ST, ST1399, belonging to CC229, was also discovered herein. Strains analyzed

by whole genome sequencing presented resistance genes linked to multidrug-resistance

phenotypes and confirmed the presence of Tn2008, which provides high levels carbape-

nem-resistance.

PLOS ONE | https://doi.org/10.1371/journal.pone.0198643 June 11, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Royer S, de Campos PA, Araújo BF,
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Introduction

Acinetobacter baumannii (Ab) is one of the most successful pathogens responsible for hospital-

acquired infections worldwide, mainly in immunocompromised patients and those admitted

to intensive care units (ICUs) [1,2].

Carbapenem resistance in Ab is most frequently mediated by intrinsic (OXA-51-like) or

acquired (mainly OXA-23-like) oxacillinases [3]. The hyper-expression of oxacillinases is often

associated to insertion sequences (ISs), such as the ISAba1sequence, located upstream of the

OXA genes [4–6]. In addition, the increased expression of chromosomal genes of resistance-

nodulation-cell division (RND)-type efflux systems [2,7] and the decreased expression of cer-

tain outer membrane channel-forming proteins [8,9] play an important role in Ab multidrug

resistance. The relative contribution of these resistance mechanisms remains poorly assessed

in clinical contexts [8].

Regarding the clonal nature and the spread of different sequence types (STs), both Brazilian

and Latin American studies conducted between 2011 and 2016 demonstrated that the most

widespread Ab strains belong to CC113 and CC109 [10–16], characterized by MuLtilocus

Sequence-Typing—University of Oxford (MLST-UO). Other studies worldwide indicate that

multidrug-resistant Ab is related to CC92 [17,12,18–19]. Tracking the evolution and clonal

dissemination of carbapenem resistance in Ab isolates is important to support the implemen-

tation of control strategies, which is only possible through a comprehensive understanding of

the complete genome of these strains.

In this context, the aim of the present study was to investigate the clonal dissemination and

genetic basis of resistance among multidrug-resistant Ab strains recovered from an adult ICU

in Brazil. Additionally, one clinical and one environmental strain belonging to the prevalent

clones had their complete genomes sequenced.

Material and methods

Bacterial strains and setting

The origin and epidemiological characteristics of the strains used herein are described in

Table 1. Clinical and environmental A. baumannii isolates were obtained from patients

with ventilator-associated pneumonia (VAP) and the environments around their beds

(bedside table, bed rail and door knob), respectively. The strains were obtained from

April 2011 to June 2012, in a 30-bed clinical-surgical intensive care unit (ICU) at the

Clinical Hospital belonging to the Federal University of Uberlandia, Minas Gerais, Brazil.

The 23 isolates investigated herein were selected according to their resistance profile and

pulsotype, obtained through Pulsed Field Gel Electrophoresis (PFGE), as published previ-

ously [20].

Clinical microbiology

Resistance to tigecycline, imipenem and meropenem was determined by the Etest1

method according to the manufacturer’s guidelines (AB Biodisk, Solna, Sweden). To con-

firm the results of Etest1 for tigecycline, the broth microdilution technique was performed.

All the resistance tests and the quality control protocols were done in accordance with the

Clinical and Laboratory Standards Institute recommended practices [21]. Since there were

no breakpoints available for tigecycline for Acinetobacter spp., US Food and Drug Adminis-

tration (FDA) tigecycline breakpoints listed for Enterobacteriaceae (� 2, 4 and� 8 μg/ml

for susceptible, intermediate and resistant strains, respectively) were applied. Multidrug-
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resistant (MDR) was defined as resistance to three or more categories of antibiotics

while extensively drug-resistant (XDR) was defined as non-susceptibility to at least one

agent in all but two or fewer antimicrobial categories, according to Magiorakos and collabo-

rators [22].

Table 1. Molecular characterization by polymerase chain reaction (PCR) of resistance determinants and distribution of MICs to carbapenems and tigecycline in 23

strains of A. baumannii recovered from endotracheal aspirate and environment in an adult intensive care unit.

Strains1/

Source

Resistance genes Porines genes Efflux pumps

genes

MDR2/

XDR3

MIC4 (μg/m) IPM5/

MEM6

MIC (μg/mL)

TGC7

MIC8 (μg/mL)

TGC

PFGE9

profile

13/EA10 blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR >32/>32 >256 64 A

15/EN11 blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR >32/>32 96 64 H

17/EN blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR >32/>32 48 64 H

20/EN blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ MDR >32/>32 24 64 E

2/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR 24/>32 >256 64 A

16/EN blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR 24/>32 96 64 H

18/EN blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR 16/>32 64 64 G

19/EN blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR 12/32 48 64 H

1/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR 12/16 >256 64 A

9/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-23;
ISAba1/OXA-51

carO; omp33-36 adeB; adeG; adeJ MDR 4/3 8 64 C

5/EA blaOXA-51; blaOXA-23; ISAba1/OXA-23; ISAba1/
OXA-51

carO; omp33-36 adeB; adeG; adeJ XDR 8/12 48 64 D

3/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-51 carO; omp33-36 adeB; adeG; adeJ XDR >32/>32 >256 64 A

12/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-51 omp33-36 adeB; adeG; adeJ XDR >32/>32 24 64 C

8/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-51 carO; omp33-36 adeB; adeG; adeJ XDR 24/32 64 64 A

6/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-51 carO; omp33-36 adeB; adeG; adeJ XDR 16/24 256 64 A

11/EA blaOXA-51; blaOXA-23; ISAba1; ISAba1/OXA-51 carO; omp33-36 adeB; adeG; adeJ XDR 8/6 >256 64 A

14/EA blaOXA-51; blaOXA-23; ISAba1/OXA-23 carO; omp33-36 adeB; adeG; adeJ XDR >32/>32 256 64 G

4/EA blaOXA-51; blaOXA-23; ISAba1/OXA-51 carO; omp33-36 adeB; adeG; adeJ XDR >32/>32 >256 64 A

10/EA blaOXA-51; blaOXA-23; ISAba1/OXA-51 omp33-36 adeB; adeG; adeJ XDR >32/>32 32 32 B

7/EA blaOXA-51; blaOXA-23; ISAba1/OXA-51 omp33-36 adeB; adeG; adeJ XDR 16/>32 24 32 A

23/EA blaOXA-51; ISAba1; ISAba1/OXA-51 omp33-36 adeB; adeG; adeJ MDR 1/3 128 64 G

21/EA blaOXA-51; ISAba1; ISAba1/OXA-51 carO; omp33-36 adeB; adeG; adeJ No MDR12 0,75/3 6 64 G

22/EA blaOXA-51; ISAba1 carO; omp33-36 adeB; adeG; adeJ No MDR 3/6 8 64 F

1All negative strains for blaOXA-24, blaOXA-58 and blaOXA-143 genes;
2MDR, Multidrug-resistant;
3XDR, Extensively drug-resistant;
4MIC, Minimum Inhibitory Concentration—Etest1;
5IPM, Imipenem (0,002–32μg/mL);
6MEM, Meropenem (0,002–32μg/mL);
7TGC, Tigecycline (0,016–256μg/mL);
8MIC, Minimum Inhibitory Concentration—Broth microdilution (0,125–256μg/mL);
9PFGE, Pulsed Field Gel Electrophoresis;
10EA, Endotracheal aspirate;
11EN, Environment.
12No MDR, strains do not present resistance to three or more antimicrobial categories.

https://doi.org/10.1371/journal.pone.0198643.t001
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Polymerase chain reaction

The DNA extraction was performed by thermal lysis and a conventional PCR assay was per-

formed for 23 isolates to detect the following genes: ISAba1/blaOXA-51-like, ISAba1/blaOXA-23-like,

omp33-36, carO (29 kDa), adeB, adeG and adeJ, using previous published primers (S1 Table)

[23,4,24,25,26,2]. The amplified PCR products were visualized by electrophoresis on 1.5% aga-

rose gels using the photo documentation System L-Pix EX (Loccus Biotechnology, Brazil).

Relative quantification of CarO porin and adeB, adeG and adeJ efflux

system genes by real time PCR (qPCR)

Out of a total of 23 strains with their clonals profiles previously evaluated [20] 10 were selected

for analysis by qPCR. The carO, adeB, adeG and adeJ transcription was evaluated by qPCR

using Power-SYBR Green PCR Master Mix (Applied Biosystems). The single-copy housekeep-

ing rpoB gene from Ab was used as endogenous gene for normalization (S1 Table) [2,27]. The

relative quantification (RQ) results were presented as ratios of normalized target gene tran-

scription between the Ab isolates and the Type Strain ATCC 19606 (calibrator), which were

obtained according to the following equation: RQ = 2-ΔΔCT, where CT is the value corre-

sponding to the crossing point of the amplification curve with the threshold; ΔCT = target CT

or calibrator CT–endogenous CT; and ΔΔCT = target ΔCT—calibrator ΔCT. Reduced carO
differential transcription of strains relative to that of ATCC 19606 was considered significant

when the ratios obtained between RQ values (RQ value of calibrator/RQ value of strains) were

�2.0 [28], and the overexpression of adeB, adeG and adeJ was considered significant when the

ratios obtained between RQ values were�4.0 [2]. Each experiment was performed in triplicate

in two independent assays.

Multilocus Sequence Typing (MLST)

The same 10 strains selected for the qPCR reaction were selected for genotyping by MultiLocus

Sequence Typing (MLST) as described [29]. The methodology was carried out following the

guidelines of the website<https://pubmlst.org/abaumannii/info/primers_Oxford.shtml>.

The sequence of amplified internal fragments of housekeeping genes gltA, gyrB, gdhB, recA,

cpn60, gpi and rpoD was determined and compared with those in the Ab MLST database of

Oxford scheme [29]. Clonal complexes (CCs) were formed by Sequence Types (STs) with five

or more identical alleles by goeBURST (goeburst.phyloviz.net).

Whole-genome sequencing

Two strains, one clinical and other environmental, representing prevalent clones previously

evaluated by PFGE, were selected for whole-genome sequencing. The total genomic DNA of

selected isolates was sequenced, using Illumina NexSeq 500 sequencer (Illumina, San Diego,

CA), and the sequence reads were de novo assembled using Velvet pipeline. The pairwise

alignment was performed by BLASTn homology searches (https://blast.ncbi.nlm.nih.gov), and

in silico comparative analysis using the Center for Genomic Epidemiology (CGE) pipelines.

The amino acid sequences of the CarO were aligned using ClustalW with sequences available

from GenBank.

Statistical analysis

Statistical analyses were performed using GraphPad Prism v.5 (GraphPad Software, San

Diego, CA). Quantitative assays were compared using one-way analysis of variance (ANOVA)
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and Bonferroni multiple comparison test. All tests were performed with a confidence level of

95% and statistical significance was defined as P�0.05.

Ethical considerations

The data and the samples analyzed in the present study were obtained in accordance with the

norms and approved by the Federal University of Uberlandia Ethics Committee (UFU),

through license number 228/11.

Results

The majority (18/23; 78.3%) of strains included in this study were XDR. The presence of asso-

ciations between ISAba1/OXA-51 and ISAba1/OXA-23 was observed in 21 (91.3%) and 12

(52.2%) strains, respectively. All analyzed environmental strains displayed the ISAba1 inser-

tion element linked to both the blaOXA-51 and the blaOXA-23 genes (Table 1).

The presence of outer membrane proteins (OMP) genes carO and omp33-36, were detected

at 82.6% (19/23) and 100%, frequencies, respectively. The presence of genes encoding the

AdeABC (adeB), AdeFGH (adeG), and AdeIJK (adeJ) efflux pumps was evidenced in all ana-

lyzed strains. Most exhibited very high MICs for both carbapenems and tigecycline when eval-

uated by the Etest1 method. For the latter antimicrobial drug, the results were confirmed by

broth microdilution, and all strains were classified as resistant (Table 1).

The expression of the adeB, adeG, and adeJ genes, which encode RND type efflux systems

components, and the gene encoding the OMP of 29 kDa (carO), were measured by qPCR. The

relative gene expression of the tested strains compared to the reference is displayed Fig 1.

Based on the transcription levels determined as cut-offs for the hyperexpression of the efflux

systems and decreased OMP expression, only the adeB gene, which codifies the production of

the AdeABC efflux pump, was considered as hyper-expressed. Significant differences in the

expression levels of most of the strains in relation to the adeB gene were observed (Fig 1B),

while the opposite was detected when analyzing the carO, adeG, and adeJ genes (Fig 1A, 1C

and 1D).

MLST revealed eight STs and five CCs (Fig 2), distributed as follows: 1) CC113, ST227

(n = 2), ST233 (n = 1), and ST258 (n = 1); 2) CC229, ST1399, and ST1489; 3) CC109 and

ST405 (n = 2); 4) ST/CC235; and 5) ST/CC231. ST1399 is described for the first time herein

and was deposited in the MLST database (https://pubmlst.org/bigsdb?db=pubmlst_

abaumannii_oxford_seqdef). The three environmental strains included in this analysis

belonged to distinct CCs: CC229, CC113, and CC109. CC109 and CC113 were the only CCs

presenting strains with the same ST in both environmental and clinical specimens.

The total genome belonging to the Ab13 and Ab15 strains exhibited sizes of 3.76 Mb and

3.69 Mb, respectively, and generated a total of 7,694,708 and 9,944,440 reads, respectively,

yielding approximately 290X and 370X sequence coverages. The whole genome sequencing

analysis confirmed that the Ab13 strain (tracheal aspirate, clone A) belongs to ST/CC231,

while the Ab15 strain (environmental, clone H) belongs to ST405/CC109. Resistance to carba-

penems was explained by the presence of the Tn2008 (ISAba1-blaOXA-23) transposon, located

in plasmids (Fig 3A). Both strains exhibited the blaOXA-69 gene, a variant of the intrinsically

encoded blaOXA-51-like gene, while third-generation cephalosporin resistance occurs by

increased transcription of the ampC gene (blaADC-25) when associated with ISAba1 (Fig 3B).

In the Ab13 strain, resistance to aminoglycosides is justified by the presence of an enzyme

that modifies this drug (aacA4). In the Ab15 strain, the genes associated to aminoglycoside

resistance are aacA4, strA, and strB, and floR and sul2 for chloramphenicol and sulfonamides,
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respectively. The plasmid-mediated quinolone resistance gene (PMQR) aac(6')Ib-cr, was iden-

tified in both strains.

Sequencing of the carO gene revealed that both analyzed strains exhibit an isoform protein

different from those already registered in the NCBI database (CarOa and CarOb) but with a

similarity of 99% to the SJ22 strain registered by Sen and Joshi [30] (Accession number in

GenBank KP658474.1), differing only in a change at position 218 (substitution of glutamine

for lysine, Q218K) (Fig 4). The strains displayed 93% identity when compared to the reference

ATCC 19606 strain (CarOa; accession number in GenBank KP658473), which is susceptible to

Fig 1. Relative gene expression of the carO gene and the genes related to the three efflux pumps (AdeABC, AdeFGH and AdeIJK), determined by

qPCR. The results are shown in relation to strain ATCC 19606 used as reference. Each sample was tested in triplicate in two independent assays. Results

represent means plus standard deviation (error bars). �P<0.01; �� P<0.001; ���P<0.0001, using one-way ANOVA and Bonferroni multiple comparison

test.

https://doi.org/10.1371/journal.pone.0198643.g001
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Fig 2. Diagram constructed using the goeBURST algorithm and displayed on phyloviz software (PHYLOVIZ Online) indicating the similarity

among sequence types (STs). The Clonal Complexes (CCs) and STs observed in the present study are enlarged and highlighted by color.

https://doi.org/10.1371/journal.pone.0198643.g002

Fig 3. (A) Schematic representation of Tn2008 with ISAba1 located upstream of the blaOXA-23 gene in the analyzed strains. (B) Schematic

representation of the ISAba1 localization upstream to the blaADC-25 gene.

https://doi.org/10.1371/journal.pone.0198643.g003
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carbapenems due to the presence of point mutations. In addition, no genetic disruption by

ISAba1 insertion was observed; therefore, no protein inactivation occurred.

Discussion

Resistance to antibiotics in Ab has reached alarming levels worldwide, particularly for carbape-

nems, and strains have been shown to be susceptible only to polymyxins [31–35]. In Brazil,

unfortunately, resistance rates to carbapenems are very high (80.7%) [36] and, according to a

study carried out by Rossi et al. (2017)[37], a variation of 30 to 70% in resistance to carbape-

nems was detected in Acinetobacter species between 2010 and 2014.

The increase in resistance to carbapenems in clinical Ab strains is mainly associated to the

dissemination of OXA-23-producing strains [38–43,26,44], which can be explained by the fact

that this gene can also be allocated in plasmids, partly justifying its global reach [45–48]. Allied

to this, the presence of specific ISs, such as ISAba1, located adjacent to the blaOXA genes, leads

to an increase of their expression, resulting in a further decrease in susceptibility to carbape-

nems [49,4,50–52].

In the present study, approximately half of the analyzed strains were associated to ISAba1/

OXA-23, related to high MICs for carbapenems. Viana et al. (2016) [53] observed similar data

(i.e., an increase in this association from 22 to 73% between 2009 and 2013, also correlated to

elevated MICs for carbapenems. In some of the evaluated strains, no association with either

ISAba1/OXA-51 or ISAba1/OXA-23 was observed, despite high MICs, which can be justified

by the coexistence of other resistance mechanisms in these strains. These results suggest that

the ISAba1/OXA-23 combination may be one of the most significant resistance mechanisms

in Ab associated to high XDR phenotypes frequencies and high MICs for carbapenems.

Carbapenem resistance in Ab [54–55] may also result from modifications in the primary

structure or loss of outer membrane proteins (OMPs) (porins), such as the 33–36 kDa and the

29 kDa protein named CarO [9]. In the case of OMP CarO, modifications are mostly a result

from the rupture of the gene by several insertion elements [56]. From these results, we can

infer that the CarO protein is not responsible for carbapenem resistance in the evaluated

strains, since no reduced expression levels of this protein were observed. However, the

sequence analysis of the carO gene revealed a protein isoform different from those already reg-

istered in the NCBI database (CarOa and CarOb). A point mutation in the protein (Q218K)

Fig 4. Sequence alignment of carO gene for two representative Acinetobacter baumannii strains from this study (Ab13 and Ab15) with SJ22

(GenBank: KP658474.1) and ATCC 19606 (GenBank: KP658473.1) strains, indicating homology and difference in amino acids. The alignment

was performed using ClustalW. The dotted line indicates the point mutation region (Q218K).

https://doi.org/10.1371/journal.pone.0198643.g004
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has not been reported so far, so it was not possible to determine its exact participation in imi-

penem resistance.

Another antimicrobial resistance mechanism present in this microorganism is the hyper-

expression of efflux pumps, such as those belonging to the RND family (AdeABC, AdeFGH,

and AdeIJK) [8]. In addition, AdeABC and AdeFGH play an important role in acquired resis-

tance [57,2], while AdeIJK contributes to intrinsic resistance [58]. Only the adeB gene was

hyper-expressed based on the qPCR results. According to the literature [7], strains containing

the AdeABC pump confer resistance to various antibiotics, including most β-lactams, amino-

glycosides, fluoroquinolones, tetracyclines, tigecycline, macrolides, lincosamides, and chlor-

amphenicol. Thus, alongside the presence of ISAba1/OXA-23, this pump is another important

mechanism present in the strains analyzed herein.

Tigecycline is an interesting therapeutic option to treat infection by carbapenem-resistant

Gram-negative bacteria [59]. However, the isolates evaluated herein demonstrated resistance

to this antimicrobial by the Etest1 and microdilution methods. A confirmatory evaluation of

MICs� 2 μg/ml determined by Etest1 is mandatory, as these MICs values could be up to

four-fold higher than those obtained by the microdilution method [60,61,62]. The results

reported herein corroborate these findings and confirm tigecycline resistance of the strains

investigated in this study.

In addition to the genes responsible for carbapenem resistance and high MIC values for

tigecycline, most of the strains analyzed by MLST belonged to CC113, confirming its dis-

semination in Brazil and Latin America [12,63,13–14,64,15–16]. Additionally, a new ST,

ST1399, belonging to CC229, is reported. In Brazil, deserves attention another CC identified

in carbapenem-resistant Ab strains, CC109, corresponding to the international clone 1

[11,12,64].

Whole genome sequencing of the Ab13 and Ab15 strains demonstrated that carbapenem-

resistance is mainly due to the presence of Tn2008, which is easily propagated among strains

and includes different clones (as evidenced herein) disseminated worldwide [65,66]. In addi-

tion, the intrinsic resistance to third generation cephalosporins is due to the increased tran-

scription of the blaADC-25 gene, due to the presence of ISAba1, adjacent to the gene, acting as a

strong promoter, as described in the literature [67–68,5]. Another detected mechanism was

the presence of genes encoding aminoglycoside-modifying enzymes, such as aacA4 [68,5]. In

addition, the PMQR gene aac(6')Ib-cr was also identified. This is relevant data, since this gene

is well described in Enterobactericeae family members and in Pseudomonas aeruginosa [69–

71], but has seldom been studied in Ab [72].

Conclusions

Although a new ST was detected herein in Ab, the present study also observed a wide variety

of CCs related to XDR strains carrying the blaOXA-23 gene, frequently associated with ISAba1
(Tn2008) as the main carbapenem-resistance mechanism, in addition to the hyperexpression

of the AdeABC efflux pump. Understanding resistance mechanisms and the pathogenic poten-

tial of this microorganism, both from environmental and clinical origins, aids in explaining its

persistence in the hospital environment and can provide tools to improve the treatment of seri-

ous infections, as well as increase control and prevention regarding these infections.

Nucleotide sequence accession numbers

The nucleotide sequence data underlying this study have been uploaded to GenBank under

the accession numbers NKKO00000000 (Ab13) and NKKP00000000 (Ab15).
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