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Abstract. Colorectal cancer (CRC) is one of the most 
prevalent malignant diseases worldwide. Recurrence is asso‑
ciated with the poor survival of patients with CRC. Targeted 
therapy and precision medicine for recurrent CRC may 
improve the clinical outcome. Therefore, finding biomarkers 
that can detect CRC early, assess its prognosis and survival, 
and predict its treatment response is key to improving the 

clinical prognosis. The aim of this study was to assess CRC 
recurrence by analyzing molecular differences using postop‑
erative specimens. Whole‑exome sequencing was first used 
to evaluate the molecular differences in CRC tissues from 
patients with recurrent disease, and the results were then 
verified with tissue array methods. The regulation of single 
nucleotide polymorphisms (SNPs) in long noncoding regions 
of interest was analyzed in the presence of target microRNAs 
(miRs) using luciferase assays. The results demonstrated 
that in patients with recurrent CRC, the G allele was mainly 
detected at the rs28382740 SNP in the 3'‑untranslated region 
of the X‑linked inhibitor of apoptosis (XIAP)‑encoding 
gene. From the tissue arrays, 60% (3/5) of patients with the 
G allele of the rs28382740 SNP were diagnosed with CRC 
recurrence, whilst only 10% (1/10) of patients without the 
G allele had recurrent CRC (P=0.077). Furthermore, XIAP 
levels were high in non‑CRC (50%; 2/4) and CRC (75%; 3/4) 
tissues of patients with recurrent disease and CRC (54.5%; 
6/11) tissues of patients without recurrent disease. However, 
but only 9.1% (1/11) of non‑CRC tissues of nonrecurrent 
patients had significantly high XIAP expression levels 
(P=0.022). Using a luciferase assay, it was demonstrated 
that miR‑24s (miR‑24‑1‑5p and miR‑24‑2‑5p) targeting the 
rs28382740 SNP reduced XIAP levels in CRC cells with 
rs28382740 SNP genotype G. These results indicate that 
apoptosis‑related proteins, such as XIAP, may be therapeutic 
targets or biomarkers for tumor development. The data from 
the present study support an inhibitory effect of miR‑24s on 
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XIAP expression. However, this inhibitory potency depends 
on the rs28382740 SNP genotype and may alleviate CRC 
progression by regulating the expression of XIAP.

Introduction

Colorectal cancer (CRC) accounts for about one in 10 cancer 
cases and deaths worldwide (1). Recurrence, which contrib‑
utes to its poor prognosis by increasing 5‑year CRC‑related 
mortality to 33.6%, is frequently observed in most patients 
undergoing curative treatment or resection (2,3). Clinically, 
the delayed diagnosis and treatment failure of CRC remain the 
main reasons for the poor prognosis. Therefore, appropriate 
biomarkers that can detect CRC early, assess its prognosis 
and survival, and predict its treatment response are key to 
improving its clinical prognosis (4). Furthermore, an under‑
standing of the postoperative follow‑up program for CRC 
recurrence is important (5). For instance, using a liquid biopsy 
to monitor or evaluate recurrent CRC has been frequently 
reported (6). In addition, mutational status in formalin‑fixed 
paraffin‑embedded (FFPE) blocks showing high concordance 
may indicate the current reality or possible future prognosis of 
patients with CRC (7,8).

Several biomarkers modulating apoptosis have been 
described for their prognostic value for CRC recurrence. 
These biomarkers may provide new insights into monitoring 
CRC recurrence and therapeutic targets (9‑12). Increased 
expression of an inhibitor of the apoptosis protein (IAP) 
family is involved in colon tumorigenesis (13). In contrast, 
the downregulation of IAPs by modulating molecules in the 
tumor microenvironment, such as tumor necrosis factor‑a, may 
repress tumor growth (14). Therefore, certain apoptosis‑related 
proteins, including X‑linked IAP (XIAP), cIAP1, cIAP2 
and survivin, may have potential as biomarkers for tumor 
development, including in CRC (13‑15). Dysregulation of 
these antiapoptotic molecules has been reported to promote 
tumorigenesis in humans (16). The most important of these 
is XIAP, which is an emerging therapeutic target for different 
human cancers (17‑20). Notably, inhibition of XIAP expres‑
sion has been reported to control the proliferation and invasion 
of CRC cells, especially in metastatic CRC (21,22). Therefore, 
identifying potent XIAP antagonists [such as drugs, antisense 
oligonucleotides or microRNAs (miRs)] may have clinical 
implications for cancers that overexpress XIAP (23‑25).

Dysregulation of small noncoding RNAs, such as miRs, 
contributes to the pathogenesis of all types of cancer (26). 
Exosomal miRs in serum or plasma are potential biomarkers 
for the diagnosis and prognosis of CRC (27,28). Furthermore, 
certain miRs may be potential candidate targets for treating 
CRC (29) and provide an attractive antitumor approach to 
cancer therapy (30). These miRs may act as tumor suppres‑
sors (31).

The aim of the present study was to evaluate the molecular 
differences in recurrent CRC via whole‑exome sequencing 
(WES) and assess the role of XIAP. Luciferase expression 
was used to assess the regulation of single nucleotide poly‑
morphisms (SNPs) in the long noncoding region of XIAP with 
target miRs. It is hoped that the information obtained may 
lead to improved and new treatment strategies to improve the 
prognosis of CRC.

Materials and methods

CRC sample acquisition. Delinked FFPE tissue samples 
from 9 patients with CRC [nonrecurrent, n=4 and recurrent 
cases, n=5; American Joint Committee on Cancer (AJCC) 
stage II; median (range) time to recurrence, 4.1 (1.9‑7.0) months; 
Table I] were obtained from the Department of Pathology 
at Taipei Veterans General Hospital (Taipei, Taiwan). The 
protocol for the present study was reviewed and approved 
by the Institutional Review Board (IRB) of Taipei Veterans 
General Hospital (approval no. 2017‑07‑030AC). In addition, 
paired archived FFPE samples (non‑CRC and CRC tissues) 
from 15 patients (AJCC stage II, n=7 and AJCC stage III, n=8; 
Table II) for fabrication into tissue arrays were acquired from 
the Cathay General Hospital Biobank (Taipei, Taiwan), which 
approved their use (approval no. HBKEC‑20200928‑1). The 
IRB of the Cathay General Hospital exempted the obtaining of 
informed consent for tissue procurement through the Cathay 
General Hospital Biobank after an anonymous unlinked 
process (approval no. CGH‑P108136). The time period of 
Taipei Veterans General Hospital tissue samples collection 
was between February 2009 and December 2015, whilst 
the period for the Cathay General Hospital was between 
January 2000 and July 2020. The histological diagnosis of 
CRC in the present study was made by certified anatomical 
pathologists at Taipei Veterans General Hospital or Cathay 
General Hospital. The present study was performed in 
accordance with the Declaration of Helsinki, and all clinical 
characteristics of patients, including sex, onset age, primary or 
recurrent, initial AJCC stage and follow‑up information, were 
obtained retrospectively.

DNA purification from FFPE colonic tissues. Genomic DNA 
from FFPE colonic tissues was extracted and purified using the 
High Pure FFPET DNA Isolation Kit (cat. no. 06650767001, 
Roche Diagnostics). Briefly, the fixed paraffin‑embedded 
colonic tissue sections (10‑mm thick) were immersed in 
xylene to remove the extra paraffin and rehydrated with 100% 
alcohol at room temperature. After RNase treatment, the 
genomic DNA was quantified using a NanoDrop ND‑1000 
Spectrophotometer (NanoDrop Technologies; Thermo Fisher 
Scientific, Inc.) and the quality and integrity of the genomic 
DNA was verified using the Qubit™ dsDNA Quantification 
Assay Kit (cat. no. Q32851; Thermo Fisher Scientific, Inc.), 
according to the manufacturer's instructions.

Library construction and sequencing by WES. To generate 
standard exome capture libraries, the Agilent SureSelect XT 
Reagent kit (cat. no. G9611A; Agilent Technologies, Inc.) for 
the Illumina Multiplexed Paired‑End sequencing library was 
used with the SureSelect XT Clinical Research exome V2 
(cat. no. 5190‑9492; Agilent Technologies, Inc.) probe set. A 
total of 1 mg genomic DNA was used to construct a library 
with the Agilent SureSelect XT Reagent kit. The amplifica‑
tion adapter‑ligated sample was purified using Agencourt 
AMPure XP beads (cat. no. A63882; Beckman Coulter, 
Inc.) and analyzed on a TapeStation 4200 D1000 screentape 
(Agilent Technologies, Inc.). A 750 ng‑genomic DNA library 
was prepared for hybridization with the capture baits, and 
the sample was hybridized for 24 h at 65˚C, captured with 
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Dynabeads™ MyOne™ Streptavidin T1 (cat. no. 65602; 
Thermo Fisher Scientific, Inc.), and purified using Agencourt 
AMPure XP beads. The Agilent protocol was used to add 
index tags by posthybridization amplification. Finally, all 
samples were sequenced on an Illumina NovaSeq 6000 
platform (cat. no. 20012850; Illumina, Inc.) using the 150PE 
protocol. The sequence reads are deposited in the National 
Center for Biotechnology Information (NCBI) under the 
accession number PRJNA‑1063437.

Variant analysis of sequencing data. The qualified read data 
were then processed through genomic alignment against 
the Ensembl database (version 86; https://ftp.ensembl.
org/pub/release‑86) and using the Burrows‑Wheeler Aligner 
(version 0.7.17; https://github.com/lh3/bwa) to obtain basic 
sequence information (32,33). The Genome Analysis 
Toolkit (version 3.7.0) was used to analyze variants (34,35), 
and the Variant Effect Predictor (version 86; https://github.
com/Ensembl/ensembl‑vep/releases?page=7) predicted 
the effects SNPs on proteins (36,37). Paired‑end reads 
were quality‑checked using FastQC (version 0.32; 
ht tps://github.com /s‑andrews/FastQC /releases) and 
trimmed using Trimmomatic (version 0.11.7; https://github.
com/usadellab/Trimmomatic/releases) (38). Finally, the 
association between the sequencing data and nonrecurrent 
and recurrent CRC was assessed.

CRC cell lines and their rs28382740 SNP genotypes. In the 
present study, four CRC cells classed as AJCC stage II, LS 
123 [cat. no. CCL‑255; American Type Culture Collection 
(ATCC)], HCT 116 (cat. no. CCL‑247; ATCC), LS 174T 
(cat. no. CL‑188; ATCC) and SW480 (cat. no. CCL‑228; 
ATCC), and two CRC cells classed as AJCC stage III, SW620 
(cat. no. CCL‑227; ATCC) and LoVo (cat. no. CCL‑229; 
ATCC), were cultured according to the protocol of the ATCC. 
Briefly, all cells were cultured to 80% confluence with specific 
culture medium [LS 123 and LS 174T: Minimum Essential 
Medium (cat. no. 41500034; Thermo Fisher Scientific, Inc.); 
HCT 116 and LoVo: Dulbecco's Modified Eagle's Medium 
(cat. no. 12800017; Thermo Fisher Scientific, Inc.); SW480 and 
SW620: Leibovitz's L‑15 Medium (cat. no. 41300039; Thermo 
Fisher Scientific, Inc.)] in the presence of 10% fetal bovine 
serum (cat. no. A06806‑35; NQBB International biological 
Corp.) and 1X antibiotic‑antimycotic solution (100 units/ml 
of penicillin, 100 µg/ml of streptomycin and 0.25 µg/ml of 
amphotericin B; cat. no. 15240062; Thermo Fisher Scientific, 
Inc.) at 37˚C and 5% CO2, except that SW480 and SW620 
cells were cultured in the absence of CO2. A 170‑bp fragment 
containing the rs28382740 SNP in the 3'‑untranslated region 
(3'‑UTR) of XIAP from these cell lines was PCR‑amplified 
in the presence of 0.25 units of AmpliTaq Gold 360 DNA 
Polymerase (cat. no. 4398833; Thermo Fisher Scientific. Inc.), 
2.0 mM MgCl2, 50 ng of genomic DNA and 1 µM primer pair 
(Table III) in a 10‑µl reaction mixture. The PCR program 
was as follows: Denaturation at 95˚C for 10 min, a 45‑cycle 
program (95˚C, 30 sec; 60˚C, 30 sec; 72˚C, 30 sec), and a final 
extension at 72˚C for 7 min. Sequences of the rs28382740 SNP 
were then determined by Sanger sequencing.

Hematoxylin and eosin (H&E) staining, immunohistochem-
istry (IHC) and interpretation. Tissues were immersed in 4% 
formaldehyde for 1 day at room temperature, processed in 
Tissue‑Tek VIP 5 (Sakura Finetek USA, Inc.) for dehydration, 
and embedded in Paraplast Plus (cat. no. 39602004; Leica 
Biosystems, Inc.) to form a donor block. Tissue arrays were 
then constructed by removing a core of tissue from a donor 
block and transferring this core to a predetermined position 
on a recipient block. Sections of 5 mm were cut from the 
blocks of tissue arrays, stained with H&E and immunostained 
using an avidin‑biotin‑immunoperoxidase method. Briefly, 

Table I. Clinical characteristics of non‑recurrent (n=4) and recur‑
rent (n=5) patients for next‑generation sequencing analysis.

Characteristic No recurrence Recurrence

Sex, n (%)  
  Female 1 (25.0) 0 (0.0)
  Male 3 (75.0) 5 (100.0)
Median onset age 57.3 74.8
(range), years (45.3‑74.1) (62.8‑81.9)
Median time to ‑ 4.1 (1.9‑7.0)
recurrence (range), months
Stage, n (%)  
  T3N0M0 4 (100.0) 5 (100.0)
  AJCC II 4 (100.0) 5 (100.0)

T, tumor; N, node; M, metastasis; AJCC, American Joint Committee 
on Cancer.

Table II. Clinical characteristics of non‑recurrent (n=11) and 
recurrent (n=4) patients for the tissue array.

Characteristic No recurrence Recurrence

Sex, n (%)  
  Female 6 (54.5) 1 (25.0)
  Male 5 (45.5) 3 (75.0)
Median age of onset 71.3 61.0
(range), years (34.6‑84.5) (48.5‑78.0)
Median time to ‑ 102.0
recurrence (range), months  (7.3‑174.1)
T stage, n (%)  
  T3 10 (90) 4 (100.0)
  T4 1 (9.1) 0 (0.0)
N stage, n (%)  
  N0 6 (54.5) 1 (25.0)
  N1 2 (18.1) 3 (75.0)
  N2 3 (27.3) 0 (0.0)
AJCC stage, n (%)  
  II 6 (54.5) 1 (25.0)
  III 5 (45.5) 3 (75.0)

T, tumor; N, node; M, metastasis; AJCC, American Joint Committee 
on Cancer.
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H&E staining was performed using a Tissue‑Tek DRS™ 
2000 Automated Slide Stainer (Sakura Finetek USA, Inc.) 
following a general and serial protocol at room temperature: 
Deparaffinization (two consecutive xylene changes of 5 min 
each, followed by a 7 min change), rehydration [a sequential 
alcohol changes (100% alcohol, 60 sec; 100% alcohol, 90 sec; 
95% alcohol, 60 sec; 75% alcohol, 60 sec) and running water, 
3 min] and staining with hematoxylin for 5 min, followed by 
dipping the slides 5 times in 1% acid alcohol (1% HCl in 70% 
alcohol). Before mounting the tissue sections, the sections 
were rinsed, stained with eosin for 3 min at room temperature, 
dehydrated with graded alcohol, and washed in xylene.

IHC assays were performed on a BenchMark GX IHC/ISH 
slide automated system (Ventana Medical Systems, Inc.). The 
automated IHC program included deparaffinization with EZ 
Prep solution (cat. no. 950‑102; Ventana Medical Systems, Inc.) 
at 75˚C for 8 min, antigen retrieval with Cell Conditioning 1 
solution (cat. no. 950‑124; Ventana Medical Systems, Inc.) 
at 95˚C for 64 min, and incubation with primary anti‑XIAP 
antibody (dilution 1:100; cat. no. SC‑55550; Santa Cruz 
Biotechnology, Inc.) at 37˚C for 1 h. Finally, positive signals 
were developed following an incubation with secondary 
antibody and chromogen (OptiView DAB IHC Detection Kit; 
cat. no. 760‑700; Roche Diagnostics). The Reaction Buffer 
(cat. no. 950‑300; Ventana Medical Systems, Inc.) was used 
for all wash steps at room temperature. All sections were 
further processed by counterstaining with hematoxylin II 
(cat. no. 790‑2208; Ventana Medical Systems, Inc.) for 8 min 
at room temperature and Bluing Reagent (cat. no. 760‑2037; 
Ventana Medical Systems, Inc.) for 4 min at room temperature, 
and then visualized using light microscopy (Olympus BX41 
Microscope; Olympus Corp.).

Sections were evaluated at a high magnification by a 
research pathologist blinded to tissue type to determine the 
proportion of cells expressing XIAP, and the tissue sections 
were scored using a semiquantitative method based on a 
four‑layer system: Score 0 for negative expression; score 1 for 
weakly positive expression; score 2 for positive expression; 
and score 3 for strongly positive expression (39).

Knockdown of XIAP in SW480 cells and cell prolif-
eration assessment. For XIAP knockdown in SW480 
cells, the plasmid (pLKO_005) carrying a non‑targeting 

control lentivirus‑mediated small hairpin (sh)RNA 
(cat. no. TRCN0000231719; shLuc; 5'‑GCG GTT GCC AAG 
AGG TTC CAT‑3') or a specific lentivirus‑mediated shRNA 
targeting XIAP (shXIAP; cat. no. TRCN0000231579; 5'‑ACA 
CGT ACT TGT GCG AAT TAT‑3') was purchased from the 
National RNAi Core Facility of Academia Sinica, Taiwan. 
The first‑generation lentiviral vectors were used to package 
lentiviruses. Infection of each lentivirus into SW480 cells 
and selection of stable clones with shLuc (shLuc‑SW480) or 
with shXIAP (shXIAP‑SW480) by puromycin and efficacy 
validation of XIAP knockdown were performed according 
to a previous protocol (TRC protocol: Lentivirus infec‑
tion V3) (40). After washing cells with PBS, bright‑field 
images of live cells were taken using an ECHO Revolve 
microscope (ECHO RVL‑100‑M; BICO Group AB). To deter‑
mine cell proliferation, images were analyzed using QuPath 
(version 0.3.0; http://qupath.github.io) and Adobe Photoshop 
2022 (version 23.0.1; Adobe Systems, Inc.) to obtain the daily 
coverage area of cells (41,42).

Cloning of 3'‑UTR regions of XIAP into a pMIR‑REPORT 
vector and luciferase assay. The pMIR‑REPORT™ miRNA 
Expression Reporter Vector System (cat. no. AM5795; Thermo 
Fisher Scientific. Inc.) was used to analyze the potential target 
of miR‑24 in the 3'‑UTR of XIAP, including the significant 
rs28382740 SNP. Fragments of 608 bp in length with different 
genotypes at the rs28382740 SNP within this long noncoding 
region were amplified from genomic DNA of HCT116 (type A 
on the rs28382740 SNP) in the presence of 1.25 units of GoTaq 
DNA Polymerase (cat. no. M3001; Promega Corp.), 2.5 mM 
MgCl2, 50 ng of genomic DNA and 0.8 µM appropriate primer 
pair (Table III) in a 10‑µl reaction mixture using the following 
PCR program: Denaturation at 95˚C for 10 min, a 45‑cycle 
program (95˚C, 30 sec; 60˚C, 30 sec; 72˚C, 50 sec) and a final 
extension at 72˚C for 7 min. Amplified fragments were cloned 
into the SpeI and PmeI restriction sites of the pMIR‑REPORT 
vector with T4 DNA ligase (cat. no. T4L0500; Bioman Scientific 
Co., Ltd.) for 16 h at 4˚C. Subsequently, changes in the luciferase 
activity of two pMIR‑REPORT vectors (pMIR‑REPORT‑A 
and pMIR‑REPORT‑G) in HCT116 cells were assessed by 
cotransfection of pCMV‑MIR vectors (cat. no. PCMVMIR; 
OriGene Technologies, Inc.) with miR‑24‑1 precursor 
(cat. no. SC400296; OriGene Technologies, Inc.) or miR‑24‑2 

Table III. Primers for the amplification, sequencing and cloning of DNA fragments containing rs28382740 single nucleotide 
polymorphism of X‑linked inhibitor of the apoptosis protein.

Use of primer Direction Sequence (5'‑3') Product length, bp

Sequencing of DNA fragments Forward TGACAAGTGTCCCATGTGCT 170
within the 3'‑UTR
 Reverse TTGGTAGCAAATGCTAATGGAA 
Cloning 3'‑UTR fragment Forward‑1a ACTAGTTCTAACTCTATAGTAGGCATG 604
 Forward‑2b ACTAGTTCTAACTCTATGGTAGGCATG 
 Reverse GTTTAAACATCATTAAATACGCTTTCAA 

aUsed to amplify genotype A; bUsed to amplify genotype G. The rs28382740 SNP is indicated by underlined fonts; SpeI (ACTAGT) and PmeI 
(GTTTAAAC) are indicated by italics and underlined fonts. 3'‑UTR, 3'‑untranslated region.
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precursor (cat. no. SC400297; OriGene Technologies, Inc.), 
and a pMIR‑REPORT β‑galactosidase (β‑gal) control plasmid 
(cat. no. AM5795; Thermo Fisher Scientific. Inc.). Briefly, 
7.5x103 HCT116 cells/well were seeded on to a 96‑well plate 
and co‑transfected with 60 ng pMIR‑REPORT vector, 80 ng 
empty vector (pCMV‑MIR) and 10 ng pMIR‑REPORT 
β‑gal control plasmid the next day or when cells reached 
30‑50% confluency, using 450 nl jetPRIME® reagent 
(cat. no. 101000046; Polyplus‑transfection SA), according 
to the manufacturer's instructions. Following an initial 24‑h 
cultivation after transfection, the medium was replaced 
with fresh complete medium, and culture continued for an 
additional 24 h before detecting luciferase activity using the 
Luc‑Screen Extended‑Glow Luciferase Reporter Gene Assay 
System (cat. no. T1035; Thermo Fisher Scientific, Inc.) and 
galactosidase with the Galacto‑Light Plus™ β‑Galactosidase 
Reporter Gene Assay System (cat. no. T1007; Invitrogen™; 
Thermo Fisher Scientific, Inc.). Finally, the luciferase activity 
[measured in relative light units (RLUs)] was normalized to 
the activity of β‑gal as RLU/β‑gal. Transfection efficiency 
was calculated as the number of pCMV‑MIR green fluores‑
cent protein‑positive cells as a % of the number of cells with 
Hoechst 33342‑stained nuclei (cat. no. 910‑3015; ChemoMetec 
A/S). The ECHO Revolve microscope (RVL‑100‑M; BICO 
Group AB) was also used to capture fluorescent images of 
transfected cells, and positive cells were quantified using 
QuPath (version 0.3.0; http://qupath.github.io) (41).

Statistical analysis. The frequencies of the G allele in the 
rs28382740 SNP of the XIAP 3'‑UTR and CRC recurrence 
in the 15 patients with CRC were compared using Fisher's 
exact test using SPSS Statistics for Windows (version 20; 
IBM Corp.). Risk analysis was estimated by calculating the 
odds ratio (OR) and the 95% confidence interval (CI). The 
relative XIAP expressions of two groups (shLuc‑SW480 and 
shXIAP‑SW480) were compared using the unpaired Student's 
t‑test, and the relative luciferase activity and cell proliferation 
of different groups were compared using one‑way ANOVA, 
followed by Tukey's post hoc test for multiple comparisons. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Significant SNPs in patients with recurrent CRC. For long 
follow‑up times, archived FFPE specimens and appropriate 
samples were available to assess genes involved in recurrent 
CRC. Therefore, patients with CRC were recruited who were 

followed ≥5 years to confirm their recurrence status. Using 
WES, 27 SNPs with common variant sequences and distribu‑
tion in 21 genes were revealed in the group of patients with 
recurrent CRC (Table SI). Due to the significant molecular 
functions of XIAP in cell proliferation, apoptosis, invasion 
and metastasis, this apoptosis‑related protein was further 
studied for CRC progression. As presented in Table IV, the 
most genotype of the rs28382740 SNP in the XIAP 3'‑UTR 
was type A in nonrecurrent cases and type G in recurrent 
cases. In addition, three early‑stage CRC cell lines (LS123, 
HCT116 and LS174T) demonstrated genotype A, and two 
CRC cell lines with recurrence potential (SW480 cell line and 
its metastasis‑derived SW620 cell line) were sequenced as 
genotype G in the rs28382740 SNP.

The expression of XIAP in the shXIAP‑SW480 cells 
was significantly reduced in comparison with that in 
shLuc‑SW480 cells (Fig. 1A). Furthermore, the proliferation 
of shXIAP‑SW480 cells was notably reduced compared with 
that of shLuc‑SW480 cells (Fig. 1B), and the relative quan‑
titative results, which represented the level of proliferation 
by cell coverage, also demonstrated that shXIAP‑SW480 
cells had significantly lower levels of proliferation than that 
of shLuc‑SW480 cells from day 2 (P<0.001 for Day 2 and 
P<0.0001 for Day 3; Fig. 1C).

XIAP levels and genotypes of patients with CRC in the tissue 
array. Among the 15 patients with CRC whose tissues were 
assembled into the tissue array, 4 were diagnosed with recur‑
rent CRC (median time to recurrence, 102.0 months; range, 
7.3‑174.1 months), whilst 11 were not demonstrated to have 
any signs of recurrence during the follow‑up period (median 
follow‑up time, 64.4 months; range, 26.9‑124.9 months). To 
assess the clinical relevance of XIAP in these patients with 
CRC, paired colon tissues (non‑CRC and CRC cores) were 
evaluated for XIAP levels using IHC. The results demonstrated 
that markedly higher levels of XIAP were detected in the CRC 
tissue with a more aggressive phenotype, whereas the corre‑
sponding non‑CRC tissue showed negative immunostaining 
(Fig. 2A). The XIAP levels were then semi‑quantitatively 
scored based on the intensity and % of epithelial cells in 
colon tissues. Fig. 2B presents representative images of the 
four scores (scores 0‑3). Briefly, tissues with an intensity score 
³2 were classified into the high XIAP‑expressed group, and 
tissues with an intensity score <2 were considered the low 
XIAP‑expressed group. In the paired tissues of 4 recurrent 
patients, 50% (2/4) of non‑CRC tissues and 75% (3/4) of CRC 
tissues expressed high XIAP levels. In comparison, among 
the 11 nonrecurrent patients, 54.5% (6/11) of the CRC tissues 

Table IV. rs28382740 single nucleotide polymorphism in patients with colorectal cancer (n=15).

 Prognosis
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
rs28382740 SNP allele Total patients with CRC, n No recurrence Recurrence P‑value

G allele 5 2 (40.0) 3 (60.0) 0.077
A allele 10 9 (90.0) 1 (10.0) 

Values are expressed as n (%). SNP, single nucleotide polymorphism; CRC, colorectal cancer.

https://www.spandidos-publications.com/10.3892/ol.2024.14724
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had high XIAP levels, but only 9.1% (1/11) of non‑CRC tissues 
had high XIAP levels. However, this difference in patients 
with no recurrence was not statistically significant (P=0.063; 
Table V). Further observation of the subcellular localization of 

the XIAP protein revealed markedly increased nuclear XIAP 
intensity in patients with CRC recurrence (Fig. 3). In addition, 
the genotypes of the rs28382740 SNP in the XIAP 3'‑UTR 
of patients with CRC in the tissue array were analyzed (the 

Figure 2. Immunohistochemical analyses of XIAP in CRC tissues. (A) Higher levels of XIAP in CRC tissues. (B) Scores of XIAP‑positive signals. Scores 
were determined by a pathologist based on a four‑layer system: Score 0 for negative expression; score 1 for weakly positive expression; score 2 for positive 
expression; and score 3 for strongly positive expression. XIAP expression was detected from the paired CRC tissue array (scale bars, 50 µm). CRC, colorectal 
cancer; H&E, hematoxylin and eosin; XIAP, X‑linked inhibitor of apoptosis.

Figure 1. Assessment of the effect of XIAP on SW480 cell proliferation. (A) Knockdown efficiency of shXIAP in SW480 cells. (B) Proliferation of shLuc‑SW480 
and shXIAP‑SW480 cells over 3 days in bright field. (C) Changes in the cell coverage of shLuc‑SW480 and shXIAP‑SW480 cells over 3 days of culture. To 
determine cell proliferation, cell images were taken using an ECHO Revolve microscope daily over the 3‑day incubation period and identified by using QuPath 
(version 0.3.0). Finally, Adobe Photoshop 2022 (version 23.0.1) was used to calculate the % coverage area of cells. ***P<0.001; ****P<0.0001. XIAP, X‑linked 
inhibitor of apoptosis; sh, small hairpin; ns, no significance.
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A/G heterotype of the rs28382740 SNP; Fig. 4). The frequency 
of G‑allele carriers was 14.3% (1/7) in patients with AJCC 
stage II and 50.0% (4/8) in patients with AJCC stage III. 
Among the G‑allele carriers, 60% (3/5) were diagnosed with 
CRC recurrence, whilst only 10% (1/10) of patients without a 
G allele had recurrent CRC (P=0.077; Table IV). Furthermore, 
the G allele at the rs28382740 SNP notably increased the risk 
of recurrent CRC at AJCC stages II and III, with an OR of 13.5 
(95% CI, 0.88‑207.62). Conversely, according to the refSNP 
cluster ID number (e.g. rs28382740) (43), the Asian popula‑
tion has a markedly higher proportion of the G allele in the 
rs28382740 SNP (36.6‑48.0%) than the European and African 
populations (15.7‑19.2%; Table VI).

rs28382740 SNP in miR binding sites. SNPs in miR binding 
sites are known to be potential cancer biomarkers with 
clinical significance (44). The rs28382740 SNP in the XIAP 
3'‑UTR was demonstrated to have putative binding sites for 
two different miR‑24s (miR24‑1‑5p and miR24‑2‑5p) (45). 
Therefore, the clinical significance of this miR binding to the 
rs28382740 SNP in CRC was assessed. The fragment of the 
XIAP 3'‑UTR containing any genotype of the rs28382740 
SNP was cloned and inserted into separate luciferase reporters 
(pMIR‑REPORT‑A and pMIR‑REPORT‑G) and transfected 
into HCT116 cells (Fig. 5A). Following an appropriate 
antibiotic selection, green fluorescence was expressed in 
the transfected cells (Fig. S1), and the transfection efficien‑
cies of pCMV‑MIR‑miR24‑1 and pCMV‑MIR‑miR24‑2 
were 20.1 and 20.5%, respectively (Fig. 5B). The luciferase 
activity was determined following co‑transfection with 
a different effector plasmid (pCMV‑MIR‑miR‑24‑1 or 
pCMV‑MIR‑miR24‑2). Both miR‑24‑1‑5p and miR‑24‑2‑5p 
significantly downregulated the relative luciferase activity 
of HCT116 cells with different rs28382740 SNP genotypes 

compared with cells with the empty vector pCMV‑MIR 
(Fig. 5C). Furthermore, in HCT116 cells with rs28382740 
SNP genotype A, miR‑24‑1‑5p significantly reduced the rela‑
tive luciferase activity compared with miR‑24‑2‑5p (Fig. 5C), 
whilst this reduction was undetectable in HCT116 cells with 
rs28382740 SNP genotype G (Fig. 5C).

Discussion

CRC is a common malignant disease of the gastrointestinal 
system, and recurrence results in poor clinical outcomes 
following surgery and postsurgical treatment (46). Despite 
established clinical strategies, including surgery, adjuvant 
chemotherapy and targeted therapy, the recurrence rate of 
CRC has not yet decreased (47). Currently, CRC recurrence 
is associated with multiple risk factors, such as molecular 
subtypes, clinical stages and epigenetic alterations (29,48,49). 
Targeted therapy and precision medicine for recurrent CRC 
may improve the clinical outcomes of these vulnerable patients. 
Therefore, whether the prognosis will improve when patients 
with CRC experience a significant reduction in cancer recur‑
rence after surgery warrants exploration. Using postoperative 
specimens to assess recurrence is the most advantageous and 
convenient clinical strategy, and FFPE tissue, which contains 
most of the pathological information of a patient, is a feasible 
source to assess molecular and clinical follow‑up data (50,51).

From archived tissue samples, the present study demon‑
strated that the XIAP gene with genotype G at the rs28382740 
SNP was primarily detected in patients with recurrent CRC. 
A total of >50% of the non‑CRC and CRC tissues of patients 
with recurrent CRC, and CRC tissues of patients with nonre‑
current CRC, expressed higher levels of XIAP. Nevertheless, 
only the non‑CRC tissues of patients with nonrecurrent CRC 
expressed lower levels of XIAP. These results indicate that the 
genotypes and levels of XIAP may be associated with patient 
prognosis. Furthermore, the results of the present study were 
partially consistent with the conclusion of Xiang et al (39), 
who reported that the status of XIAP expression could be an 
independent prognostic marker in CRC. Moreover, it has been 
reported that XIAP is the strongest member of the family of 
inhibitors of apoptosis proteins (52). Therapeutic benefits in 
diseases such as cancers caused by inappropriate inhibition 
of cell death, may result from reinduction or triggering of 
apoptosis (53). Therefore, XIAP, as a potent inhibitor of cell 
death, may be involved in chemotherapy resistance and tumor 
aggressiveness in several cancers (45,52,54,55). High levels of 
XIAP may be a potential therapeutic target (18). For example, 
inhibition of XIAP has been reported to increase carboplatin 
sensitivity in ovarian cancer (56). In contrast, the present study 
demonstrated that patients with CRC and advanced‑stage 
disease had increased XIAP expression in the nucleus. This 
finding was similar to that of Delbue et al (57) who revealed 
that an elevated expression of nuclear XIAP may be associ‑
ated with drug resistance and poor prognosis in breast cancer. 
Taken together, the results of the present study imply that 
increases in XIAP expression, not only in whole cells or the 
nucleus, appear to be an adverse prognostic factor for clinical 
outcomes in many cancers (57,58). XIAP may be targeted in 
CRC with a poor prognosis, but its concrete role needs to be 
further explored.

Table V. Expression level of X‑linked inhibitor of the apoptosis 
protein in non‑recurrent (n=11) and recurrent (n=4) patients 
with colorectal cancer.

A, No recurrence   

 Expression level
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Sample type High Low P‑value

Non‑CRC tissue 1 (9.1) 10 (90.9) 0.063
CRC tissue 6 (54.5) 5 (45.5) 

B, Recurrence   

 Expression level
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Sample type High Low P‑value

Non‑CRC tissue 2 (50.0) 2 (50.0) 1.000
CRC tissue 3 (75.0) 1 (25.0) 

Values are expressed as n (%). CRC, colorectal cancer.

https://www.spandidos-publications.com/10.3892/ol.2024.14724
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XIAP has been known to inhibit the growth of several 
cancers through different pathways (22,57,59). This inhibi‑
tion was also demonstrated by the results of the present 
study, which indicated that parental SW480 cells grew faster 

than XIAP‑knockdown SW480 cells in CRC. The inhibition 
could be inferred to slow CRC cell growth by reducing XIAP 
expression. Due to the molecular significance of XIAP in the 
apoptosis and growth of cells, it has become a potential thera‑
peutic target in tumors and inflammatory diseases (60,61).

As XIAP is critical for CRC progression and miRs are 
known to develop or mitigate cancer by modulating target 
expression, it is important to understand the interaction 
between XIAP and specific miRs. Prabhu et al (62) reported 
that changes in gene expression were caused by the interac‑
tion of miRs and SNPs, and this effect was related to the 
sequence of the miR‑mRNA binding site within the target 
gene. For example, in CRC, high miR‑503 and high miR‑183 
have been positively associated with tumor progression (63) 
and poor prognosis (28). Conversely, patients with CRC and 
high miR‑23b in plasma have been reported to exhibit an 
improved survival rate (64). Taken together, miRs in CRC 
have been studied for years, but whether they are oncogenic 
or tumor suppressor miRs remains to be determined (65). 

Figure 3. Nuclear XIAP intensity in CRC tissues. Images of primary CRC tissues from two male patients were captured. Tissue from patient with CRC with 
(A) no recurrence (age, 84.5 years; AJCC stage III) and (B) recurrence (age, 48.5 years; initially diagnosed with AJCC stage II; recurrence at age 63.0 years). 
The increased nuclear XIAP is indicated with red arrows (scale bars, 500 and 50 µm in magnified windows). XIAP, X‑linked inhibitor of apoptosis; CRC, 
colorectal cancer; AJCC, American Joint Committee on Cancer.

Figure 4. Heterotypic genotype of the rs28382740 SNP. The sequence was 
determined by direct sequencing of the target 3'‑untranslated region of XIAP. 
SNP, single nucleotide polymorphism; XIAP, X‑linked inhibitor of apoptosis.



ONCOLOGY LETTERS  28:  591,  2024 9

Understanding the regulation of several miRs with clinical 
significance for CRC is warranted.

Taking XIAP as an example in several cancers, miR‑215 
and miR‑122‑5p have been reported to restrain XIAP levels 
to negatively regulate tumor growth for cancers in the 
gastrointestinal system (52,66). In addition, miR‑214‑3p 
and miR‑618 have been reported to act as tumor suppres‑
sors against retinoblastoma (67) and degenerative thyroid 
cancer (68), respectively, by interacting with the XIAP 
3'‑UTR. The present study revealed the rs28382740 SNP 
at the XIAP 3'‑UTR using WES, indicated it might overlap 
with the miR‑24 binding region and speculated that XIAP 
was indeed one of the genes in the list that miR‑24 could 
bind to through the algorithm of miRDB (http://www.mirdb.
org/). This interaction may decrease the expression level of 
XIAP in CRC cells. Furthermore, other studies have reported 
that the interaction of miRs and their target SNPs produces 
intracellular effects with clinical importance (69,70). miR‑24 
has been widely studied in several human cancers with 
different roles (71). Further information on miR‑24‑1‑5p 
and miR‑24‑2‑5p was obtained from miRDB (Table SI). 
Among the top five high‑scoring targets, there are three 
other CRC‑related genes [Caldesmon 1 (CALD1), serine 
and arginine rich splicing factor 11 (SRSF11), and SRSF 
protein kinase 2 (SRPK2)] besides XIAP, which scored the 
third highest one (72‑75). Inhibiting oncomiR or inducing 
tumor suppressors through miR‑based therapies may be 
effective in treating cancer (76). Therefore, miR‑24‑1‑5p and 
miR‑24‑2‑5p may contribute to regulating their potential 
targets, especially those known to be possible therapeutic 
targets for CRC, including XIAP, CALD1 and two genes 
associated with serine‑ and arginine‑rich splicing factor 
(SRSF11 and SRPK2) (74,75,77,78). Taken together, further 
research is needed to explore changes in these genes in 
association with the genotype (A or G) of rs28382740 
SNP in CRC cells. As reviewed by Mukherjee et al (79), 
miR‑24, along with its passenger strands, miR‑24‑1‑5p and 
miR‑24‑2‑5p, may be involved in the pathobiology of several 
diseases and have potential for their diagnosis and prognosis. 

Zhang et al (80) highlighted that upregulated miR‑24‑1‑5p 
may provide preventive and therapeutic strategies for CRC 
through intracellular molecular mechanisms. These findings 
illustrate that miR‑24 has molecular functions for disease 
prevention and treatment.

In the present study, the molecular regulation of miR‑24 on 
the downregulation of XIAP expression was genotype‑depen‑
dent. The results demonstrating that miR‑24‑1‑5p reduced 
the luciferase activity of SW480 cells with rs28382740 SNP 
genotype A indicate that patients with CRC and rs28382740 
SNP genotype A may have lower levels of XIAP expression in 
the presence of a certain level of miR‑24‑1‑5p. These results 
from clinical specimens and CRC cell lines demonstrate that 
the expression levels and genotypes of XIAP in CRC cells may 
be associated with CRC prognosis. However, the high propor‑
tion of the genotype G allele at rs28382740 SNP in the Asian 
population must have clinical significance. This implies that it 
is also important to determine the rs28382740 SNP genotype 
in patients in the Asian population with AJCC stage II and III 
CRC as patients with CRC and rs28382740 SNP genotype G 
have higher levels of XIAP expression and are not suitable for 
receiving miR‑24 (miR‑24‑1‑5p and miR‑24‑2‑5p). The find‑
ings of the present study may benefit the future development of 
molecular diagnosis and personalized therapies for recurrent 
CRC.

Genes in the IAP family are frequently expressed at 
elevated levels in tumor maintenance and progression (13). 
Targeting IAP proteins could be an option for antitumor 
therapeutic intervention (81). That is, preventing apoptosis may 
inhibit tumor growth and recurrence and lead to an improved 
prognosis (82). In other words, XIAP, as a key molecule for cell 
death, exerts its oncogenic potential by inhibiting apoptosis 
to promote cell proliferation and could be a molecular target 
for anti‑CRC (44). Clinical trials of several miR replacement 
therapies may demonstrate their potential for cancer treat‑
ment (26). However, there are limitations to the present study 
that should be noted. First, although the present study used 
24 clinical samples, including 15 paired CRC tissue samples 
for validation, the number of clinical samples assessed should 
be expanded to approximate clinical complexity more closely. 
Second, the multigene panel is frequently considered to be 
associated with CRC progression (83,84). Further study of 
multiple genes related or unrelated to XIAP is necessary to 
understand the molecular biology of CRC recurrence. Third, 
the targets of miRs are not unique genes, so further research 
should assess the molecular effects of other genes regulated by 
miR‑24 (miR‑24‑1‑5p or miR‑24‑2‑5p) on CRC cells. Further 
investigations should clarify the relationship between XIAP 
and CRC recurrence.

In conclusion, the results of the present study indicate 
that miR‑24‑1‑5p and miR‑24‑2‑5p could directly target the 
rs28382740 SNP in the 3'‑UTR of XIAP to exert an inhibitory 
effect on XIAP protein expression, especially for miR‑24‑1‑5p. 
Understanding the impact of the rs28382740 SNP on CRC 
recurrence may be beneficial to reduce cancer recurrence and 
enhance treatment. The findings infer that miR‑24‑1‑5p down‑
regulates XIAP expression in CRC cells due to the rs28382740 
SNP genotype, which may inhibit CRC tumor growth and 
thereby prevent CRC recurrence, especially in patients with 
AJCC stages II and III. 

Table VI. Allele frequency of rs28382740 in different popula‑
tions.

 Allele 
 frequencya, %
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Population Sample size A G

European 20,114 80.8 19.2
African 3,394 84.3 15.7
African American 3,280 84.3 15.7
Latin American 610 81.8 18.2
Asian 168 58.3 41.7
East Asian 112 63.4 36.6
South Asian 98 52.0 48.0

aFrequency data were compiled from https://www.ncbi.nlm.nih.
gov/snp/rs28382740.

https://www.spandidos-publications.com/10.3892/ol.2024.14724
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