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Abstract
Background: The	aim	of	this	study	was	to	evaluate	whether	machine	learning	(ML)	
can be used to distinguish patients with methamphetamine dependence from healthy 
controls	by	using	their	surface	electroencephalography	(EEG)	and	galvanic	skin	re-
sponse	(GSR)	in	a	drug-simulated	virtual	reality	(VR)	environment.
Methods: A	total	of	333	participants	with	methamphetamine	(METH)	dependence	
and	332	healthy	control	subjects	were	recruited	between	January	2018	and	January	
2019.	EEG	(five	electrodes)	and	GSR	signals	were	collected	under	four	VR	environ-
ments:	one	neutral	 scenario	and	 three	METH-simulated	scenarios.	Three	ML	clas-
sification	 techniques	were	evaluated:	 random	 forest	 (RF),	 support	 vector	machine	
(SVM),	and	logistic	regression	(LR).
Results: The	MANOVA	showed	no	interaction	effects	among	the	two	subject	groups	
and	the	4	VR	scenarios.	Taking	patient	groups	as	 the	main	effect,	 the	METH	user	
group	had	significantly	 lower	GSR,	 lower	EEG	power	in	delta	(p <	 .001),	and	alpha	
bands	(p <	.001)	than	healthy	subjects.	The	EEG	power	of	beta	band	(p <	.001)	and	
gamma	 band	 (p <	 .001)	was	 significantly	 higher	 in	METH	 group	 than	 the	 control	
group.	Taking	 the	VR	scenarios	 (Neutral versus METH-VR)	 as	 the	main	effects,	 the	
GSR,	EEG	power	 in	delta,	 theta,	 and	alpha	bands	 in	neutral	 scenario	were	 signifi-
cantly	higher	than	in	the	METH-VR	scenario	(p <	.001).	The	LR	algorithm	showed	the	
highest specificity and sensitivity in distinguishing methamphetamine-dependent pa-
tients from healthy controls.
Conclusion: The study shows the potential of using machine learning to distinguish 
methamphetamine-dependent	patients	from	healthy	subjects	by	using	EEG	and	GSR	
data.	The	LR	algorithm	shows	 the	best	performance	comparing	with	SVM	and	RF	
algorithm.
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1  | INTRODUC TION

Substance	dependence	brings	 serious	problems	 to	 the	 society,	 in-
cluding	disease,	crime,	accidents,	domestic	violence,	homelessness,	
etc. One in four deaths and almost 80% of domestic violence crimes 
were	caused	by	alcohol	abuse,	smoking,	and	illegal	drug	use	(Horgan	
&	 Strickler,	 2001).	 Among	 all	 types	 of	 drugs,	 methamphetamine	
(METH)	is	considered	as	one	of	the	biggest	threats.	According	to	the	
2017	China	Drug	Use	Report	 (Commission	O	of	CNNC,	2017),	 an	
estimated	2.55	million	Chinese	people	had	used	drugs	 illegally,	80	
percent	of	which	were	male	(Cai,	Gao,	&	Wang,	2017).	Substance	de-
pendence disorders are chronically relapsing disorders and a chronic 
health	 condition.	 Cognitive	 processing	 of	 drug-related	 cues	 (e.g.,	
glass	pipe,	medical	tubing)	and	the	subsequent	dysregulation	of	be-
havior	play	a	critical	role	in	the	relapse.	Therefore,	it	is	important	to	
identify the neural correlate pattern of drug-related cues in the pa-
tients with substance dependence. It has been proved that the brain 
of patients with substance dependence disorders presents altered 
structure	 and	 neurophysiological	 abnormalities	 (Cai	 et	 al.,	 2017;	
Coullaut-Valera	et	al.,	2014;	Prichep	et	al.,	1999;	Turnip	et	al.,	2017).	
Electroencephalography	 (EEG)	 is	one	of	 the	available	 tools	 for	ex-
amining the effects of drugs on brain function. Some investigations 
indicated that drug-dependent individuals had more significant re-
sponses	to	drug-related	stimuli	than	control	group	by	examining	EEG	
responses evoked by cocaine-relevant and cocaine-irrelevant stimuli 
(Van	De	Laar,	Licht,	Franken,	&	Hendriks,	2004);	some	researchers	
found that the high craving group showed a larger positive slow 
wave compared to the low craving group following the presentation 
of	 cocaine-related	 pictures	 (Franken,	 Hulstijn,	 Stam,	 Hendriks,	 &	
Van	Den	Brink,	2004).	With	the	development	of	modern	computa-
tional	techniques,	machine	learning	(ML)	has	been	applied	in	various	
fields,	which	mainly	serves	two	purposes:	classifying	and	predicting	
and	are	divided	into	supervised	and	unsupervised	algorithms	(Sakr	
et	al.,	2017).	Distinguishing	normal	and	patients	with	methamphet-
amine	dependence	through	EEG	using	ML	has	the	advantage	of	wide	
availability,	 relatively	 low-cost,	easy	 implementation,	and	noninva-
siveness.	In	the	present	study,	we	evaluated	and	compared	the	accu-
racy of distinguishing patients with methamphetamine dependence 
and	healthy	control	subjects	of	three	popular	supervised	ML	algo-
rithms	based	on	 their	 EEG	and	galvanic	 skin	 response	 (GSR)	data.	
In	particular,	we	conducted	experiments	under	a	virtual	reality	(VR)	
environment	 as	 suggested	 by	 Culbertson	 et	 al.	 (2010).	 Three	ML	
techniques	were	compared:	support	vector	machine	(SVM),	random	
forest	(RF),	and	logistic	regression	(LR).

2  | MATERIAL S AND METHODS

2.1 | Participants

Three hundred and thirty-three participants with methamphetamine 
(METH)	 dependence	 were	 recruited	 between	 January	 2018	 and	
January	2019	admitted	to	Jidong	drug	rehabilitation	center	located	

in	Shandong,	China.	This	rehabilitation	institution	is	for	males	only,	
which	accommodates	over	1,000	drug	users	and	patients	inside	the	
institution stay completely abstinent from drugs. The center pro-
vides	medical	treatment	for	physical	problems;	however,	no	medical	
or psychological interventions that target drug abuse are provided. 
The	METH	users	are	arranged	to	do	some	daily	activities	(e.g.,	read-
ing	books,	handcraft,	etc.)	when	they	were	in	the	institution.	Written	
consent forms were obtained from all the participants. The data 
analysis	was	approved	by	the	local	review	board	(IRB).	Personal	data	
and	history	of	drug	use	were	recorded	by	the	experimenter.	The	in-
clusion	criteria	were	as	follows:	(a)	diagnosed	with	drug	dependence;	
(b)	 only	used	METH	before	 they	were	 incarcerated;	 (c)	 have	been	
living a sober life for more than 1 month in the compulsory rehabili-
tation	center;	and	(d)	aged	≥18	years	old.	Exclusion	criteria	included	
the	 following:	 (a)	history	of	mania,	 schizophrenia,	or	psychosis;	 (b)	
language	difficulties;	(c)	vision	or	hearing	impairments;	(d)	illicit	drug	
use	other	than	METH	in	the	past;	(e)	any	severe	medical	condition	
that may significantly affect brain and cardiovascular function; 
and	6)	 inability	 to	 tolerate	 the	 virtual	 reality	 helmet/environment.	
Current	and	lifetime	diagnoses	were	determined	by	two	experienced	
psychiatrists	according	to	DSM-V	when	the	METH	users	were	sent	
to	the	rehabilitation	center.	Besides,	according	to	the	Chinese	law,	
the METH users need to be arrested by police at least twice before 
sending to the rehabilitation center. Those who were arrested the 
first time were sent to different institutions. The average length of 
METH	use	was	65.58	months	(SD =	42.25).	The	average	length	since	
admitted	to	the	rehabilitation	center	is	11.15	months	(SD =	6.65).

The healthy control group included 332 male participants that 
matched	the	METH	user	group	on	age.	All	the	healthy	participants	
were	recruited	in	Shandong	and	Beijing	province	through	an	online	
advertisement. They had no history of drug dependence or any men-
tal	 problems.	The	exclusion	 criteria	were	 the	 same	as	METH	user	
group.

2.2 | Virtual reality environment

The	virtual	reality	(VR)	environment	included	two	parts:	neutral-VR	
environment	and	METH-VR	environment.	The	neutral-VR	part	was	a	
3-min	neutral	grassland	scenario,	with	clouds	in	the	sky	(Figure	1a).	
In	 this	 session,	 participants	were	 required	 to	 be	 relaxed	 and	 look	
around	in	order	to	adapt	to	the	VR	environment.	The	METH-VR	en-
vironment included animate and auditory cues under three circum-
stances:	in	karaoke,	in	bedroom,	and	in	a	car.	Each	scenario	lasted	for	
4	min	(Figure	1b-d),	with	avatars	using	METH	and	drug	parapherna-
lia	(e.g.,	glass	pipe,	medical	tubing,	and	small	plastic	bags	containing	
METH)	in	side	(Culbertson	et	al.,	2010).	The	participants	were	able	
to	pick	the	drug	paraphernalia	in	the	VR	environment	by	their	hands	
and	virtually	use	 them.	Auditory	cues	 (e.g.,	 snorting,	 smoking)	 ap-
peared	when	they	took	the	drugs	 in	VR.	The	VR	environment	was	
presented	by	a	VR	helmet,	with	2,560	×	1,440	pixels	resolutions	and	
92 degrees field of view. The helmet was equipped with a custom-
built	head	tracker	using	a	triaxial	gyroscope,	an	accelerometer,	and	a	
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compass	sensor	tracked	at	1	MHz	update	rate.	All	participants	were	
able	to	explore	each	VR	scenario	freely.

2.3 | Data recording

EEG	 data	 were	 collected	 via	 a	 low-cost,	 portable	 EEG	 headband	
(Adai-jd-001;	Adai-tech	Co.,	Ltd.)	at	a	sampling	rate	of	200	Hz	with	
five	electrodes	located	at	Fpz,	AF7,	AF8,	TP9,	and	TP10.	Electrode	Fpz	
was	utilized	as	the	reference	electrode.	EEG	data	on	AF7,	AF8,	TP9,	
and	TP10	were	transmitted	to	a	local	server	through	Bluetooth.	The	
raw	data	were	filtered	and	processed	by	Brain	Vision	Analyzer	soft-
ware	(Brain	Products;	GmbH)	with	a	bandpass	filter	of	0.1	Hz–60	Hz.	
Using	 a	 fast	 Fourier	 transform,	 absolute	 power	 in	 5	 standard	 fre-
quency	bands	of	EEG	were	obtained:	delta	(1–4	Hz),	theta	(4–8	Hz),	
alpha	(8–13	Hz),	beta	(13–30	Hz),	and	gamma	(30–44	Hz).

Galvanic	 skin	 response	 (GSR)	 was	 recorded	 by	 a	 biofeedback	
unit	 (Grove-GSR	monitor;	Mindfield	Biosystem).	Two	sensors	were	
affixed	to	the	index	and	middle	fingers	of	the	participants’	nondom-
inant	hand.	Data	were	transmitted	to	a	local	server	by	Bluetooth.

2.4 | Feature selection

A	classification	analysis	was	conducted	using	the	two	input	data	mo-
dalities	as	input:	EEG	data	(the	absolute	power	values	in	5	standard	
frequency	bands)	and	GSR	data.	All	the	input	data	of	the	whole	re-
cording	period	were	firstly	mean-centered	and	normalized	prior	to	
the	data	analysis.	In	order	to	explore	the	quick	and	convenient	ways	
in	classifying	MEHT	users	from	healthy	controls,	only	the	basic	and	
common-used features were selected in the present study. Mean 
and	standard	deviation	(SD)	of	GSR	and	EEG	powers	in	each	VR	sce-
nario	(one	neutral-VR	cue	and	three	METH-VR	cues)	were	calculated	
and used as the input features. The mean and SD	of	GSR	reflect	the	
changes in human sympathetic nervous system and are found useful 
in	earlier	 studies	 (e.g.,	Healey	&	Picard,	2005;	Kurniawan,	Maslov,	

&	Pechenizkiy,	2013).	The	mean	and	SD	of	absolute	EEG	power	re-
flect	 the	 amount	of	 EEG	activity	 and	 its	 variation	 in	 one	band	 in-
dependent of activity in other bands. Previous studies have proved 
that	these	two	features	were	useful	(e.g.,	Junghöfer,	Elbert,	Tucker,	
&	 Rockstroh,	 2000;	Oken	&	Chiappa,	 1988).	 The	 total	 number	 of	
the	features	was	168	 (4	scenarios	×	 (2	variables	 [mean	and	SD] of 
GSR	+	2	variables	[mean	and	SD] ×	4	EEG	channels	×	EEG	powers	
in	5	frequencies)).	The	data	were	labeled	as	drug	abused	patient	or	
healthy	subject.	To	evaluate	and	select	the	features,	stepwise	model	
selection	 and	 backward	 elimination	 method	 were	 used.	 AIC/BIC	
were	used	 to	 choose	model.	A	 total	 of	56	 features	were	 selected	
eventually.

Three	machine-learning	algorithms	including	random	forest,	lo-
gistic	 regression,	and	support	vector	machine	 (SVM)	were	used	to	
build	 classification	model.	 Random	 Forests	 is	 an	 ensemble	model	
with a lot of decision trees. Each decision tree is trained with a 
dataset random sampled from the whole training set. The output of 
the	method	is	the	mode	of	the	classification	(Liaw	&	Wiener,	2002).	
Logistic	 regression	aims	at	predicting	a	binary	output	value	based	
on	 input	variables.	All	 input	 values	 are	 combined	 linearly.	The	 co-
efficients	of	each	 input	are	optimized	using	gradient	descent	with	
cross-entropy	cost	function	(Fan,	Chang,	Hsieh,	Wang,	&	Lin,	2008).	
SVM	is	also	a	common	method	to	deal	with	linear	and	nonlinear	clas-
sification	issues	in	machine	learning	(Hearst,	Dumais,	Osman,	Platt,	
&	Scholkopf,	1998).	Each	 input	case	was	assigned	to	one	category	
or	the	other	in	the	SVM	algorithm.	The	SVM	training	model	is	a	rep-
resentation	of	 the	 input	 cases	 as	points	 in	 space,	mapped	 so	 that	
the two categories can be divided by a clear gap that is as wide as 
possible.	New	input	cases	are	then	predicted	to	belong	to	a	category	
based on the side of the gap on which they fall.

To	avoid	overfitting,	80%	of	the	total	sample	was	included	in	
the training process and the other 20% was included to test the 
accuracy,	precision,	sensitivity,	and	f1 score of each model. The f1 
score is the harmonic average of the precision and sensitivity of 
a	binary	classification	analysis.	 It	ranges	from	0	to	1,	with	higher	
scores indicating better performance of the machine-learning 

F I G U R E  1  Screenshots	of	neutral-VR	
cue	and	METH-VR	cue	environment.	(a)	
A	3-min	neutral	scenario;	(b)	METH-VR	
cue	in	karaoke;	(c)	METH-VR	cue	in	a	
bedroom;	(d)	METH-VR	cue	in	a	car.	
METH,	methamphetamine;	VR,	virtual	
reality

(a) (b)

(c) (d)
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model	(Powers,	2011;	Sakr	et	al.,	2017).	Furthermore,	parameters	
for	each	algorithm	were	tested	prior	to	finalize	the	machine-learn-
ing models. The performance validation was then generated using 
10-fold	 cross-validation	 and	 the	 accuracy,	 precision,	 sensitivity,	
and f1	 score	 of	 the	 ten	 runs	were	 averaged.	 Following	 previous	
studies	 (e.g.,	Ding	et	al.,	2019;	Friedrichs	&	Igel,	2005),	the	most	
commonly	used	tuning	parameters	were	selected,	including	num-
ber	of	trees,	minim	samples	at	leaf,	maximum	depth	of	each	tree,	
minimum	 samples	 at	 each	 node	 to	 split,	 and	maximum	 features	
considered	at	each	node	for	RF;	regularization	parameter	C,	toler-
ance	to	stop	criteria,	solver,	and	maximum	iterations	for	LR;	reg-
ularization	parameter	C,	tolerance	to	stop	criteria,	and	kernel	for	
SVM.	Feature	importance	analysis	was	done	following	information	
gain criterion.

2.5 | Statistical analysis

Independent t test and chi-square test were used to test whether 
there is a significant difference in age and educational background 
between	METH	user	group	and	the	healthy	control	group.	A	multi-
variate	analysis	of	variance	 (MANOVA)	was	conducted	to	examine	
the	differences	in	GSR	and	EEG	power	of	5	bands	between	METH	
user	group	and	control	group.	A	paired-sample	t test was conducted 
to	test	the	differences	in	GSR	and	EEG	power	of	5	bands	between	
neutral	and	METH-VR	scenarios.

All	 the	 machine-learning	 analyses	 including	 classification	 and	
feature	 importance	 analysis	 were	 done	 by	 Jupyter	 Notebook	
(Project	 Jupyter).	 It	 supports	 scientific	 computing	 using	 Python.	
Python	 packages	 including	 Scikit-learn	 (Pedregosa	 et	 al.,	 2011),	
NumPy,	SciPy,	and	matplotlib	were	also	utilized.

3  | RESULTS

The demographic and clinical characteristics of the recruited group 
are displayed in Table 1. Independent t test showed no significant dif-
ferences	in	age	between	the	healthy	control	group	(mean age ± SD: 
33.63 ±	7.92)	and	METH	user	group	(mean	age	33.75	±	6.49,	p =	.82).	
And	chi-square	test	showed	that	the	two	groups	had	no	significant	
differences	regarding	educational	background	(χ2 =	0.15,	p >	.05).

3.1 | Comparison of the METH user group and 
healthy comparison group

Table	2	shows	mean	EEG	power	 in	 the	5	specific	bands	and	mean	
GSR	 in	 the	neutral	 and	across	 the	 three	METH-VR	scenarios.	The	
MANOVA	 showed	 no	 interaction	 effects	 among	 the	 two	 subject	
groups and the four scenarios.

We	took	patient	groups	as	 the	main	effect,	 the	GSR	of	METH	
user group was significantly lower than the healthy control sub-
jects	(F	(323)	=	167.10,	p <	.001).	Since	GSR	is	inversely	correlated	

with	skin	conductance,	the	results	revealed	that	METH	user	group	
showed	 greater	 stressful	 state.	 The	 EEG	 power	 in	 delta	 band	 (F 
(323)	=	105.32,	p <	.001)	and	alpha	band	(F	(323)	=	10.33,	p <	.001)	
was significantly lower in METH group than the control group. The 
EEG	power	of	beta	band	(F	(323)	=	10.43,	p <	.001)	and	gamma	band	
((F	(323)	=	30.13,	p <	.001)	was	significantly	higher	in	METH	group	
than the healthy group.

No	 significant	 differences	 were	 found	 in	 EEG	 power	 in	 theta	
band	(p =	.087).

While	we	test	the	differences	between	the	VR	scenarios	(Neutral 
versus METH-VR),	 the	 GSR	 of	 neutral-VR	 was	 significantly	 higher	
than	the	METH-VR	(t	(633)	=	4.47,	p <	.001).	The	EEG	power	in	delta	
(t	(633)	=	−8.60,	p < .001),	theta	(t	(633)	=	−7.15,	p <	.001),	alpha	(t 
(633)	=	−4.50,	p < .001)	bands	of	neutral-VR	was	significantly	higher	
than	 the	METH-VR.	No	 significant	 difference	 in	 beta	 and	 gamma	
bands	was	found	between	neutral-VR	and	MRTH-VR.

3.2 | Results of classification

The	indices	of	the	two	modalities	(EEG	and	GSR)	were	combined	and	
used as input to the classifiers. Table 3 shows the results of each 
classifier	using	testing	dataset.	Figure	2	showed	the	area	under	the	
receiver	 operating	 characteristic	 curve	 (AUC/ROC)	 for	 the	 three	
classifiers.	The	LR	algorithm	showed	highest	accuracy	(90.68%)	and	
F1	 Score	 (90.80%).	 The	 parameters	we	 used	 in	 each	 classifier	 are	
described here:

•	 For	RF,	number	of	trees	=	100,	minim	samples	at	leaf	=	1,	maxi-
mum depth of each tree =	100,	minimum	samples	at	each	node	to	
split =	2,	maximum	features	considered	at	each	node	= 65.

•	 For	LR,	regularization	parameter	C	=	0.1,	tolerance	to	stop	crite-
ria =	1e-5,	solver	=	'newton-cg',	maximum	iterations	=	1,000.

•	 For	SVM,	regularization	parameter	C	=	0.02,	tolerance	to	stop	cri-
teria =	1e-4,	kernel	= linear.

TA B L E  1   Demographic and clinical characteristics of the present 
sample

METH 
(n = 333) HC (n = 332) t/χ2 p

Age	(mean,	SD) 33.75	(6.49) 33.63	(7.92) 0.22 .82

Gender Male Male — —

Education	(n,	%) 0.15 1.00

Primary school 51	(15.3) 48	(14.5)

Middle school 117	(35.1） 118	(35.5）

High school 127	(38.1) 127	(38.3)

College or above 38	(11.4) 39	(11.7)

Abbreviations:	administration	length,	the	average	length	since	being	
admitted	to	the	isolated	drug	rehabilitation	center	(month);	HC,	healthy	
control	participants;	METH	use	length,	the	average	length	of	METH	use	
(month);	METH,	methamphetamine	users.
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Table 4 showed the top three variables and their importance 
index	in	each	classifier	based	on	the	outcome	of	the	feature	selec-
tion process according to the information gain. The most important 
variables	for	LR	classifier	are	as	follows:	mean	of	GSR	in	neutral	sce-
nario,	SD	 of	GSR	 in	neutral	 scenario,	 and	SD	 of	GSR	 in	METH-VR	
(bedroom)	 scenario.	 It	 seems	 the	mean	GSR	 in	 neutral	 scenario	 is	
the	most	 important	variables	 in	all	 the	 three	classifiers.	GSR	gives	
more information in distinguishing methamphetamine-dependent 
patients	from	healthy	controls	than	EEG	signals.

4  | DISCUSSION

Drug-associated cues have been shown to elicit behavioral and 
physiological	responses	in	patients	with	drug	dependence	(Ehrman,	
Robbins,	Childress,	&	O’Brien,	1992;	Franken	et	al.,	2004).	Reactivity	
to drug cues has been investigated as a possible indication of vul-
nerability	 to	 relapse	 (Drummond	 &	 Glautier,	 1994).	 In	 this	 study,	
we proposed a method to distinguish patients with methampheta-
mine dependence from normal healthy subjects by comparing their 
reactions to drug-associated cues. Culbertson et al demonstrated 
the	usefulness	of	VR	cues	for	eliciting	subjective	craving	 in	METH	

abusers	and	showed	its	advantages	versus.	video	cues	(Culbertson	
et	al.,	2010).	Therefore,	we	employed	METH-VR	cues	in	this	study.

The skin gives away lots of information on how we feel when we 
are	exposed	to	emotionally	loaded	images,	videos,	events,	or	other	
stimulus. The galvanic skin response reflects the activity of sweat 
glands	and	the	autonomous	nervous	system	(ANS)	as	a	whole.	It	gen-
erally reflects the skin's ability to transmit sweat enhanced electrical 
current.	Fatseas	et	al.	 found	a	significant	decrease	of	 the	galvanic	
skin	 response	 after	 drug-related	 stimuli	 in	 drug	 relapsers	 (Fatseas	
et	al.,	2011).	Our	data	also	showed	decreased	galvanic	skin	response	
in METH-abused group. Skin response decreases when skin conduc-
tance	increases	in	more	stressful	and	excited	state.	In	a	more	relaxed	
state,	 skin	 response	 increases.	 The	 result	 of	 this	 study	 supports	
the	excited	state	induced	by	METH	(Ohme,	Reykowska,	Wiener,	&	
Choromanska,	2009).

Prolonged drug use can have profound effects upon normal 
brain activity which can be recorded and measured through the use 
of	quantitative	EEG	(qEEG)	techniques.	For	example,	previous	stud-
ies	have	found	that	a	majority	of	the	conventional	EEGs	of	the	METH	
users	were	abnormal	and	METH	users	showed	increased	EEG	power	
in	the	delta	bands	(Newton	et	al.,	2003),	increased	theta	quantitative	
EEG	power	on	tasks	that	were	more	difficult	(Newton	et	al.,	2004),	

TA B L E  2   Mean value and standard deviation of physiological data

METH (n = 333) HC (n = 332)
Interaction effects 
F(p) Main effects F (p)

Neutral METH-VR Neutral METH-VR Group*Scenario METH versus HC
Neutral versus 
MEHT-VR

EEG

delta 0.64	(0.22) 0.60	(0.22) 0.82	(0.26) 0.79	(0.25) 0.15	(p =	.701） 105.32	(p <	.001) 8.60	(p <	.001)

theta 0.49	(0.20) 0.41	(0.18) 0.47	(0.23) 0.45	(0.22) 0.69	(p = .090） 0.77	(p =	.087) 7.15	(p <	.001)

alpha 0.48	(0.15) 0.46	(0.15) 0.51	(0.21) 0.51	(0.21) 1.00	(p = .318） 10.33	(p <	.001) 4.50	(p <	.001)

beta 0.59	(0.31) 0.57	(0.31) 0.50	(0.33) 0.50	(0.33) 0.32	(p = .569） 10.43	(p <	.001) 0.32	(p = .569）

gamma 0.43	(0.35) 0.42	(0.35) 0.27	(0.39) 0.27	(0.39) 0.06	(p = .806） 30.13	(p <	.001) 0.06	(p =	.806)

GSR 2.43	(1.59) 2.46	(1.63) 5.01	(3.22) 5.10	(3.27) 0.05	(p = .831） 167.10	(p <	.001) 4.47	(p <	.001)

Note: Data	format:	mean	(SD);	EEG	data	were	absolute	power	values.
Abbreviations:	GSR,	galvanic	skin	response;	HC,	healthy	control	group;	METH,	METH	user	group;	METH-VR,	methamphetamine-VR	environment;	
neutral,	neutral	environment.

Classifier

Results (%)

Accuracy Precision Sensitivity F1 score

RF 88.57	
(86.00–91.14)

88.00	(83.06–92.94) 89.40 
(87.53–91.27)

88.62 
(86.04–91.20)

LR 90.68 
(88.72–91.61)

89.22 (86.22–92.22) 92.44 
(91.17–93.71)

90.80 
(88.72–88.72)

SVM 90.38 
(88.04–92.72)

88.27	(85.04–91.50) 93.01 
(91.29–94.73)

90.56 
(88.08–93.04)

Note: The range between the brackets is the confidence interval with 95%.
Abbreviations:	LR,	logistic	regression;	RF,	random	forest;	SVM,	support	vector	machine.
Bold	numbers	are	indicates	the	classifier	with	the	best	performance.

TA B L E  3   The results of classifiers with 
EEG	and	GSR	data	as	input
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decreased	cortical	complexity	of	METH	users	(Yun	et	al.,	2012),	and	
higher	clustering	coefficient	at	the	gamma	band	(Ahmadlou,	Ahmadi,	
Rezazade,	&	Azad-Marzabadi,	2013).	In	our	study,	the	patients	with	
methamphetamine	dependence	showed	higher	EEG	power	in	gamma	
band	 and	 smaller	 EEG	 power	 in	 lower	 frequency	 bands,	 including	
delta	(p <	.001)	and	alpha	(p <	.001)	frequency	bands.	These	findings	
are	 very	 interesting.	Gamma	oscillations	 (>30	Hz)	 in	 the	brain	 are	
involved	in	attention,	perception,	and	memory.	They	are	altered	in	
various	pathological	states,	as	well	as	by	neuropharmaceuticals.	The	

changes	of	EEG	power	in	different	bands	might	suggest	that	meth-
amphetamine abuse is associated with brain function deficits.

Machine-learning methods have been widely tried in medical 
fields to predict different outcomes. This study is designed to take 
advantage of the unique database of patients with methamphet-
amine	dependence,	 collected	 in	 a	drug	 rehabilitation	 center	 to	 in-
vestigate the relative performance of various machine-learning 
classification method for distinguishing normal subjects and patients 
with	methamphetamine	dependence	by	using	EEG	and	GSR.	To	our	
knowledge,	this	is	the	first	study	using	machine-learning	method	in	
patients with methamphetamine dependence. We evaluated three 
machine-learning	methods,	that	is,	SVM,	RF,	and	LR,	and	there	was	
not	 huge	 difference	 between	 their	 accuracy.	 In	 previous	 studies,	
Vomlet	 used	 five	 machine-learning	 techniques	 (i.e.,	 LR,	 Decision	
Tree,	Naïve	Bayes	classifier,	Artificial	Neural	Network,	and	Bayesian	
Network	classifier)	to	predict	mortality	in	patients	with	ST	elevation	
myocardial	infarction	and	he	found	the	LR	achieved	the	highest	area	
under	curve	(Vomlel,	Kruzık,	Tuma,	Precek,	&	Hutyra,	2012).	In	the	
present	study,	we	achieved	the	highest	f1	score	by	LR	with	a	combi-
nation	of	EEG	and	GSR	data	(accuracy:	90.68%,	precision:	89.22%,	
sensitivity:	 92.44%,	 f1	 score	 90.08%).	 Previous	 studies	 that	 used	
machine-learning	models	to	classify	patients	(e.g.,	major	depression	
patients)	from	healthy	controls	with	EEG	and	GSR	data	achieved	an	
average f1	score	around	75%-85%	(e.g.,	Ding	et	al.,	2019).	The	high	
f1 score in the present study indicates that the model would be use-
ful clinically and has good potential in predicting METH users.

One	of	the	common	problems	in	machine	learning	is	overfitting,	
which occurs when the model fits the peculiarities of the train-
ing dataset too much and does not find a general predictive rule 
(Dietterich,	1995).	In	order	to	avoid	this	problem,	the	present	study	
used 80% of the total sample to train the models and used the other 
20%	of	the	total	sample	to	test	the	accuracy,	precision,	sensitivity,	
and f1	score	of	each	model.	Therefore,	the	20%	of	the	sample	that	
were used to test the performance of the models is independent 
from the training dataset. The high f1 score indicated a good gener-
alization	performance	of	the	 learned	models.	However,	 in	order	to	
further	test	the	generalizability	of	the	learned	models,	more	studies	
with different samples are needed.

The	present	study	is	limited	in	several	perspectives.	First,	only	
male	 drug	 users	were	 included	 in	 this	 study;	 therefore,	 the	ma-
chine-learning model should be treated with caution when applies 
to female. Since male and female drug users were accommodated 
separately	 in	China,	multicenter	 studies	 should	be	 considered	 in	
the future. The second limitation refers to the fact the present 
study did not include poly drug use. It is possible that poly drug 
users may have different cognitive pattern compared to those who 
only	used	METH.	Moreover,	future	studies	should	consider	com-
paring	 other	 drug-dependent	 patients	 (e.g.,	 cocaine)	with	meth-
amphetamine-dependent	patients	and	further	examine	if	the	EEG	
pattern	 is	 methamphetamine	 specific.	 Third,	 the	 present	 study	
mainly	focused	on	exploring	whether	machine	learning	approach	
can be used to distinguish METH users and healthy controls with 
EEG	and	GSR	data.	In	order	to	use	the	outcomes	as	predictors	to	

F I G U R E  2   The area under the receiver operating characteristic 
curve	(AUC/ROC)	for	the	three	classifiers.	LR,	logistic	regression;	
RF,	random	forest;	SVM,	support	vector	machine

TA B L E  4   The top significant three variables in each classifier

Classifier Features Importance

LR 1.	Mean	of	GSR	in	neutral	
scenario

0.6564

2. SD	of	GSR	in	neutral	
scenario

0.5762

3. SD	of	GSR	in	METH-VR	
(bedroom)	scenario

0.4873

RF 1.	Mean	of	GSR	in	neutral	
scenario

0.0998

2. SD	of	GSR	in	neutral	
scenario

0.0931

3. SD	of	GSR	in	METH-VR	
(bedroom)	scenario

0.0901

SVM 1.	Mean	of	GSR	in	neutral	
scenario

0.3659

2. SD	of	GSR	in	neutral	
scenario

0.3547

3. Mean of alpha band in TP10 
in	METH-VR	(bedroom)	
scenario

0.2605

Abbreviations:	GSR,	galvanic	skin	response;	LR,	logistic	regression;	
METH,	methamphetamine;	RF,	random	forest;	SD,	standard	deviation;	
SVM,	support	vector	machine.
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detect	craving,	further	studies	are	needed	with	the	measurement	
of METH craving and other covariates such as treatment compli-
ance.	Furthermore,	 there	 is	 the	possibility	 that	 the	METH	group	
may come to look more like the healthy control group after a year 
of	 sobriety	 and	 treatment.	 Further	 studies	 with	 different	 sam-
ple	 (e.g.,	METH	users	who	have	not	 received	any	 treatment)	are	
needed in order to provide better understanding regarding this 
issue.

5  | CONCLUSION

The study shows the potential of machine-learning methods for 
distinguishing methamphetamine-dependent patients from healthy 
subjects	 by	 using	 EEG	 and	 GSR	 data.	 The	 linear	 regression	 algo-
rithm	shows	the	best	performance	comparing	with	SVM	and	Forest	
Random.
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