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Abstract: Copy number variations (CNVs) are the predominant class of structural genomic variations
involved in the processes of evolutionary adaptation, genomic disorders, and disease progression.
Compared with single-nucleotide variants, there have been challenges associated with the detection
of CNVs owing to their diverse sizes. However, the field has seen significant progress in the past
20–30 years. This has been made possible due to the rapid development of molecular diagnostic
methods which ensure a more detailed view of the genome structure, further complemented by
recent advances in computational methods. Here, we review the major approaches that have been
used to routinely detect CNVs, ranging from cytogenetics to the latest sequencing technologies, and
then cover their specific features.

Keywords: copy number variation; karyotyping; chromosome microarray analysis; long-read and
short-read sequencing

1. Introduction

Ever since Joe Hin Tjio and Albert Levan first identified the exact number of chro-
mosomes in human cells in 1956, there have been massive advances in the understanding
of the human genome and its structure [1]. In earlier times, due to the low resolution
of methods for genetic material analysis, any form of chromosomal rearrangement was
associated with disease or an abnormal condition. With advancements in the field after the
completion of the human genome project, the use of comparative genomic hybridization
(CGH) arrays has led to the discovery of an abundance of copy number variations (CNV), a
structural variation of the DNA sequence which has a >50 bp multiplication and deletions
of a particular segment of DNA, in the human genome [2,3]. It was shown that CNVs are
widespread in human populations and comprise about 5–10% of the genome [4]. There
is growing evidence showing the role of CNVs in causing various disorders. The list of
diseases for which association with copy number variations has been established includes
schizophrenia, type I diabetes, autism, cardiovascular diseases, congenital abnormalities,
and neurodegenerative diseases [5]. However, due to the wide range of possible lengths
and non-trivial estimation of the effect of CNVs on phenotype, there are difficulties in
accurately screening and detecting CNVs. Due to limited resolution, modern technologies
do not allow for complete CNV profile descriptions. However, each new approach to
CNV detection has introduced new, valuable improvements. For example, chromosomal
microarray analysis has allowed for large-scale genome studies with high resolution; whole-
genome sequencing has provided the tool for the identification of all types of structural
variations starting from 50 bp; and emerging sequencing technologies have opened up
possibilities for the investigation of regions that were poorly accessible due to short reads.
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An enormous amount of copy number analysis methods using various types of data have
been elaborated, and most of them have been described in detail in early reviews dedicated
to a particular single technology or several CNV detection technologies [6–9]. Recently,
the ELIXIR human CNV Community was initiated and focuses primarily on detection,
annotation, and variant interpretation issues, which will ultimately help in developing an
optimal protocol for CNV identification [10].

Hence, the aim of this review is to highlight the major contributions made in the field
to detect CNVs to date and describe their main principles and challenges. We will also
describe the most widely used computational approaches and discuss burning issues in
this research field.

2. Methods of Cytogenetics

The first approaches to CNV detection were based on the analysis of metaphase
plates in cells. During metaphase in cell division, condensed chromosomes align along
the cell equator, facilitating convenient viewing of chromosome structure through light
microscopy. Until the early 1970s, the only method for chromosome staining was Giemsa
staining. In such an approach, all chromosomes are stained evenly length-wise, allowing
for changes in karyotype concerning chromosome number, shape, and size to be visualized.
Giemsa staining was used to detect many chromosome aneuploidies, such as Down’s
syndrome [11], Klinefelter’s syndrome [12], and Edwards syndrome [13], as well as the
structural abnormalities of chromosomes in cancer cells [14].

After the advent of Giemsa staining, new methods of differential staining that allowed
for visualization of certain chromosomal structures, e.g., C-banding for centromere or T-
banding for telomere regions staining, as well as producing chromosome-specific sequences
of dark and light bands along the length (R, Q, and G-banding) were developed. The most
common was the G-banding technique, a method that implies preliminary treatment of
chromosomes with trypsin for DNA denaturing and further staining of renatured chromo-
somes with Giemsa dye [15]. Pairs of homologous chromosomes are arranged according to
their number (sex chromosomes on the end) with their short shoulders upwards, ensuring
the centromeres are horizontally aligned [16] (Figure 1a). The technique has the potential
to elucidate rather large abnormalities exceeding 5 Mb in length and is used today in cases
of suspected or existing congenital pathologies, as well as family planning.
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More detailed analyses of the genome became possible upon the development of DNA
hybridization techniques. At first, tritium-labeled RNA probes were used to search for
a specific DNA sequence and the hybrids were detected by autoradiography [17]. Later,
the protocol was modified with fluorescent labels replacing the radioactive ones, thus
improving safety and decreasing labor consumption [18,19]. Due to its targeted nature,
fluorescence in situ hybridization (FISH) (Figure 1b) remains one of the most commonly
used techniques to verify variations previously identified by real-time qPCR and multiplex
ligation-dependent probe amplification (MLPA). However, its principle has been refined
for use in other techniques, such as spectral karyotyping and multicolor FISH, offering
new approaches to the visualization and analysis of chromosomes with the use of various
combinations of fluorochromes and light filters [20,21].

For whole-genome analysis, comparative genome hybridization was developed in
1992 [22]. In contrast to FISH, where metaphase chromosomes obtained from a patient
and DNA probes are complementary to the sequence of interest, the method proposed
by Kallioniemi and colleagues isolated and hybridized differentially labeled genomic
DNA from the tumor and normal tissue of a patient and utilized chromosome samples
from peripheral blood lymphocytes of a healthy volunteer as a reference (Figure 1c).
Further refinement of the protocol and development of specialized software for image
analysis made the technique more accessible to many laboratories [23]. It has been widely
used for the cytogenetic analysis of solid tumors [24]. However, utilization of metaphase
chromosomes considerably limits the method resolution (the average size of detected CNVs
is 5–10 Mb). Therefore, further research has been aimed at alternative representations of
the cytogenetic map.

3. Chromosome Microarray Analysis (CMA)

The application of microarrays instead of metaphase chromosomes has provided a
solution for large-scale genome studies. Hybridization occurs on multiple DNA probes
attached to a solid surface, and physical position on a chip and specific nucleotide sequences
of the probes are pre-determined, which allows visualization of relative fluorescence
intensities of test and control samples along the genome. For example, in 1997, the matrix-
based comparative genomic hybridization method was introduced [25], and soon after,
array-based comparative genomic hybridization (aCGH) was introduced [26] (Figure 2a).
Resolution of the method depends directly on the probe type, number, and distribution
over the genome. At that time, a large set of bacterial artificial chromosome (BAC) clones
80–200 kb long spanning the genome in a fairly complete manner was created in the
course of the human genome project [27]. This genomic library has been used for the
construction of most CGH arrays capable of identifying variations exceeding 1 Mb [28,29].
In general, any nucleotide sequence can be used as a probe. Later, cDNA- [30,31] and PCR
amplicon-based [32] arrays have been successfully used for DNA copy number analysis.

Further improvement of the method occurred upon the deciphering of the whole-
genome sequence. This development led to the application of oligonucleotide probes
(8–25 bp) that had been previously used for gene expression studies [33,34]. Oligonu-
cleotide probes simplify the process of chip development in regard to both design cus-
tomization and reproducibility. In addition, these microarrays provide better signal-to-noise
ratio and event (CNV) confirmation with several probes due to a more complete genome
coverage [35]. Array capacity has also improved, as the mechanical application of DNA
onto a chip limited by approximately 50,000 probes has been replaced with oligonucleotide
synthesis directly on the glass surface. Commercial technology proposed by Agilent—one
of the leading comparative chromosomal analysis technologies today—synthesizes 60-
nucleotide probes by an ink-jet technology [36]. Several chip formats have been developed
(1 × 1 M, 2 × 400 K, 4 × 180 K, and 8 × 60 K) for whole-genome studies or for the targeted
analysis of regions that have been strongly associated with various diseases (Table 1). A
higher density of probes is typically used for regions of interest with the distance between
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adjacent probes as little as several hundreds of nucleotides, and coverage of the rest of the
genome provided by evenly spread backbone probes.
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Figure 2. Chromosome microarray analysis: (a) array-based comparative genomic hybridization, and
(b) DNA arrays for genotyping. Created with BioRender.com (accessed on 9 February 2022).

Another type of microarray used to search for regions of chromosome imbalance
has been developed for genotyping and genome-wide association studies. Here, only
fluorescently labeled DNA of the sample is applied to the chip, and copy number analy-
sis is performed based on the rate of target DNA hybridization to allele-specific probes
(Figure 2b). Such a technique was first demonstrated in 2004 using the Affymetrix chips [37].
Soon, Illumina introduced an alternative platform, Infinium BeadChip, in which after DNA
hybridization occurs on complementary probes, SNPs are evaluated based on the bright-
ness and color of fluorescent nucleotides attached to the probe. The platform could detect
deletions and duplications of fragments shorter than 100 kb [38]. However, earlier versions
of the chips limited the scope of the search for variation to the regions covering common
polymorphisms. Later, the introduction of non-polymorphous probes allowed for more
even genome coverage [39]. Today, a wide choice of DNA arrays equipped with 300,000
to several million probes is available on the market (Table 1), including arrays with the
possibility of partial or complete customized designs. High genome coverage with short
probes provides for higher resolution and more accurate determination of the breakpoints,
which makes this type of array a convenient tool when searching for rare and short (starting
from 500 bp) variations. Another advantage of the technology is the possibility of identify-
ing mosaicism, loss of heterozygosity (LOH), and uniparent disomies. Soon, the inherent
superiority of CMA replaced G-karyotyping as a first-line test in clinical diagnostics of
multiple congenital anomalies [40].

BioRender.com


Int. J. Mol. Sci. 2022, 23, 2143 5 of 20

Table 1. Modern platforms for chromosomal microarray analysis.

Array Platform Specification * Resolution ** Description

Agilent SurePrint G3 Human CGH

1 × 1 M 2.1 kb

enhanced coverage on known genes, promoters, miRNAs, PAR, and
telomeric regions

2 × 400 K 5.3 kb

4 × 180 K 13 kb

8 × 60 K 41 kb

Agilent Human Genome CGH
2 × 105 35 kb

4 × 44 K 43 kb

Agilent SurePrint G3 Human Genome CGH + SNP
2 × 400 K 7.2 Kb

4 × 180 K 25.3 kb

Agilent SurePrint G3 Unrestricted CGH ISCA v2

4 × 180 K 25 kb

enhanced coverage on
ISCA (International Standards for Cytogenomic Arrays) regions

8 × 60 K 60 kb

4 × 44 K 75 kb

Agilent SurePrint G3 ISCA v2 CGH + SNP 4 × 180 K 25.3 kb

Agilent SurePrint G3 Human High-Resolution Discovery 1 × 1 M 2.6 kb

association studiesAgilent SurePrint G3 Human CNV 2 × 400 K 1 kb

Agilent Human CNV Association 2 × 105 K 232 b

Agilent SurePrint G3 CGH Postnatal Research
4 × 180 K 2.4 kb

regions identified by Baylor College of Medicine experts
8 × 60 K 3.7 kb

Agilent GenetiSure Postnatal Research CGH + SNP 2 × 400 K 9.8 kb disease-associated regions (The Clinical Genome/ISCA database)

Agilent GenetiSure Pre-Screen
4 × 180 K 31 kb CNV identification from embryo biopsies and single-cell samples; increased

density on chromosomes 13, 18, 20, 21, 22, and X8 × 60 K 50 kb

Agilent GenetiSure Cyto CGH
4 × 180 K 3.5 kb disease-associated regions linked to developmental delay, intellectual

disability, neuropsychiatric disorders, congenital anomalies, or dysmorphic
features

8 × 60 K 7.1 kb

Agilent GenetiSure Cyto CGH + SNP 4 × 180 K 7.3 kb
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Table 1. Cont.

Array Platform Specification * Resolution ** Description

Agilent GenetiSure Cancer Research CGH + SNP 2 × 400 K 9.8 kb
cancer regions of the genome

COSMIC (Catalogue of Somatic Mutation in Cancer)
CGC (Cancer Genetics Consortium) databases

Illumina HumanCytoSNP 12 × 300 K 6.2 kb enhanced coverage of ~250 disease regions, including subtelomeric regions,
pericentromeric regions, and sex chromosomes

Illumina Infinium CytoSNP-850 K 8 × 850 K 1.8 kb

comprehensive coverage of cytogenetically relevant genes for congenital
disorders and cancer research

ICCG (International Collaboration for Clinical Genomics)
and CCMC (Cancer Cytogenomics Microarray Consortium)

Illumina Infinium Core 24 × 300 K 5.8 kb genome-wide tag SNPs found across diverse world populations

Illumina Infinium Exome 24 × 300 K 0.21 kb
comprehensive coverage of putative functional exonic variants (including

markers representing a range of common conditions, such as type 2 diabetes,
cancer, and metabolic, and psychiatric disorders)

Illumina Infinium CoreExome 24 × 600 K 1.82 kb all of the markers from the Infinium Core-24 BeadChip and the Infinium
Exome-24 BeadChip

Illumina Infinium Global Diversity Array 8 × 2 M 0.63 kb common and low frequency variants in global populations, curated clinical
research variants

Illumina Infinium Global Screening Array 24 × 700 K 2.3 kb multiethnic genome-wide content, curated clinical research variants

Illumina Infinium Omni2.5 8 × 2.4 M 0.65 kb common and rare SNP content from the 1000 Genomes Project (MAF > 2.5%)

Illumina Infinium Omni2.5Exome 8 × 2.7 M 0.56 kb combined Infinum Omni2.5 and Infinium Exome-24 markers

Illumina Infinium Omni5 4 × 4.3 M 0.36 kb comprehensive coverage of the genome including common, intermediate,
and rare SNPs

Illumina Infinium Omni5 Exome 4 × 4.6 M 0.33 kb comprehensive genome-wide backbone combined with putative functional
exonic variants

Illumina Infinium OmniExpress 24 × 700 K 2.23 kb high coverage of common variants for
genome-wide association studies



Int. J. Mol. Sci. 2022, 23, 2143 7 of 20

Table 1. Cont.

Array Platform Specification * Resolution ** Description

Illumina Infinium OmniExpressExome 8 × 1 M 1.36 kb tag SNPs and functional exonic content

Illumina Infinium OncoArray 24 × 500 K 5.4 kb genetic variants associated with five common cancers

Illumina Infinium PsychArray 24 × 700 K 1.74 kb genetic variants associated with common psychiatric disorders

Affymetrix Genome-Wide Human SNP Array 6.0 1 × 1.8 M 0.68 kb comprehensive coverage of the genome

Affymetrix CytoScan XON Suite 24 × 6.85 M 0.5 kb enhanced coverage in 7000 clinically relevant gene, exon-level copy
number changes

Affymetrix CytoScan HD 24 × 2.7 M 1.3 kb enhanced coverage on cytogenetic relevant region
* Samples × No. probes. ** Overall median probe spacing.
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Not all chip platforms are equally fit for CNV detection. Although for any type of
microarray (CGH, SNP) there is a dependence of the number of identified variations on the
total number of probes, the design plays an equally important role [41]. Haraksingh and
colleagues demonstrated that a suboptimal number of backbone probes or lack of probes
in the intergenic regions results in a disability to identify large, potentially biologically
important variations. Further, the comparison of existing platforms shows that additional
enrichment with exome variants is not always optimal for CNV detection, as is the case with
the Illumina Infinium Omni lineage. However, despite all platform-specific features, the
choice of detection algorithm and settings wields the most influence on the results [41,42].

The aim of any algorithm is the analysis of signal intensity along the genome (logR)
and elucidating any significant deviations. For this purpose, both simple thresholds, e.g.,
change of logR by 0.2–0.3 [43–45] or by more than 3–4 standard deviations [46,47], and
more complex statistical models can be used. Data segmentation methods have found wide
applications. For example, Olshen et al. adopted the method of binary segmentation to
determine all sites dividing the genome into fragments of the same copy number [48]. In
the modified version, two points are determined at each stage, limiting a region so that
the t-statistics for the difference in mean probe intensity inside and outside the region are
the highest. If the differences are statistically significant, the region is divided, and the
procedure is repeated for each of the new three regions, if possible. An alternative method
is based on a local genetic search. In this technique, the focus is on the optimization of a
certain set of points chosen randomly by means of minimization of the negative logarithmic
function of likeness and penalty for the high rate of genome fragmentation [49]. Later
on, other methods for change-point detection have been suggested, e.g., ones that are
based on the techniques of adaptive weight smoothing [50], fused lasso [51,52], and local
search [52,53].

A large class of algorithms utilize hidden Markov models (HMM), allowing for the
description of a system with unknown variables based on the observed ones. Changes
in the number of copies (loss, gain, or maintenance of genetic material) [54] or absolute
number of copies as such [55] are considered hidden states, while their most probable
sequence is determined using the dynamic programming after preliminary optimization of
the model parameters (the initial probabilities of the states, transition probabilities, and
emission probabilities). HMMs are convenient as they work with several variables, as in the
case of DNA microarrays. In the latter case, in addition to normalized probe intensities, the
ratio of intensities between polymorphous alleles is also under investigation. Additional
parameters, such as distance between the probes [56] and the population frequencies of
SNPs [57], can be taken into account as well.

Today, multiple ways for microarray data to be processed have been proposed (Table 2).
They differ by the number and size of CNVs detected and false-discovery rate [7,42,58–60].
As a result, it is recommended to use several algorithms to improve efficiency. Regardless,
CMA remains one of the most in-demand methods for CNV detection in both research and
clinical diagnostics due to its reliability, flexibility, and relatively low cost. To search for
clinically important variants, aCGH or DNA microarrays developed specifically for cytoge-
netic studies (e.g., Affimetrix Cytoscan HD) and capable of highly reliable identification of
variations exceeding 25 kb are preferred.
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Table 2. The most widely used algorithms for CNV detection that use microarray data.

Tool Description aCGH
SNP-Array

Reference
Affymetrix Illumina

ADM-2 search for intervals in which a Z-score based on the average weighted log
ratio exceeds a user-specified threshold X technical documentation (Agilent)

Birdsuite integration of common CNP genotypes and CNVs discovered using HMM X [61]

ChAS HMM on the log2 ratios processed through a Bayes wavelet
shrinkage estimator X

technical documentation
(Affymetrix)

cnvPartition recursive partitioning approach based on preliminary copy
number estimates X technical documentation (Illumina)

DNAcopy circular binary segmentation X [48]

GenoCN estimation of HMM, parameters from data, germline, and somatic modes X X [62]

iPattern normalization of the total intensities across individuals, Gaussian mixture
model fitting X X [42]

Nexus the probe’s log-ratio rank segmentation X X X [63]

PennCN HMM, also counted for the population frequency of the B allele X X [57]

QuantiSNP objective Bayes-HMM, fixed rate of heterozygosity for each SNP X X [64]
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4. Sequencing Data

Methods of CNV detection gained momentum with the rise of high-throughput
sequencing (new generation sequencing, or NGS) technology. Based on the analysis of
millions of short readings, this was quickly deemed a revolutionary technique due to its
high productivity, reproducibility, and accuracy. Data generated from this technique can
also be used repeatedly in various types of studies, and this research domain has expanded
considerably concerning some genomic variations that were previously difficult to detect.
Firstly, the microarray technique had limitations in accessing balanced rearrangements.
Secondly, as a consequence of multiple sequencing of random fragments, variation size is
not strictly limited as is the case in CMA, where variation less than the distance between
two probes cannot be resolved.

Detection algorithms are readily being developed in several directions since NGS data
can be described by various signatures (Figure 3). One of the first approaches was based on
the read pair concept (RP). It implies the presence of aberrations under the condition that
distances between the mapped reads on a reference genome reads and/or their orientation
is different from the expected ones [65,66]. To search for clusters of such abnormal RPs, two
strategies were proposed: in the first case, the distance between the paired reads (insert size)
is considered known and constant [67,68], and at least two discordant pairs are required to
form a cluster; in the second case, the distribution of insert size for each region over the
whole genome is taken into account [69,70]. In the latest studies, concordant read pairs are
also taken into account, implying that smaller variations can thus be traced [71].
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The split-read (SR) approach also originated from the incoherence property; however,
in this case, read is not mapped onto the genome at all or is only partially mapped. The
following repeated alignment of the read parts can indicate possible coordinates of the
start and end of the variation [72]. The SR approach is suitable for both single and paired
reads, but the latter ones impose additional limitations, which accelerate the search. For
example, in the Pindel algorithm [73], alignment of the 3′ end of unmapped paired-ends is
performed within the double insert size from the 3′ end of mapped paired-ends. The SR
approach exists as a rare method to identify deletions 50–100 bp long. Due to its sensitivity
to the quality of alignment, it is intended for studies of unique regions of the genome.

BioRender.com
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In contrast to previous methods indicating only the presence of a variation, the next
approach was intended to evaluate the number of copies. The read-depth (RD) approach
is based on the assumption that region coverage correlates with the number of its copies.
Not limited by either read length or insert size, the approach is suitable for the identifi-
cation of preferably large variations. The standard detection procedure consists of four
stages: mapping of reads and calculation of coverage; normalization; segmentation; and
evaluation of the copy number. In the first stage, a genome, or a sliding window, is usually
used. The window size can be both chosen voluntarily (for example, 100 nucleotides
was considered sufficient for the identification of small variations and accurate search
for the breakpoints [74]) or selected based on the data and the desired confidence level
of the CNV event [75,76]. Presumably, the number of reads per window is distributed
normally; however, in reality, the coverage is shifted in the function of the GC content of
the regions [77] and depends on mappability [50]. To take these factors into account, mean
normalization methods [78–80], as well as various regression models [81–84], have been
proposed. Segmentation and evaluation of copy numbers are performed by most CMA
methods, including HMM, mixed Gaussian models, LASSO regression, and CBS.

The RD approach is applicable to the data of whole-exome or targeted sequencing [85].
Although identification of most variations does not seem possible, this type of analysis
is convenient in the primary search for patterns specific to a disorder. In addition to the
higher coverage of target regions, one should take into account that during genomic library
preparation, the efficiency of the enrichment of target regions varies and some regions are
over or under-represented. To describe exome data, various models have been proposed,
including Gaussian [86], Poissonian [87], beta-binomial [88], and negative binomial [89]
distributions (Table 3). In addition, the discrete structure of the data, with rare exceptions,
does not allow an analysis of the exact breakpoints of the CNV; however, the analysis
can be expanded by using the information on non-target regions that make up 30–40% of
sequencing data and providing low genome coverage [78,90]. Another important issue
considered in the framing of the problem is the choice of reference samples which are used
at the stage of normalization with questions, such as how many reference samples are
necessary for efficient detection and are all of them equally useful at being vitally important.
The most frequently used strategies include having all available samples sequenced on the
same platform with the same chemistry, having all samples in a single sequencing run, or
using a set of the most coverage-correlated samples [91].

Recently, the team behind the GATK (Genome Analysis Toolkit), which is known as the
most popular tool for analyzing short genomic variations, has also proposed a pipeline to
call rare and common germline copy number variants. It uses negative-binomial factor anal-
ysis and HMM, and requires at least one-hundred samples to build a model (https://github.
com/broadinstitute/gatk/blob/master/docs/CNV/germline-cnv-caller-model.pdf, ac-
cessed on 9 February 2022). A somatic mode is also available.

https://github.com/broadinstitute/gatk/blob/master/docs/CNV/germline-cnv-caller-model.pdf
https://github.com/broadinstitute/gatk/blob/master/docs/CNV/germline-cnv-caller-model.pdf
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Table 3. The most widely used algorithms for whole-exome and targeted data sequencing.

Tool Description
Data Mode

Reference
WES Targeted Germline Somatic

cn.MOPS mixture Poisson model and Bayes approach X X X X [92]

CNVkit in- and off-target regions, rolling median bias correction, CBS X X X [78]

CODEX log-linear decomposition-based normalization, Poisson likelihood-based segmentation X X X X [87]

CoNIFER singular value decomposition-based normalization, ± 1.5 SVD-ZRPKM threshold X X [93]

CoNVaDING ratio scores and Z-scores of the sample of interest compared to the selected control X X [94]

DECoN ExomeDepth modification (the distance between exons is taken into account) X X [95]

ExomeDepth beta-binomial distribution, optimized reference set, HMM X X X [88]

XHMM principal component analysis normalization, HMM X X [86]
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The last approach to detect CNVs using NGS data implies that first, DNA fragments
are assembled from overlapping reads de novo, and then the contigs are aligned onto a
reference genome (AS). The approach does not require high coverage and is potentially fit
for the identification of all types of structural variations, especially new ones. The assembly
is performed using graph models (overlapping graphs built by the overlap layout consensus
(OLC) method and de Bruijn graph [96] are most often used). Searches for variations can be
performed without a reference genome; in such a case, the graph is constructed for several
samples and is then analyzed for bifurcations and copy number [97,98].

Despite progress, each of the four described approaches alone is not able to identify
the whole range of variations; therefore, the next step was the development of combined
methods (Table 4). The most frequently used combinations were RP plus SR or RP plus RD,
which are capable of the identification of variations of different lengths and more accurate
prediction of breakpoints. Later, algorithms started to take into account the advantages of all
three signatures [99–103], which allows a decreased number of false-positive identifications.

Table 4. Combinations of approaches to the analysis of whole-genome sequencing and the most
frequently implemented algorithms.

Approach Tool Description Reference

RP BreakDancer search for regions that include more anomalous read
pairs than expected [67]

SR Pindel pattern growth approach for breakpoint
identification [73]

RD CNVnator mean-shift technique, multiple-bandwidth
partitioning, and GC correction [79]

AS Cortex bubble-calling in the colored de Bruijn graph [98]

RP + RD GenomeSTRiP
connected components algorithm for read pair

clustering, Gaussian mixture model for read depth
genotyping

[104]

RP + SR DELLY graph-based paired-end clustering, breakpoints
refinement using split-read alignment [105]

RP + AS Hydra assembly of discordant mate pairs and aligned to
the reference genome with MEGABLAST [106]

RP + SR + AS Manta
breakend graph construction, independent for each
edge variation hypothesis refinement and scoring

with diploid model
[103]

RP + SR + RD Lumpy probabilistic representation of an SV breakpoint [102]

Ensemble MetaSV
merging calls from tools (BreakDancer, CNVnator,

BreakSeq, Pindel), breakpoint refinement by
aligning the assembled CNV regions

[107]

Often, CNV detection is narrowed down to classification problems solved by methods
of machine learning. Along with various signatures, a number of additional factors, for
example, mapping quality (MAPQ) or nucleotide content, are considered [108]. In addition,
it is possible to take into account specific features of the formed validation sets, which
typically contain intermediate-sized variants. For example, a one-class model trained on a
representative set of regions with normal copy numbers searches for regions unlike those
in the set, thus covering variations of varying type and size [109]. The latest developments
include the DeepSV algorithm based on the analysis of mapped read images [110].

Integration of the data can proceed not only at the level of the signatures, but also at
the level of the variants predicted by multiple individual algorithms. Today, the so-called
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ensemble-based approach is not standardized in any way. Various methods are used
for combining and evaluating the variants, including coordinate overlapping, distance
between the breakpoints, signature prioritization, agreement of the algorithms, number
of confirmations of the event, confidence intervals of the breakpoints, FDR cutoff, and
metaheuristics [111–113]. Despite the improvement in the accuracy of predictions, all these
methods are limited by the characteristics of the input data (short read or insert size), and
they do not allow a comprehensive analysis of complex genome regions.

On the contrary, long reads (above 5 kb) produced by third-generation sequencing
machines can be used to solve the problem, despite their lack of accuracy. The Pacbio
platform performs real-time sequencing of a single molecule through the synthesis of a
new strand using a polymerase bound to the well bottom and registration of fluorescence
of each newly added nucleotide. In turn, the Oxford nanopore technology is based on the
evaluation of change in an electrical current induced by a single-stranded DNA molecule
passing through a nanopore. In either case, to detect variations, signatures inside the reads
completely covering variations and signatures indicating the presence of a variation based
on discrepancies between the reads (orientation, size, or location) are analyzed [114,115]
Moreover, calling efficiency depends more on coverage than on the read length or error
rate [116].

As an alternative to long reads, the sequencing of bound molecules can be used. For
example, using additional barcodes to indicate association to a single DNA molecule,
synthetic long reads can be efficient in the detection of large variations. The identification
of variants proceeds based on the evaluation of the density of molecule coverage by
paired reads, the excessive increase or decrease of which implies a CNV event in a certain
region [117,118]. In Strand-seq technology, DNA strands are sequenced independently, and
large deletions or duplications are identified based on the evaluation of coverage rate [119].
The size of predicted variations is often limited, which is due to the considerable decrease
of coverage resulting from the many purification steps during library preparation. Another
method, Hi-C, has been developed to study the 3D structure of chromatin, in particular,
to determine the nucleotide sequences that are separately located in the genome but still
interact with each other. The matrix of contacts between any two loci can be transformed
into the coverage profile with a certain resolution; then, signature-typical analysis methods
are applied (normalization, segmentation, and copy number evaluation) [119,120].

In addition to the sequence-based methods mentioned above, optical mapping that
aims to determine the physical location of specific sequence motifs or enzymes has great
potential for CNV calling. The method first demonstrated in 1993 on the example of con-
struction restriction maps of Saccharomyces cerevisiae chromosomes has undergone some
modifications [121]. Today’s workflow includes the isolation of high molecular weight
DNA, labeling of specific sequences across the entire genome, single-molecule DNA lin-
earization in nanochannels, and imaging using high-resolution fluorescent microscopy.
The data obtained can be used for genome assembly improvement [122], haplotype phas-
ing [123], and searches for large structural variations [124]. A CNV event is defined by
changes in the density or the distance between restriction sites compared with a reference
map obtained from the in silico digestion of the reference sequence. Errors most often
occur due to excessive or insufficient stretching of the molecule in the channel, non-specific
enzymatic cuts, and incomplete enzyme digestion [125].

5. Conclusions

Despite considerable progress, the identification of copy number variations remains a
difficult task. Each of the proposed approaches, from cytogenetics to emerging sequencing
technologies, capable of the analysis of the so-called dark genome regions has its own
limitations. In an attempt to neutralize the latter, over one-hundred methods of analysis
have been developed. Particular attention is paid to the development of algorithms aimed at
exome and targeted sequencing as optimal tools for applied methods of genome analysis in
regard to information load and cost [85], as well as integration of data of any kind, including
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the use of ensemble models [126–128]. Therefore, researchers face a huge solution space
from which they usually choose established algorithms, even though they may be less ideal
than newer approaches. Algorithms are mainly shaped to detect certain types of variations
or length ranges, which should be considered when choosing the approach [129].

Evaluations of the efficiency of existing CNV detection methods and understanding
their advantages and limitations are complicated by the lack of a comprehensive validation
set. The only available approach for the description of many genomic variations today is
the integration of the results of several platforms, as proposed by Zook et al., for simple
deletions and insertions [130]. Expansion of the set of platforms used for the analysis and
improvement of their accuracy, as well as the development of protocols for integration of
the whole bulk of information, are the key problems in this area of research. The design of a
variation profile is necessary not only to be used as a reference in the choice of appropriate
detection method, but also for basic research focuses, such as the study of the role and
function of CNVs, evaluation of their effect on pathogenesis, and many others.

Author Contributions: Conceptualization, V.G.; writing—original draft preparation, V.G.; writing
—review and editing, E.S. and G.A.; visualization, V.G.; supervision, G.A.; funding acquisition, G.A.
All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by grant 075-15-2019-1669 from the Ministry of Science and
Higher Education of the Russian Federation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The original figures were created with BioRender.com (accessed on 9 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hollox, E.J.; Zuccherato, L.W.; Tucci, S. Genome Structural Variation in Human Evolution. Trends Genet. 2022, 38, 45–58. [CrossRef]

[PubMed]
2. Iafrate, A.J.; Feuk, L.; Rivera, M.N.; Listewnik, M.L.; Donahoe, P.K.; Qi, Y.; Scherer, S.W.; Lee, C. Detection of Large-Scale Variation

in the Human Genome. Nat. Genet. 2004, 36, 949–951. [CrossRef] [PubMed]
3. Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al.

Global Variation in Copy Number in the Human Genome. Nature 2006, 444, 444–454. [CrossRef] [PubMed]
4. Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A Copy Number Variation Map of the Human Genome. Nat. Rev. Genet.

2015, 16, 172–183. [CrossRef] [PubMed]
5. Shaikh, T.H. Copy Number Variation Disorders. Curr. Genet. Med. Rep. 2017, 5, 183. [CrossRef]
6. Roca, I.; González-Castro, L.; Fernández, H.; Couce, M.L.; Fernández-Marmiesse, A. Free-Access Copy-Number Variant Detection

Tools for Targeted next-Generation Sequencing Data. Mutat. Res./Rev. Mutat. Res. 2019, 779, 114–125. [CrossRef]
7. Seiser, E.L.; Innocenti, F. Hidden Markov Model-Based CNV Detection Algorithms for Illumina Genotyping Microarrays. Cancer

Inform. 2015, 13, CIN-S16345. [CrossRef] [PubMed]
8. Carter, N.P. Methods and Strategies for Analyzing Copy Number Variation Using DNA Microarrays. Nat. Genet. 2007, 39.

[CrossRef]
9. Mahmoud, M.; Gobet, N.; Cruz-Dávalos, D.I.; Mounier, N.; Dessimoz, C.; Sedlazeck, F.J. Structural Variant Calling: The Long and

the Short of It. Genome Biol. 2019, 20, 1–14. [CrossRef]
10. Salgado, D.; Armean, I.M.; Baudis, M.; Beltran, S.; Capella-Gutierrez, S.; Carvalho-Silva, D.; Del Angel, V.D.; Dopazo, J.; Furlong,

L.I.; Gao, B.; et al. The ELIXIR Human Copy Number Variations Community: Building Bioinformatics Infrastructure for Research.
F1000Research 2020, 9, 1229. [CrossRef]

11. Roizen, N.J.; Patterson, D. Down’s Syndrome. Lancet 2003, 361, 1281–1289. [CrossRef]
12. Lanfranco, F.; Kamischke, A.; Zitzmann, M.; Nieschlag, E. Klinefelter’s Syndrome. Lancet 2004, 364, 273–283. [CrossRef]
13. Cereda, A.; Carey, J.C. The Trisomy 18 Syndrome. Orphanet J. Rare Dis. 2012, 7, 81. [CrossRef] [PubMed]
14. Nowell, P.C. The Minute Chromosome (Phl) in Chronic Granulocytic Leukemia. Blut 1962, 8, 65–66. [CrossRef]
15. Bayani, J.; Squire, J.A. Traditional Banding of Chromosomes for Cytogenetic Analysis. Curr. Protoc. Cell Biol. 2004, 22, 22.3.1–22.3.7.

[CrossRef]
16. Swansbury, J. Introduction to the Analysis of the Human G-Banded Karyotype. Methods Mol. Biol. 2003, 220, 259–269. [PubMed]
17. Gall, J.G.; Pardue, M.L. Formation and Detection of RNA-DNA Hybrid Molecules in Cytological Preparations. Proc. Natl. Acad.

Sci. USA 1969, 63, 378–383. [CrossRef]

BioRender.com
http://doi.org/10.1016/j.tig.2021.06.015
http://www.ncbi.nlm.nih.gov/pubmed/34284881
http://doi.org/10.1038/ng1416
http://www.ncbi.nlm.nih.gov/pubmed/15286789
http://doi.org/10.1038/nature05329
http://www.ncbi.nlm.nih.gov/pubmed/17122850
http://doi.org/10.1038/nrg3871
http://www.ncbi.nlm.nih.gov/pubmed/25645873
http://doi.org/10.1007/s40142-017-0129-2
http://doi.org/10.1016/j.mrrev.2019.02.005
http://doi.org/10.4137/CIN.S16345
http://www.ncbi.nlm.nih.gov/pubmed/25657572
http://doi.org/10.1038/ng2028
http://doi.org/10.1186/s13059-019-1828-7
http://doi.org/10.12688/f1000research.24887.1
http://doi.org/10.1016/S0140-6736(03)12987-X
http://doi.org/10.1016/S0140-6736(04)16678-6
http://doi.org/10.1186/1750-1172-7-81
http://www.ncbi.nlm.nih.gov/pubmed/23088440
http://doi.org/10.1007/BF01630378
http://doi.org/10.1002/0471143030.cb2203s23
http://www.ncbi.nlm.nih.gov/pubmed/12744219
http://doi.org/10.1073/pnas.63.2.378


Int. J. Mol. Sci. 2022, 23, 2143 16 of 20

18. Rudkin, G.T.; Stollar, B.D. High Resolution Detection of DNA-RNA Hybrids in Situ by Indirect Immunofluorescence. Nature 1977,
265, 472–473. [CrossRef]

19. Bauman, J.G.; Wiegant, J.; Borst, P.; van Duijn, P. A New Method for Fluorescence Microscopical Localization of Specific DNA
Sequences by in Situ Hybridization of Fluorochromelabelled RNA. Exp. Cell Res. 1980, 128. [CrossRef]

20. Schrock, E.; du Manoir, S.; Veldman, T.; Schoell, B.; Wienberg, J.; Ferguson-Smith, M.A.; Ning, Y.; Ledbetter, D.H.; Bar-Am, I.;
Soenksen, D.; et al. Multicolor Spectral Karyotyping of Human Chromosomes. Science 1996, 273, 494–497. [CrossRef] [PubMed]

21. Speicher, M.R.; Ballard, S.G.; Ward, D.C. Karyotyping Human Chromosomes by Combinatorial Multi-Fluor FISH. Nat. Genet.
1996, 12, 368–375. [CrossRef]

22. Kallioniemi, A.; Kallioniemi, O.P.; Sudar, D.; Rutovitz, D.; Gray, J.W.; Waldman, F.; Pinkel, D. Comparative Genomic Hybridization
for Molecular Cytogenetic Analysis of Solid Tumors. Science 1992, 258, 818–821. [CrossRef] [PubMed]

23. Kallioniemi, O.P.; Kallioniemi, A.; Piper, J.; Isola, J.; Waldman, F.M.; Gray, J.W.; Pinkel, D. Optimizing Comparative Genomic
Hybridization for Analysis of DNA Sequence Copy Number Changes in Solid Tumors. Genes Chromosomes Cancer 1994, 10,
231–243. [CrossRef]

24. Gebhart, E. Comparative Genomic Hybridization (CGH): Ten Years of Substantial Progress in Human Solid Tumor Molecular
Cytogenetics. Cytogenet. Genome Res. 2004, 104, 352–358. [CrossRef] [PubMed]

25. Solinas-Toldo, S.; Lampel, S.; Stilgenbauer, S.; Nickolenko, J.; Benner, A.; Döhner, H.; Cremer, T.; Lichter, P. Matrix-Based
Comparative Genomic Hybridization: Biochips to Screen for Genomic Imbalances. Genes Chromosomes Cancer 1997, 20, 399–407.
[CrossRef]

26. Pinkel, D.; Segraves, R.; Sudar, D.; Clark, S.; Poole, I.; Kowbel, D.; Collins, C.; Kuo, W.-L.; Chen, C.; Zhai, Y.; et al. High Resolution
Analysis of DNA Copy Number Variation Using Comparative Genomic Hybridization to Microarrays. Nat. Genet. 1998, 20,
207–211. [CrossRef] [PubMed]

27. Osoegawa, K.; Mammoser, A.G.; Wu, C.; Frengen, E.; Zeng, C.; Catanese, J.J.; de Jong, P.J. A Bacterial Artificial Chromosome
Library for Sequencing the Complete Human Genome. Genome Res. 2001, 11, 483. [CrossRef]

28. Cowell, J.K.; Nowak, N.J. High-Resolution Analysis of Genetic Events in Cancer Cells Using Bacterial Artificial Chromosome
Arrays and Comparative Genome Hybridization. Adv. Cancer Res. 2003, 90, 91–125. [CrossRef]

29. Malan, V.; Chevallier, S.; Soler, G.; Coubes, C.; Lacombe, D.; Pasquier, L.; Soulier, J.; Morichon-Delvallez, N.; Turleau, C.; Munnich,
A.; et al. Array-Based Comparative Genomic Hybridization Identifies a High Frequency of Copy Number Variations in Patients
with Syndromic Overgrowth. Eur. J. Hum. Genet. 2009, 18, 227–232. [CrossRef]

30. Pollack, J.R.; Perou, C.M.; Alizadeh, A.A.; Eisen, M.B.; Pergamenschikov, A.; Williams, C.F.; Jeffrey, S.S.; Botstein, D.; Brown, P.O.
Genome-Wide Analysis of DNA Copy-Number Changes Using cDNA Microarrays. Nat. Genet. 1999, 23, 41–46. [CrossRef]

31. Bashyam; Bair, R.; Kim, Y.H.; Wang, P.; Hernandez-Boussard, T.; Karikari, C.A.; Tibshirani, R.; Maitra, A.; Pollack, J.R. Array-Based
Comparative Genomic Hybridization Identifies Localized DNA Amplifications and Homozygous Deletions in Pancreatic Cancer.
Neoplasia 2005, 7, 556-IN16. [CrossRef] [PubMed]

32. Dhami, P.; Coffey, A.J.; Abbs, S.; Vermeesch, J.R.; Dumanski, J.P.; Woodward, K.J.; Andrews, R.M.; Langford, C.; Vetrie, D. Exon
Array CGH: Detection of Copy-Number Changes at the Resolution of Individual Exons in the Human Genome. Am. J. Hum.
Genet. 2005, 76, 750. [CrossRef] [PubMed]

33. Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P.O.; Davis, R.W. Parallel Human Genome Analysis: Microarray-Based
Expression Monitoring of 1000 Genes. Proc. Natl. Acad. Sci. USA 1996, 93, 10614–10619. [CrossRef] [PubMed]

34. DeRisi, J.; Penland, L.; Brown, P.O.; Bittner, M.L.; Meltzer, P.S.; Ray, M.; Chen, Y.; Su, Y.A.; Trent, J.M. Use of a cDNA Microarray
to Analyse Gene Expression Patterns in Human Cancer. Nat. Genet. 1996, 14, 457–460. [CrossRef] [PubMed]

35. Lucito, R.; Healy, J.; Alexander, J.; Reiner, A.; Esposito, D.; Chi, M.; Rodgers, L.; Brady, A.; Sebat, J.; Troge, J.; et al. Representational
Oligonucleotide Microarray Analysis: A High-Resolution Method to Detect Genome Copy Number Variation. Genome Res. 2003,
13, 2291–2305. [CrossRef] [PubMed]

36. Barrett, M.T.; Scheffer, A.; Ben-Dor, A.; Sampas, N.; Lipson, D.; Kincaid, R.; Tsang, P.; Curry, B.; Baird, K.; Meltzer, P.S.; et al.
Comparative Genomic Hybridization Using Oligonucleotide Microarrays and Total Genomic DNA. Proc. Natl. Acad. Sci. USA
2004, 101, 17765–17770. [CrossRef]

37. Bignell, G.R.; Huang, J.; Greshock, J.; Watt, S.; Butler, A.; West, S.; Grigorova, M.; Jones, K.W.; Wei, W.; Stratton, M.R.; et al.
High-Resolution Analysis of DNA Copy Number Using Oligonucleotide Microarrays. Genome Res. 2004, 14, 287–295. [CrossRef]

38. Peiffer, D.A.; Le, J.M.; Steemers, F.J.; Chang, W.; Jenniges, T.; Garcia, F.; Haden, K.; Li, J.; Shaw, C.A.; Belmont, J.; et al. High-
Resolution Genomic Profiling of Chromosomal Aberrations Using Infinium Whole-Genome Genotyping. Genome Res. 2006, 16,
1136–1148. [CrossRef]

39. Shen, F.; Huang, J.; Fitch, K.R.; Truong, V.B.; Kirby, A.; Chen, W.; Zhang, J.; Liu, G.; McCarroll, S.A.; Jones, K.W.; et al. Improved
Detection of Global Copy Number Variation Using High Density, Non-Polymorphic Oligonucleotide Probes. BMC Genet. 2008,
9, 27. [CrossRef]

40. Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.;
Epstein, C.J.; et al. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with
Developmental Disabilities or Congenital Anomalies. Am. J. Hum. Genet. 2010, 86, 749. [CrossRef] [PubMed]

41. Haraksingh, R.R.; Abyzov, A.; Urban, A.E. Comprehensive Performance Comparison of High-Resolution Array Platforms for
Genome-Wide Copy Number Variation (CNV) Analysis in Humans. BMC Genom. 2017, 18, 321. [CrossRef] [PubMed]

http://doi.org/10.1038/265472a0
http://doi.org/10.1016/0014-4827(80)90087-7
http://doi.org/10.1126/science.273.5274.494
http://www.ncbi.nlm.nih.gov/pubmed/8662537
http://doi.org/10.1038/ng0496-368
http://doi.org/10.1126/science.1359641
http://www.ncbi.nlm.nih.gov/pubmed/1359641
http://doi.org/10.1002/gcc.2870100403
http://doi.org/10.1159/000077515
http://www.ncbi.nlm.nih.gov/pubmed/15162064
http://doi.org/10.1002/(SICI)1098-2264(199712)20:4&lt;399::AID-GCC12&gt;3.0.CO;2-I
http://doi.org/10.1038/2524
http://www.ncbi.nlm.nih.gov/pubmed/9771718
http://doi.org/10.1101/gr.169601
http://doi.org/10.1016/s0065-230x(03)90003-0
http://doi.org/10.1038/ejhg.2009.162
http://doi.org/10.1038/12640
http://doi.org/10.1593/neo.04586
http://www.ncbi.nlm.nih.gov/pubmed/16036106
http://doi.org/10.1086/429588
http://www.ncbi.nlm.nih.gov/pubmed/15756638
http://doi.org/10.1073/pnas.93.20.10614
http://www.ncbi.nlm.nih.gov/pubmed/8855227
http://doi.org/10.1038/ng1296-457
http://www.ncbi.nlm.nih.gov/pubmed/8944026
http://doi.org/10.1101/gr.1349003
http://www.ncbi.nlm.nih.gov/pubmed/12975311
http://doi.org/10.1073/pnas.0407979101
http://doi.org/10.1101/gr.2012304
http://doi.org/10.1101/gr.5402306
http://doi.org/10.1186/1471-2156-9-27
http://doi.org/10.1016/j.ajhg.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20466091
http://doi.org/10.1186/s12864-017-3658-x
http://www.ncbi.nlm.nih.gov/pubmed/28438122


Int. J. Mol. Sci. 2022, 23, 2143 17 of 20

42. Pinto, D.; Darvishi, K.; Shi, X.; Rajan, D.; Rigler, D.; Fitzgerald, T.; Lionel, A.C.; Thiruvahindrapuram, B.; MacDonald, J.R.; Mills,
R.; et al. Comprehensive Assessment of Array-Based Platforms and Calling Algorithms for Detection of Copy Number Variants.
Nat. Biotechnol. 2011, 29, 512–520. [CrossRef]

43. Veltman, J.A.; Fridlyand, J.; Pejavar, S.; Olshen, A.B.; Korkola, J.E.; DeVries, S.; Carroll, P.; Kuo, W.-L.; Pinkel, D.; Albertson, D.;
et al. Array-Based Comparative Genomic Hybridization for Genome-Wide Screening of DNA Copy Number in Bladder Tumors.
Cancer Res. 2003, 63, 2872–2880. [PubMed]

44. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormali-
ties. Am. J. Hum. Genet. 2003, 73, 1261–1270. [CrossRef] [PubMed]

45. Comparative Genomic Hybridization–Array Analysis Enhances the Detection of Aneuploidies and Submicroscopic Imbalances
in Spontaneous Miscarriages. Am. J. Hum. Genet. 2004, 74, 1168–1174. [CrossRef] [PubMed]

46. Shaw-Smith, C.; Redon, R.; Rickman, L.; Rio, M.; Willatt, L.; Fiegler, H.; Firth, H.; Sanlaville, D.; Winter, R.; Colleaux, L.; et al.
Microarray Based Comparative Genomic Hybridisation (array-CGH) Detects Submicroscopic Chromosomal Deletions and
Duplications in Patients with Learning Disability/mental Retardation and Dysmorphic Features. J. Med. Genet. 2004, 41, 241–248.
[CrossRef] [PubMed]

47. Schwaenen, C.; Nessling, M.; Wessendorf, S.; Salvi, T.; Wrobel, G.; Radlwimmer, B.; Kestler, H.A.; Haslinger, C.; Stilgenbauer, S.;
Döhner, H.; et al. Automated Array-Based Genomic Profiling in Chronic Lymphocytic Leukemia: Development of a Clinical Tool
and Discovery of Recurrent Genomic Alterations. Proc. Natl. Acad. Sci. USA 2004, 101, 1039–1044. [CrossRef] [PubMed]

48. :Olshen, A.B.; Venkatraman, E.S.; Lucito, R.; Wigler, M. Circular Binary Segmentation for the Analysis of Array-Based DNA Copy
Number Data. Biostatistics 2004, 5, 557–572. [CrossRef] [PubMed]

49. Jong, K.; Marchiori, E.; van der Vaart, A.; Ylstra, B.; Weiss, M.; Meijer, G. Chromosomal Breakpoint Detection in Human Cancer. In
Proceedings of the Applications of Evolutionary Computing, Essex, UK, 14–16 April 2003; Springer: Berlin/Heidelberg, Germany,
2003; pp. 54–65.

50. Hupé, P.; Stransky, N.; Thiery, J.P.; Radvanyi, F.; Barillot, E. Analysis of Array CGH Data: From Signal Ratio to Gain and Loss of
DNA Regions. Bioinformatics 2004, 20, 3413–3422. [CrossRef] [PubMed]

51. Tibshirani, R.; Wang, P. Spatial Smoothing and Hot Spot Detection for CGH Data Using the Fused Lasso. Biostatistics 2008, 9,
18–29. [CrossRef]

52. Jeng, X.J.; Cai, T.T.; Li, H. Optimal Sparse Segment Identification with Application in Copy Number Variation Analysis. J. Am.
Stat. Assoc. 2010, 105, 1156–1166. [CrossRef] [PubMed]

53. Niu, Y.S.; Zhang, H. The screening and ranking algorithm to detect dna copy number variations. Ann. Appl. Stat. 2012, 6,
1306–1326. [CrossRef]

54. de Vries, B.B.A.; Pfundt, R.; Leisink, M.; Koolen, D.A.; Vissers, L.E.L.; Janssen, I.M.; van Reijmersdal, S.; Nillesen, W.M.; Huys,
E.H.L.P.; de Leeuw, N.; et al. Diagnostic Genome Profiling in Mental Retardation. Am. J. Hum. Genet. 2005, 77, 606. [CrossRef]

55. Zhao, X.; Li, C.; Guillermo Paez, J.; Chin, K.; Jänne, P.A.; Chen, T.-H.; Girard, L.; Minna, J.; Christiani, D.; Leo, C.; et al. An
Integrated View of Copy Number and Allelic Alterations in the Cancer Genome Using Single Nucleotide Polymorphism Arrays.
Cancer Res. 2004, 64, 3060–3071. [CrossRef]

56. Picard, F.; Robin, S.; Lavielle, M.; Vaisse, C.; Daudin, J.-J. A Statistical Approach for Array CGH Data Analysis. BMC Bioinform.
2005, 6, 27. [CrossRef]

57. Wang, K.; Li, M.; Hadley, D.; Liu, R.; Glessner, J.; Grant, S.F.A.; Hakonarson, H.; Bucan, M. PennCNV: An Integrated Hidden
Markov Model Designed for High-Resolution Copy Number Variation Detection in Whole-Genome SNP Genotyping Data.
Genome Res. 2007, 17, 1665–1674. [CrossRef] [PubMed]

58. Dellinger, A.E.; Saw, S.M.; Goh, L.K.; Seielstad, M.; Young, T.L.; Li, Y.J. Comparative Analyses of Seven Algorithms for Copy
Number Variant Identification from Single Nucleotide Polymorphism Arrays. Nucleic Acids Res. 2010, 38, e105. [CrossRef]
[PubMed]

59. Roy, S.; Motsinger, R.A. Evaluation of Calling Algorithms for Array-CGH. Front. Genet. 2013, 4, 4. [CrossRef] [PubMed]
60. Winchester, L.; Yau, C.; Ragoussis, J. Comparing CNV Detection Methods for SNP Arrays. Brief. Funct. Genom. 2009, 8, 353–366.

[CrossRef]
61. Korn, J.M.; Kuruvilla, F.G.; McCarroll, S.A.; Wysoker, A.; Nemesh, J.; Cawley, S.; Hubbell, E.; Veitch, J.; Collins, P.J.; Darvishi, K.;

et al. Integrated Genotype Calling and Association Analysis of SNPs, Common Copy Number Polymorphisms and Rare CNVs.
Nat. Genet. 2008, 40, 1253–1260. [CrossRef]

62. Sun, W.; Wright, F.A.; Tang, Z.; Nordgard, S.H.; Van Loo, P.; Yu, T.; Kristensen, V.N.; Perou, C.M. Integrated Study of Copy
Number States and Genotype Calls Using High-Density SNP Arrays. Nucleic Acids Res. 2009, 37, 5365–5377. [CrossRef] [PubMed]

63. Darvishi, K. Application of Nexus Copy Number Software for CNV Detection and Analysis. Curr. Protoc. Hum. Genet. 2010, 65,
4–14. [CrossRef]

64. Colella, S.; Yau, C.; Taylor, J.M.; Mirza, G.; Butler, H.; Clouston, P.; Bassett, A.S.; Seller, A.; Holmes, C.C.; Ragoussis, J. QuantiSNP:
An Objective Bayes Hidden-Markov Model to Detect and Accurately Map Copy Number Variation Using SNP Genotyping Data.
Nucleic Acids Res. 2007, 35, 2013–2025. [CrossRef]

65. Zhao, M.; Wang, Q.; Wang, Q.; Jia, P.; Zhao, Z. Computational Tools for Copy Number Variation (CNV) Detection Using
next-Generation Sequencing Data: Features and Perspectives. BMC Bioinform. 2013, 14, S1. [CrossRef]

http://doi.org/10.1038/nbt.1852
http://www.ncbi.nlm.nih.gov/pubmed/12782593
http://doi.org/10.1086/379977
http://www.ncbi.nlm.nih.gov/pubmed/14628292
http://doi.org/10.1086/421250
http://www.ncbi.nlm.nih.gov/pubmed/15127362
http://doi.org/10.1136/jmg.2003.017731
http://www.ncbi.nlm.nih.gov/pubmed/15060094
http://doi.org/10.1073/pnas.0304717101
http://www.ncbi.nlm.nih.gov/pubmed/14730057
http://doi.org/10.1093/biostatistics/kxh008
http://www.ncbi.nlm.nih.gov/pubmed/15475419
http://doi.org/10.1093/bioinformatics/bth418
http://www.ncbi.nlm.nih.gov/pubmed/15381628
http://doi.org/10.1093/biostatistics/kxm013
http://doi.org/10.1198/jasa.2010.tm10083
http://www.ncbi.nlm.nih.gov/pubmed/23543902
http://doi.org/10.1214/12-AOAS539
http://doi.org/10.1086/491719
http://doi.org/10.1158/0008-5472.CAN-03-3308
http://doi.org/10.1186/1471-2105-6-27
http://doi.org/10.1101/gr.6861907
http://www.ncbi.nlm.nih.gov/pubmed/17921354
http://doi.org/10.1093/nar/gkq040
http://www.ncbi.nlm.nih.gov/pubmed/20142258
http://doi.org/10.3389/fgene.2013.00217
http://www.ncbi.nlm.nih.gov/pubmed/24298279
http://doi.org/10.1093/bfgp/elp017
http://doi.org/10.1038/ng.237
http://doi.org/10.1093/nar/gkp493
http://www.ncbi.nlm.nih.gov/pubmed/19581427
http://doi.org/10.1002/0471142905.hg0414s65
http://doi.org/10.1093/nar/gkm076
http://doi.org/10.1186/1471-2105-14-S11-S1


Int. J. Mol. Sci. 2022, 23, 2143 18 of 20

66. Korbel, J.O.; Urban, A.E.; Affourtit, J.P.; Godwin, B.; Grubert, F.; Simons, J.F.; Kim, P.M.; Palejev, D.; Carriero, N.J.; Du, L.; et al.
Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome. Science 2007, 318, 420–426. [CrossRef]
[PubMed]

67. Chen, K.; Wallis, J.W.; McLellan, M.D.; Larson, D.E.; Kalicki, J.M.; Pohl, C.S.; McGrath, S.D.; Wendl, M.C.; Zhang, Q.; Locke, D.P.;
et al. BreakDancer: An Algorithm for High-Resolution Mapping of Genomic Structural Variation. Nat. Methods 2009, 6, 677–681.
[CrossRef] [PubMed]

68. Korbel, J.O.; Abyzov, A.; Mu, X.J.; Carriero, N.; Cayting, P.; Zhang, Z.; Snyder, M.; Gerstein, M.B. PEMer: A Computational
Framework with Simulation-Based Error Models for Inferring Genomic Structural Variants from Massive Paired-End Sequencing
Data. Genome Biol. 2009, 10, R23. [CrossRef] [PubMed]

69. Lee, S.; Hormozdiari, F.; Alkan, C.; Brudno, M. MoDIL: Detecting Small Indels from Clone-End Sequencing with Mixtures of
Distributions. Nat. Methods 2009, 6, 473–474. [CrossRef] [PubMed]

70. Hayes, M.; Pyon, Y.S.; Li, J. A Model-Based Clustering Method for Genomic Structural Variant Prediction and Genotyping Using
Paired-End Sequencing Data. PLoS ONE 2012, 7, e52881. [CrossRef]

71. Marschall, T.; Costa, I.G.; Canzar, S.; Bauer, M.; Klau, G.W.; Schliep, A.; Schönhuth, A. CLEVER: Clique-Enumerating Variant
Finder. Bioinformatics 2012, 28, 2875–2882. [CrossRef] [PubMed]

72. Trappe, K.; Emde, A.-K.; Ehrlich, H.-C.; Reinert, K. Gustaf: Detecting and Correctly Classifying SVs in the NGS Twilight Zone.
Bioinformatics 2014, 30, 3484–3490. [CrossRef] [PubMed]

73. Ye, K.; Schulz, M.H.; Long, Q.; Apweiler, R.; Ning, Z. Pindel: A Pattern Growth Approach to Detect Break Points of Large
Deletions and Medium Sized Insertions from Paired-End Short Reads. Bioinformatics 2009, 25, 2865–2871. [CrossRef] [PubMed]

74. Yoon, S.; Xuan, Z.; Makarov, V.; Ye, K.; Sebat, J. Sensitive and Accurate Detection of Copy Number Variants Using Read Depth of
Coverage. Genome Res. 2009, 19, 1586–1592. [CrossRef] [PubMed]

75. Xie, C.; Tammi, M.T. CNV-Seq, a New Method to Detect Copy Number Variation Using High-Throughput Sequencing. BMC
Bioinform. 2009, 10, 80. [CrossRef] [PubMed]

76. Gusnanto, A.; Taylor, C.C.; Nafisah, I.; Wood, H.M.; Rabbitts, P.; Berri, S. Estimating Optimal Window Size for Analysis of
Low-Coverage next-Generation Sequence Data. Bioinformatics 2014, 30, 1823–1829. [CrossRef]

77. Benjamini, Y.; Speed, T.P. Summarizing and Correcting the GC Content Bias in High-Throughput Sequencing. Nucleic Acids Res.
2012, 40, e72. [CrossRef]

78. Talevich, E.; Hunter Shain, A.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from
Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [CrossRef]

79. Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An Approach to Discover, Genotype, and Characterize Typical and
Atypical CNVs from Family and Population Genome Sequencing. Genome Res. 2011, 21, 974–984. [CrossRef] [PubMed]

80. Dharanipragada, P.; Vogeti, S.; Parekh, N. iCopyDAV: Integrated Platform for Copy Number variations—Detection, Annotation
and Visualization. PLoS ONE 2018, 13, e0195334. [CrossRef]

81. Wang, W.; Wang, W.; Sun, W.; Crowley, J.J.; Szatkiewicz, J.P. Allele-Specific Copy-Number Discovery from Whole-Genome and
Whole-Exome Sequencing. Nucleic Acids Res. 2015, 43, e90. [CrossRef]

82. Xi, R.; Lee, S.; Xia, Y.; Kim, T.-M.; Park, P.J. Copy Number Analysis of Whole-Genome Data Using BIC-seq2 and Its Application to
Detection of Cancer Susceptibility Variants. Nucleic Acids Res. 2016, 44, 6274–6286. [CrossRef]

83. Boeva, V.; Zinovyev, A.; Bleakley, K.; Vert, J.P.; Janoueix-Lerosey, I.; Delattre, O.; Barillot, E. Control-Free Calling of Copy Number
Alterations in Deep-Sequencing Data Using GC-Content Normalization. Bioinformatics 2011, 27, 268–269. [CrossRef]

84. Miller, C.A.; Hampton, O.; Coarfa, C.; Milosavljevic, A. ReadDepth: A Parallel R Package for Detecting Copy Number Alterations
from Short Sequencing Reads. PLoS ONE 2011, 6, e16327. [CrossRef]

85. Gordeeva, V.; Sharova, E.; Babalyan, K.; Sultanov, R.; Govorun, V.M.; Arapidi, G. Benchmarking Germline CNV Calling Tools
from Exome Sequencing Data. Sci. Rep. 2021, 11, 14416. [CrossRef]

86. Fromer, M.; Moran, J.L.; Chambert, K.; Banks, E.; Bergen, S.E.; Ruderfer, D.M.; Handsaker, R.E.; McCarroll, S.A.; O’Donovan,
M.C.; Owen, M.J.; et al. Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth.
Am. J. Hum. Genet. 2012, 91, 597–607. [CrossRef] [PubMed]

87. Jiang, Y.; Oldridge, D.A.; Diskin, S.J.; Zhang, N.R. CODEX: A Normalization and Copy Number Variation Detection Method for
Whole Exome Sequencing. Nucleic Acids Res. 2015, 43, e39. [CrossRef]

88. Plagnol, V.; Curtis, J.; Epstein, M.; Mok, K.Y.; Stebbings, E.; Grigoriadou, S.; Wood, N.W.; Hambleton, S.; Burns, S.O.; Thrasher,
A.J.; et al. A Robust Model for Read Count Data in Exome Sequencing Experiments and Implications for Copy Number Variant
Calling. Bioinformatics 2012, 28, 2747–2754. [CrossRef]
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