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Abstract
Background: The aim of this study was to evaluate whether machine learning (ML) 
can be used to distinguish patients with methamphetamine dependence from healthy 
controls by using their surface electroencephalography (EEG) and galvanic skin re-
sponse (GSR) in a drug-simulated virtual reality (VR) environment.
Methods: A total of 333 participants with methamphetamine (METH) dependence 
and 332 healthy control subjects were recruited between January 2018 and January 
2019. EEG (five electrodes) and GSR signals were collected under four VR environ-
ments: one neutral scenario and three METH-simulated scenarios. Three ML clas-
sification techniques were evaluated: random forest (RF), support vector machine 
(SVM), and logistic regression (LR).
Results: The MANOVA showed no interaction effects among the two subject groups 
and the 4 VR scenarios. Taking patient groups as the main effect, the METH user 
group had significantly lower GSR, lower EEG power in delta (p <  .001), and alpha 
bands (p < .001) than healthy subjects. The EEG power of beta band (p < .001) and 
gamma band (p  <  .001) was significantly higher in METH group than the control 
group. Taking the VR scenarios (Neutral versus METH-VR) as the main effects, the 
GSR, EEG power in delta, theta, and alpha bands in neutral scenario were signifi-
cantly higher than in the METH-VR scenario (p < .001). The LR algorithm showed the 
highest specificity and sensitivity in distinguishing methamphetamine-dependent pa-
tients from healthy controls.
Conclusion: The study shows the potential of using machine learning to distinguish 
methamphetamine-dependent patients from healthy subjects by using EEG and GSR 
data. The LR algorithm shows the best performance comparing with SVM and RF 
algorithm.
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1  | INTRODUC TION

Substance dependence brings serious problems to the society, in-
cluding disease, crime, accidents, domestic violence, homelessness, 
etc. One in four deaths and almost 80% of domestic violence crimes 
were caused by alcohol abuse, smoking, and illegal drug use (Horgan 
& Strickler, 2001). Among all types of drugs, methamphetamine 
(METH) is considered as one of the biggest threats. According to the 
2017 China Drug Use Report (Commission O of CNNC, 2017), an 
estimated 2.55 million Chinese people had used drugs illegally, 80 
percent of which were male (Cai, Gao, & Wang, 2017). Substance de-
pendence disorders are chronically relapsing disorders and a chronic 
health condition. Cognitive processing of drug-related cues (e.g., 
glass pipe, medical tubing) and the subsequent dysregulation of be-
havior play a critical role in the relapse. Therefore, it is important to 
identify the neural correlate pattern of drug-related cues in the pa-
tients with substance dependence. It has been proved that the brain 
of patients with substance dependence disorders presents altered 
structure and neurophysiological abnormalities (Cai et  al.,  2017; 
Coullaut-Valera et al., 2014; Prichep et al., 1999; Turnip et al., 2017). 
Electroencephalography (EEG) is one of the available tools for ex-
amining the effects of drugs on brain function. Some investigations 
indicated that drug-dependent individuals had more significant re-
sponses to drug-related stimuli than control group by examining EEG 
responses evoked by cocaine-relevant and cocaine-irrelevant stimuli 
(Van De Laar, Licht, Franken, & Hendriks, 2004); some researchers 
found that the high craving group showed a larger positive slow 
wave compared to the low craving group following the presentation 
of cocaine-related pictures (Franken, Hulstijn, Stam, Hendriks, & 
Van Den Brink, 2004). With the development of modern computa-
tional techniques, machine learning (ML) has been applied in various 
fields, which mainly serves two purposes: classifying and predicting 
and are divided into supervised and unsupervised algorithms (Sakr 
et al., 2017). Distinguishing normal and patients with methamphet-
amine dependence through EEG using ML has the advantage of wide 
availability, relatively low-cost, easy implementation, and noninva-
siveness. In the present study, we evaluated and compared the accu-
racy of distinguishing patients with methamphetamine dependence 
and healthy control subjects of three popular supervised ML algo-
rithms based on their EEG and galvanic skin response (GSR) data. 
In particular, we conducted experiments under a virtual reality (VR) 
environment as suggested by Culbertson et  al.  (2010). Three ML 
techniques were compared: support vector machine (SVM), random 
forest (RF), and logistic regression (LR).

2  | MATERIAL S AND METHODS

2.1 | Participants

Three hundred and thirty-three participants with methamphetamine 
(METH) dependence were recruited between January 2018 and 
January 2019 admitted to Jidong drug rehabilitation center located 

in Shandong, China. This rehabilitation institution is for males only, 
which accommodates over 1,000 drug users and patients inside the 
institution stay completely abstinent from drugs. The center pro-
vides medical treatment for physical problems; however, no medical 
or psychological interventions that target drug abuse are provided. 
The METH users are arranged to do some daily activities (e.g., read-
ing books, handcraft, etc.) when they were in the institution. Written 
consent forms were obtained from all the participants. The data 
analysis was approved by the local review board (IRB). Personal data 
and history of drug use were recorded by the experimenter. The in-
clusion criteria were as follows: (a) diagnosed with drug dependence; 
(b) only used METH before they were incarcerated; (c) have been 
living a sober life for more than 1 month in the compulsory rehabili-
tation center; and (d) aged ≥18 years old. Exclusion criteria included 
the following: (a) history of mania, schizophrenia, or psychosis; (b) 
language difficulties; (c) vision or hearing impairments; (d) illicit drug 
use other than METH in the past; (e) any severe medical condition 
that may significantly affect brain and cardiovascular function; 
and 6) inability to tolerate the virtual reality helmet/environment. 
Current and lifetime diagnoses were determined by two experienced 
psychiatrists according to DSM-V when the METH users were sent 
to the rehabilitation center. Besides, according to the Chinese law, 
the METH users need to be arrested by police at least twice before 
sending to the rehabilitation center. Those who were arrested the 
first time were sent to different institutions. The average length of 
METH use was 65.58 months (SD = 42.25). The average length since 
admitted to the rehabilitation center is 11.15 months (SD = 6.65).

The healthy control group included 332 male participants that 
matched the METH user group on age. All the healthy participants 
were recruited in Shandong and Beijing province through an online 
advertisement. They had no history of drug dependence or any men-
tal problems. The exclusion criteria were the same as METH user 
group.

2.2 | Virtual reality environment

The virtual reality (VR) environment included two parts: neutral-VR 
environment and METH-VR environment. The neutral-VR part was a 
3-min neutral grassland scenario, with clouds in the sky (Figure 1a). 
In this session, participants were required to be relaxed and look 
around in order to adapt to the VR environment. The METH-VR en-
vironment included animate and auditory cues under three circum-
stances: in karaoke, in bedroom, and in a car. Each scenario lasted for 
4 min (Figure 1b-d), with avatars using METH and drug parapherna-
lia (e.g., glass pipe, medical tubing, and small plastic bags containing 
METH) in side (Culbertson et al., 2010). The participants were able 
to pick the drug paraphernalia in the VR environment by their hands 
and virtually use them. Auditory cues (e.g., snorting, smoking) ap-
peared when they took the drugs in VR. The VR environment was 
presented by a VR helmet, with 2,560 × 1,440 pixels resolutions and 
92 degrees field of view. The helmet was equipped with a custom-
built head tracker using a triaxial gyroscope, an accelerometer, and a 
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compass sensor tracked at 1 MHz update rate. All participants were 
able to explore each VR scenario freely.

2.3 | Data recording

EEG data were collected via a low-cost, portable EEG headband 
(Adai-jd-001; Adai-tech Co., Ltd.) at a sampling rate of 200 Hz with 
five electrodes located at Fpz, AF7, AF8, TP9, and TP10. Electrode Fpz 
was utilized as the reference electrode. EEG data on AF7, AF8, TP9, 
and TP10 were transmitted to a local server through Bluetooth. The 
raw data were filtered and processed by Brain Vision Analyzer soft-
ware (Brain Products; GmbH) with a bandpass filter of 0.1 Hz–60 Hz. 
Using a fast Fourier transform, absolute power in 5 standard fre-
quency bands of EEG were obtained: delta (1–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–44 Hz).

Galvanic skin response (GSR) was recorded by a biofeedback 
unit (Grove-GSR monitor; Mindfield Biosystem). Two sensors were 
affixed to the index and middle fingers of the participants’ nondom-
inant hand. Data were transmitted to a local server by Bluetooth.

2.4 | Feature selection

A classification analysis was conducted using the two input data mo-
dalities as input: EEG data (the absolute power values in 5 standard 
frequency bands) and GSR data. All the input data of the whole re-
cording period were firstly mean-centered and normalized prior to 
the data analysis. In order to explore the quick and convenient ways 
in classifying MEHT users from healthy controls, only the basic and 
common-used features were selected in the present study. Mean 
and standard deviation (SD) of GSR and EEG powers in each VR sce-
nario (one neutral-VR cue and three METH-VR cues) were calculated 
and used as the input features. The mean and SD of GSR reflect the 
changes in human sympathetic nervous system and are found useful 
in earlier studies (e.g., Healey & Picard, 2005; Kurniawan, Maslov, 

& Pechenizkiy, 2013). The mean and SD of absolute EEG power re-
flect  the  amount of EEG activity and its variation in one band in-
dependent of activity in other bands. Previous studies have proved 
that these two features were useful (e.g., Junghöfer, Elbert, Tucker, 
& Rockstroh,  2000; Oken & Chiappa,  1988). The total number of 
the features was 168 (4 scenarios ×  (2 variables [mean and SD] of 
GSR + 2 variables [mean and SD] × 4 EEG channels × EEG powers 
in 5 frequencies)). The data were labeled as drug abused patient or 
healthy subject. To evaluate and select the features, stepwise model 
selection and backward elimination method were used. AIC/BIC 
were used to choose model. A total of 56 features were selected 
eventually.

Three machine-learning algorithms including random forest, lo-
gistic regression, and support vector machine (SVM) were used to 
build classification model. Random Forests is an ensemble model 
with a lot of decision trees. Each decision tree is trained with a 
dataset random sampled from the whole training set. The output of 
the method is the mode of the classification (Liaw & Wiener, 2002). 
Logistic regression aims at predicting a binary output value based 
on input variables. All input values are combined linearly. The co-
efficients of each input are optimized using gradient descent with 
cross-entropy cost function (Fan, Chang, Hsieh, Wang, & Lin, 2008). 
SVM is also a common method to deal with linear and nonlinear clas-
sification issues in machine learning (Hearst, Dumais, Osman, Platt, 
& Scholkopf, 1998). Each input case was assigned to one category 
or the other in the SVM algorithm. The SVM training model is a rep-
resentation of the input cases as points in space, mapped so that 
the two categories can be divided by a clear gap that is as wide as 
possible. New input cases are then predicted to belong to a category 
based on the side of the gap on which they fall.

To avoid overfitting, 80% of the total sample was included in 
the training process and the other 20% was included to test the 
accuracy, precision, sensitivity, and f1 score of each model. The f1 
score is the harmonic average of the precision and sensitivity of 
a binary classification analysis. It ranges from 0 to 1, with higher 
scores indicating better performance of the machine-learning 

F I G U R E  1  Screenshots of neutral-VR 
cue and METH-VR cue environment. (a) 
A 3-min neutral scenario; (b) METH-VR 
cue in karaoke; (c) METH-VR cue in a 
bedroom; (d) METH-VR cue in a car. 
METH, methamphetamine; VR, virtual 
reality

(a) (b)

(c) (d)
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model (Powers, 2011; Sakr et al., 2017). Furthermore, parameters 
for each algorithm were tested prior to finalize the machine-learn-
ing models. The performance validation was then generated using 
10-fold cross-validation and the accuracy, precision, sensitivity, 
and f1 score of the ten runs were averaged. Following previous 
studies (e.g., Ding et al., 2019; Friedrichs & Igel, 2005), the most 
commonly used tuning parameters were selected, including num-
ber of trees, minim samples at leaf, maximum depth of each tree, 
minimum samples at each node to split, and maximum features 
considered at each node for RF; regularization parameter C, toler-
ance to stop criteria, solver, and maximum iterations for LR; reg-
ularization parameter C, tolerance to stop criteria, and kernel for 
SVM. Feature importance analysis was done following information 
gain criterion.

2.5 | Statistical analysis

Independent t test and chi-square test were used to test whether 
there is a significant difference in age and educational background 
between METH user group and the healthy control group. A multi-
variate analysis of variance (MANOVA) was conducted to examine 
the differences in GSR and EEG power of 5 bands between METH 
user group and control group. A paired-sample t test was conducted 
to test the differences in GSR and EEG power of 5 bands between 
neutral and METH-VR scenarios.

All the machine-learning analyses including classification and 
feature importance analysis were done by Jupyter Notebook 
(Project Jupyter). It supports scientific computing using Python. 
Python packages including Scikit-learn (Pedregosa et  al.,  2011), 
NumPy, SciPy, and matplotlib were also utilized.

3  | RESULTS

The demographic and clinical characteristics of the recruited group 
are displayed in Table 1. Independent t test showed no significant dif-
ferences in age between the healthy control group (mean age ± SD: 
33.63 ± 7.92) and METH user group (mean age 33.75 ± 6.49, p = .82). 
And chi-square test showed that the two groups had no significant 
differences regarding educational background (χ2 = 0.15, p > .05).

3.1 | Comparison of the METH user group and 
healthy comparison group

Table 2 shows mean EEG power in the 5 specific bands and mean 
GSR in the neutral and across the three METH-VR scenarios. The 
MANOVA showed no interaction effects among the two subject 
groups and the four scenarios.

We took patient groups as the main effect, the GSR of METH 
user group was significantly lower than the healthy control sub-
jects (F (323) = 167.10, p < .001). Since GSR is inversely correlated 

with skin conductance, the results revealed that METH user group 
showed greater stressful state. The EEG power in delta band (F 
(323) = 105.32, p < .001) and alpha band (F (323) = 10.33, p < .001) 
was significantly lower in METH group than the control group. The 
EEG power of beta band (F (323) = 10.43, p < .001) and gamma band 
((F (323) = 30.13, p < .001) was significantly higher in METH group 
than the healthy group.

No significant differences were found in EEG power in theta 
band (p = .087).

While we test the differences between the VR scenarios (Neutral 
versus METH-VR), the GSR of neutral-VR was significantly higher 
than the METH-VR (t (633) = 4.47, p < .001). The EEG power in delta 
(t (633) = −8.60, p < .001), theta (t (633) = −7.15, p < .001), alpha (t 
(633) = −4.50, p < .001) bands of neutral-VR was significantly higher 
than the METH-VR. No significant difference in beta and gamma 
bands was found between neutral-VR and MRTH-VR.

3.2 | Results of classification

The indices of the two modalities (EEG and GSR) were combined and 
used as input to the classifiers. Table  3 shows the results of each 
classifier using testing dataset. Figure 2 showed the area under the 
receiver operating characteristic curve (AUC/ROC) for the three 
classifiers. The LR algorithm showed highest accuracy (90.68%) and 
F1 Score (90.80%). The parameters we used in each classifier are 
described here:

•	 For RF, number of trees = 100, minim samples at leaf = 1, maxi-
mum depth of each tree = 100, minimum samples at each node to 
split = 2, maximum features considered at each node = 65.

•	 For LR, regularization parameter C = 0.1, tolerance to stop crite-
ria = 1e-5, solver = 'newton-cg', maximum iterations = 1,000.

•	 For SVM, regularization parameter C = 0.02, tolerance to stop cri-
teria = 1e-4, kernel = linear.

TA B L E  1   Demographic and clinical characteristics of the present 
sample

METH 
(n = 333) HC (n = 332) t/χ2 p

Age (mean, SD) 33.75 (6.49) 33.63 (7.92) 0.22 .82

Gender Male Male — —

Education (n, %) 0.15 1.00

Primary school 51 (15.3) 48 (14.5)

Middle school 117 (35.1） 118 (35.5）

High school 127 (38.1) 127 (38.3)

College or above 38 (11.4) 39 (11.7)

Abbreviations: administration length, the average length since being 
admitted to the isolated drug rehabilitation center (month); HC, healthy 
control participants; METH use length, the average length of METH use 
(month); METH, methamphetamine users.
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Table  4 showed the top three variables and their importance 
index in each classifier based on the outcome of the feature selec-
tion process according to the information gain. The most important 
variables for LR classifier are as follows: mean of GSR in neutral sce-
nario, SD of GSR in neutral scenario, and SD of GSR in METH-VR 
(bedroom) scenario. It seems the mean GSR in neutral scenario is 
the most important variables in all the three classifiers. GSR gives 
more information in distinguishing methamphetamine-dependent 
patients from healthy controls than EEG signals.

4  | DISCUSSION

Drug-associated cues have been shown to elicit behavioral and 
physiological responses in patients with drug dependence (Ehrman, 
Robbins, Childress, & O’Brien, 1992; Franken et al., 2004). Reactivity 
to drug cues has been investigated as a possible indication of vul-
nerability to relapse (Drummond & Glautier,  1994). In this study, 
we proposed a method to distinguish patients with methampheta-
mine dependence from normal healthy subjects by comparing their 
reactions to drug-associated cues. Culbertson et al demonstrated 
the usefulness of VR cues for eliciting subjective craving in METH 

abusers and showed its advantages versus. video cues (Culbertson 
et al., 2010). Therefore, we employed METH-VR cues in this study.

The skin gives away lots of information on how we feel when we 
are exposed to emotionally loaded images, videos, events, or other 
stimulus. The galvanic skin response reflects the activity of sweat 
glands and the autonomous nervous system (ANS) as a whole. It gen-
erally reflects the skin's ability to transmit sweat enhanced electrical 
current. Fatseas et al. found a significant decrease of the galvanic 
skin response after drug-related stimuli in drug relapsers (Fatseas 
et al., 2011). Our data also showed decreased galvanic skin response 
in METH-abused group. Skin response decreases when skin conduc-
tance increases in more stressful and excited state. In a more relaxed 
state, skin response increases. The result of this study supports 
the excited state induced by METH (Ohme, Reykowska, Wiener, & 
Choromanska, 2009).

Prolonged drug use can have profound effects upon normal 
brain activity which can be recorded and measured through the use 
of quantitative EEG (qEEG) techniques. For example, previous stud-
ies have found that a majority of the conventional EEGs of the METH 
users were abnormal and METH users showed increased EEG power 
in the delta bands (Newton et al., 2003), increased theta quantitative 
EEG power on tasks that were more difficult (Newton et al., 2004), 

TA B L E  2   Mean value and standard deviation of physiological data

METH (n = 333) HC (n = 332)
Interaction effects 
F(p) Main effects F (p)

Neutral METH-VR Neutral METH-VR Group*Scenario METH versus HC
Neutral versus 
MEHT-VR

EEG

delta 0.64 (0.22) 0.60 (0.22) 0.82 (0.26) 0.79 (0.25) 0.15 (p = .701） 105.32 (p < .001) 8.60 (p < .001)

theta 0.49 (0.20) 0.41 (0.18) 0.47 (0.23) 0.45 (0.22) 0.69 (p = .090） 0.77 (p = .087) 7.15 (p < .001)

alpha 0.48 (0.15) 0.46 (0.15) 0.51 (0.21) 0.51 (0.21) 1.00 (p = .318） 10.33 (p < .001) 4.50 (p < .001)

beta 0.59 (0.31) 0.57 (0.31) 0.50 (0.33) 0.50 (0.33) 0.32 (p = .569） 10.43 (p < .001) 0.32 (p = .569）

gamma 0.43 (0.35) 0.42 (0.35) 0.27 (0.39) 0.27 (0.39) 0.06 (p = .806） 30.13 (p < .001) 0.06 (p = .806)

GSR 2.43 (1.59) 2.46 (1.63) 5.01 (3.22) 5.10 (3.27) 0.05 (p = .831） 167.10 (p < .001) 4.47 (p < .001)

Note: Data format: mean (SD); EEG data were absolute power values.
Abbreviations: GSR, galvanic skin response; HC, healthy control group; METH, METH user group; METH-VR, methamphetamine-VR environment; 
neutral, neutral environment.

Classifier

Results (%)

Accuracy Precision Sensitivity F1 score

RF 88.57 
(86.00–91.14)

88.00 (83.06–92.94) 89.40 
(87.53–91.27)

88.62 
(86.04–91.20)

LR 90.68 
(88.72–91.61)

89.22 (86.22–92.22) 92.44 
(91.17–93.71)

90.80 
(88.72–88.72)

SVM 90.38 
(88.04–92.72)

88.27 (85.04–91.50) 93.01 
(91.29–94.73)

90.56 
(88.08–93.04)

Note: The range between the brackets is the confidence interval with 95%.
Abbreviations: LR, logistic regression; RF, random forest; SVM, support vector machine.
Bold numbers are indicates the classifier with the best performance.

TA B L E  3   The results of classifiers with 
EEG and GSR data as input
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decreased cortical complexity of METH users (Yun et al., 2012), and 
higher clustering coefficient at the gamma band (Ahmadlou, Ahmadi, 
Rezazade, & Azad-Marzabadi, 2013). In our study, the patients with 
methamphetamine dependence showed higher EEG power in gamma 
band and smaller EEG power in lower frequency bands, including 
delta (p < .001) and alpha (p < .001) frequency bands. These findings 
are very interesting. Gamma oscillations (>30 Hz) in the brain are 
involved in attention, perception, and memory. They are altered in 
various pathological states, as well as by neuropharmaceuticals. The 

changes of EEG power in different bands might suggest that meth-
amphetamine abuse is associated with brain function deficits.

Machine-learning methods have been widely tried in medical 
fields to predict different outcomes. This study is designed to take 
advantage of the unique database of patients with methamphet-
amine dependence, collected in a drug rehabilitation center to in-
vestigate the relative performance of various machine-learning 
classification method for distinguishing normal subjects and patients 
with methamphetamine dependence by using EEG and GSR. To our 
knowledge, this is the first study using machine-learning method in 
patients with methamphetamine dependence. We evaluated three 
machine-learning methods, that is, SVM, RF, and LR, and there was 
not huge difference between their accuracy. In previous studies, 
Vomlet used five machine-learning techniques (i.e., LR, Decision 
Tree, Naïve Bayes classifier, Artificial Neural Network, and Bayesian 
Network classifier) to predict mortality in patients with ST elevation 
myocardial infarction and he found the LR achieved the highest area 
under curve (Vomlel, Kruzık, Tuma, Precek, & Hutyra, 2012). In the 
present study, we achieved the highest f1 score by LR with a combi-
nation of EEG and GSR data (accuracy: 90.68%, precision: 89.22%, 
sensitivity: 92.44%, f1 score 90.08%). Previous studies that used 
machine-learning models to classify patients (e.g., major depression 
patients) from healthy controls with EEG and GSR data achieved an 
average f1 score around 75%-85% (e.g., Ding et al., 2019). The high 
f1 score in the present study indicates that the model would be use-
ful clinically and has good potential in predicting METH users.

One of the common problems in machine learning is overfitting, 
which occurs when the model fits the peculiarities of the train-
ing dataset too much and does not find a general predictive rule 
(Dietterich, 1995). In order to avoid this problem, the present study 
used 80% of the total sample to train the models and used the other 
20% of the total sample to test the accuracy, precision, sensitivity, 
and f1 score of each model. Therefore, the 20% of the sample that 
were used to test the performance of the models is independent 
from the training dataset. The high f1 score indicated a good gener-
alization performance of the learned models. However, in order to 
further test the generalizability of the learned models, more studies 
with different samples are needed.

The present study is limited in several perspectives. First, only 
male drug users were included in this study; therefore, the ma-
chine-learning model should be treated with caution when applies 
to female. Since male and female drug users were accommodated 
separately in China, multicenter studies should be considered in 
the future. The second limitation refers to the fact the present 
study did not include poly drug use. It is possible that poly drug 
users may have different cognitive pattern compared to those who 
only used METH. Moreover, future studies should consider com-
paring other drug-dependent patients (e.g., cocaine) with meth-
amphetamine-dependent patients and further examine if the EEG 
pattern is methamphetamine specific. Third, the present study 
mainly focused on exploring whether machine learning approach 
can be used to distinguish METH users and healthy controls with 
EEG and GSR data. In order to use the outcomes as predictors to 

F I G U R E  2   The area under the receiver operating characteristic 
curve (AUC/ROC) for the three classifiers. LR, logistic regression; 
RF, random forest; SVM, support vector machine

TA B L E  4   The top significant three variables in each classifier

Classifier Features Importance

LR 1. Mean of GSR in neutral 
scenario

0.6564

2. SD of GSR in neutral 
scenario

0.5762

3. SD of GSR in METH-VR 
(bedroom) scenario

0.4873

RF 1. Mean of GSR in neutral 
scenario

0.0998

2. SD of GSR in neutral 
scenario

0.0931

3. SD of GSR in METH-VR 
(bedroom) scenario

0.0901

SVM 1. Mean of GSR in neutral 
scenario

0.3659

2. SD of GSR in neutral 
scenario

0.3547

3. Mean of alpha band in TP10 
in METH-VR (bedroom) 
scenario

0.2605

Abbreviations: GSR, galvanic skin response; LR, logistic regression; 
METH, methamphetamine; RF, random forest; SD, standard deviation; 
SVM, support vector machine.
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detect craving, further studies are needed with the measurement 
of METH craving and other covariates such as treatment compli-
ance. Furthermore, there is the possibility that the METH group 
may come to look more like the healthy control group after a year 
of sobriety and treatment. Further studies with different sam-
ple (e.g., METH users who have not received any treatment) are 
needed in order to provide better understanding regarding this 
issue.

5  | CONCLUSION

The study shows the potential of machine-learning methods for 
distinguishing methamphetamine-dependent patients from healthy 
subjects by using EEG and GSR data. The linear regression algo-
rithm shows the best performance comparing with SVM and Forest 
Random.
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