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The zebrafish animal model is gaining increasing popularity as a tool for studying human
disease. Over the past 15 years, many models of leukemia and other hematological
malignancies have been developed in the zebrafish. These confer some significant
advantages over similar models in other animals and systems, representing a powerful
resource for investigation of the molecular basis of human leukemia. This review
discusses the various zebrafish models of lymphoid and myeloid leukemia available,
the major discoveries that have been made possible by them, and opportunities for
future exploration.
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INTRODUCTION

Leukemia
Leukemia is a broad designation encompassing hematological malignancies that produce the
expansion of blood cells, typically starting in the bone marrow. In 2015, there were over 2.3 million
patients suffering from leukemia, resulting in over 350,000 deaths worldwide (GBD 2015 Mortality
and causes of death collaborators, 2016). In the United States, an estimated 62,130 new leukemia
cases were diagnosed and 24,500 deaths caused by leukemia in 2017, with a 5 years survival rate of
∼63% (NCI SEER Cancer Stat Facts: Leukemia). Although the majority of leukemias affect adults,
leukemia is also the most common cancer diagnosis in children.

Leukemias are categorized by two major criteria into four groups. The first criterion relates
to the cell of origin: leukemias of lymphoid origin are classified “lymphocytic or lymphoblastic”
and those of myeloid origin called “myelogenous or myeloid.” The second criterion deems rapidly
growing leukemias as “acute” and those with more indolent growth as “chronic.” The causes of
these different malignancies are varied. Some are directly linked to a chromosomal abnormality,
such as the Philadelphia chromosome in chronic myelogenous leukemia (Bartram et al., 1983)
or the increased incidence of leukemia in patients with trisomy 21 (down syndrome) (Evans and
Steward, 1972). However, the etiology of most leukemias is less straightforward. Some leukemias
involve mutations and/or translocations of multiple genes associated with growth, differentiation
and survival of blood cells. Others have a normal karyotype and no known genetic mutations,
highlighting the need for further studies in animal models to uncover these unknown drivers of
hematopoietic malignancy.

Zebrafish as a Model Organism
Danio rerio, commonly known as the zebrafish, is a small tropical fish popular in pet stores and
aquariums. Since the 1970’s when George Streisinger first began using the zebrafish as a model
organism (Walker and Streisinger, 1983), more and more labs have begun utilizing this powerful
tool for studying development and disease due to numerous advantages over other model systems
(Figure 1).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 September 2018 | Volume 6 | Article 115

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2018.00115
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2018.00115
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2018.00115&domain=pdf&date_stamp=2018-09-20
https://www.frontiersin.org/articles/10.3389/fcell.2018.00115/full
http://loop.frontiersin.org/people/556036/overview
http://loop.frontiersin.org/people/608658/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-06-00115 September 19, 2018 Time: 10:25 # 2

Baeten and de Jong Zebrafish Models of Leukemia

FIGURE 1 | Advantages of the zebrafish model for leukemia research.

Zebrafish fertilization and development occurs externally in
optically clear embryos that are easily observed and manipulated.
Development is much faster than mammals, with most major
organs forming by 2–3 days post-fertilization (dpf). Animals
reach sexual maturity by 2–3 months of age (Kimmel et al., 1995)
and a single breeding pair produces several hundred embryos
weekly. This fecundity coupled with their rapid development
makes the zebrafish an excellent model for large-scale screening.
Forward and reverse genetic screens as well as toxicity and drug
screens in zebrafish have been performed around the world over
the past three decades (Ransom et al., 1996; Weinberg et al.,
1996; Sood et al., 2006; North et al., 2007; Ridges et al., 2012),
including significant work more recently to evaluate therapeutics
in zebrafish leukemia models (Mizgirev and Revskoy, 2010;
Deveau et al., 2017). Although teleosts (like the zebrafish) and
mammals diverged from a common ancestor approximately 340
million years ago, they still share a remarkable amount of their
genomes, with a zebrafish ortholog identified for 82% of known
disease-causing genes in humans (Howe et al., 2013). Many of
these zebrafish genes have already been shown to recapitulate
human disease when affected in zebrafish, including several
connected to hematopoiesis (Brownlie et al., 1998; Wang et al.,
1998) and cancer, as we will discuss in this review.

Several systems have been developed within the zebrafish
model to create transgenic and knockout animals. Because the
zebrafish embryos are externally developed, it is possible to
microinject directly into the single-cell for the first 15–30 min
following fertilization. Although, the first transgenic zebrafish
were created through injection of naked, linearized DNA (Stuart
et al., 1988), more efficient systems of genomic incorporation
are now available. The tol2 transposon system creates randomly
inserted transgenes that heavily favor single copy insertions
(Urasaki et al., 2006) and the I-SceI meganuclease system inserts
one or more copies into double-stranded breaks in the genome
(Grabher et al., 2004; Ogino et al., 2006). In addition to the ability

to integrate transgenes, the advent of CRISPR/Cas9 technology
has made it possible to directly edit the zebrafish genome;
from creating knockouts to mimicking human mutations to
introducing specific SNPs. The use of CRISPR/Cas9 in zebrafish
was first described by Keith Joung’s lab in 2013 (Hwang et al.,
2013), and has since spread throughout the field to become a
common tool in many labs’ arsenal, just as it has throughout the
biomedical community at large (Hruscha et al., 2013; Ablain et al.,
2015).

Over the years, the zebrafish community has amassed a large
number of inbred, transgenic, knockout, or other specialized
lines that have been characterized and maintained for various
applications. Important to leukemia models are several lines
that allow for transplantation of tumors without the need for
pre-transplant immune ablation. Generated by parthenogenesis,
the clonal golden lines (CG1 and CG2) allow for syngeneic
transplantation within a genetically identical line, similar to
transplantation experiments using inbred mice (Mizgireuv and
Revskoy, 2006; Smith et al., 2010). The rag2 (E450fs) mutant
line has reduced numbers of functional T- and B-cells, and
thus is unable to mount a significant immune response
against transplanted cells (Tang et al., 2014). The c-mybI181N

hypomorphic mutant is another immunocompromised line
that has shown promise in xenograft experiments (Hess and
Boehm, 2016). These lines allow for immunologically unmatched
transplantation from other zebrafish lines as well as xenografts.

A common challenge for many model systems is the ability
to visualize and trace the fate of a cancer cell within an animal
over time. These issues are often circumvented by euthanizing,
sectioning, and staining multiple animals at different timepoints,
however, this increases the number of animals required, increases
time commitment, and may blur inter-individual variability. In
the zebrafish, fluorescently tagged proteins or cells can be clearly
imaged from embryo to adulthood in live animals by confocal
or lightsheet microscopy (Kaufmann et al., 2012) and at even
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greater resolutions in the pigment-less Casper line (White et al.,
2008). An excellent example of this utility was described by
Kaufman et al. (2016), when they used a crestin-EGFP line to
show melanoma initiation and progression from a single cell.
Also, with the macroscope developed by the Langeneau lab,
high-throughput imaging of adult fish is possible for transgenic
lines or screening for tumor engraftment in transplantation
models (Blackburn et al., 2011).

Hematopoiesis: Zebrafish and Human
Many of the transcription factors and major signaling pathways
controlling hematopoietic differentiation are mutated or
dysregulated in the transformation and progression of leukemia.
Therefore, in addition to the general advantages described
above, the zebrafish is an appealing model for studying leukemia
because of the close parallels to mammalian hematopoiesis (de
Jong and Zon, 2005). Though the locations of hematopoiesis
are not perfectly shared between species, the ontogeny of the
different hematopoietic cells from progenitors to maturity, as
well as the genes and pathways driving differentiation are well
conserved (Paik and Zon, 2010). There are two distinct waves
of hematopoiesis in all vertebrates; a transient primitive wave
supplying necessary macrophages and erythrocytes for early
embryonic development, followed by the definitive wave that
gives rise to the full complement of blood cells throughout an
animal’s lifetime. In mammalian development, the primitive
hematopoietic stem cells (HSCs) appear within the blood islands
in the embryonic yolk sac (Palis and Yoder, 2001). In zebrafish,
these limited HSCs instead arise from the intermediate cell mass
(ICM) within the ventral mesoderm, and, similarly, produce
erythrocytes and other myeloid cells (Detrich et al., 1995).
Expression of the transcription factors scl, gata2, lmo2, tif1γ,
and fli1 promotes the primitive HSC lineage (Liao et al., 1998;
Thompson et al., 1998; Ransom et al., 2004), while gata1 and spi1
(also known as pu.1) drive their differentiation into the erythroid
and myeloid lineages, respectively (Detrich et al., 1995; Lieschke
et al., 2002).

The mammalian definitive wave of hematopoiesis begins with
true multipotent HSCs emerging from the ventral wall of the
dorsal aorta in the aorta-gonad-mesenephros (AGM) region that
then migrate to the fetal liver to proliferate and differentiate,
and ultimately migrate to seed the bone marrow (Cumano and
Godin, 2007). This process is mirrored in the zebrafish with
the definitive HSCs also arising from the ventral wall of the
dorsal aorta, and migrating to the caudal hematopoietic tissue
(CHT) before seeding the kidney marrow, which is the zebrafish
adult hematopoietic tissue (Burns et al., 2002; Jin et al., 2007).
Definitive HSCs are true multipotent hematopoietic progenitors
and are marked by their expression of the transcription factors
runx1, c-myb, lmo-2, and scl (Thompson et al., 1998; Burns et al.,
2002). Similar to primitive hematopoiesis, gata1 and tif1γ drive
erythropoiesis (Detrich et al., 1995; Ransom et al., 2004) and
spi1 and c/ebp1 drive myelopoiesis (Lyons et al., 2001; Lieschke
et al., 2002). Unlike the primitive lineages, definitive HSCs
also produce lymphoid cells through expression of rag1, rag2,
ikaros, lck, and gata3 (Willett et al., 1997, 2001; Langenau et al.,
2004). There are several functional and structural differences in

the hematopoietic system of zebrafish compared to mammals,
namely the location of the marrow, the lack of lymph nodes, and
the rapid development and early reliance on the innate immune
system (Novoa and Figueras, 2012; Renshaw and Trede, 2012).
However, ultimately the blood cells of the zebrafish and human
are molecularly very similar and thus have common genetic
drivers of leukemia.

The conservation of the genes and pathways regulating
hematopoiesis between humans and zebrafish, combined with
the significant technical advantages provided by this model
animal, make the zebrafish an ideal system for investigating
hematological malignancies. In this review, we will examine the
many leukemia models that have been developed within the
zebrafish, and discuss the major findings made possible by each
model that have advanced our understanding of human leukemia.

ZEBRAFISH LEUKEMIA MODELS:
LYMPHOID ORIGIN

The first leukemia model in zebrafish was developed over 15 years
ago using the lymphocyte-specific rag2 promoter driving the
murine c-Myc oncogene to produce T-cell acute lymphoblastic
leukemia (T-ALL) (Langenau et al., 2003). The success of that
first step has spawned a variety of other models tied to different
types of leukemia. Over time, these models have been altered and
improved to fit the particular investigations of each project, and
there are now multiple similar models available, each with their
own strengths and weaknesses (Table 1). This section discusses
models of lymphoid origin, and the major discoveries made
possible by them.

T-cell Acute Lymphoblastic Leukemia
(T-ALL)
The majority of lymphoid leukemia models in zebrafish replicate
T-ALL, partially due to the success of the rag2 promoter in
driving that particular malignancy. Although rag2 is expressed
in both T- and B-cell precursors in zebrafish (Langenau et al.,
2004), only T-cell leukemias were initially identified from models
utilizing this promoter. Interestingly, the Langenau lab has
recently published a brief communication describing a subset of
B-cell derived and bi-phenotypic leukemias produced from a rag2
promoter (Garcia et al., 2018), suggesting some of the research
done on these T-ALL models may have unknown contributions
from B-ALL as well.

The oncogene c-Myc is associated with many cancers and is
one of the most frequently affected gene pathways in lymphoid
leukemia (La Starza et al., 2014). The first T-ALL model was
developed by Langenau et al. by expressing the murine c-Myc
oncogene under the zebrafish rag2 promoter, with an EGFP tag
for easy monitoring by fluorescent microscopy (Langenau et al.,
2003). Tumors were generated in microinjected mosaic F0 fish
at similar rates to EGFP expression in control animals injected
with rag2: EGFP, suggesting complete penetrance of tumor
induction upon successful integration of the c-Myc transgene.
These tumors grew rapidly, with a mean latency of 52 days
post-fertilization (dpf), extensively infiltrating the entirety of the
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TABLE 1 | Zebrafish leukemia models of lymphoid origin.

Model Gene/pathway; expression Model features Major findings

T-ALL

rag2: EGFP-mMyc
Murine c-Myc
oncogene (mMyc);
thymus

Stable transgenesis of GFP-tagged
Myc, line must be propagated by IVF

First leukemia model in zebrafish, similar
disease progression to human T-ALL
(Langenau et al., 2003)

Microinjected rag2:
EGFP-mMyc

GFP-tagged, microinjected into
single-cell embryos

Non-IR transplantation in CG1 line (Smith
et al., 2010); undergo clonal evolution, AKT
activation increases LSCs and resistance
(Blackburn et al., 2014); subset of B-ALL
and bi-phenotypic tumors (Garcia et al.,
2018)

rag2: Myc-ER; Tamoxifen-inducible mMyc;
thymus

4OHT treatment after 5 dpf, induction
at ∼35 dpf, not fluorescently labeled

Loss of Myc leads to apoptosis,
PTEN/AKT-MYC axis (Gutierrez et al.,
2011); loss of bim promotes
Myc-independent T-ALL survival (Reynolds
et al., 2014)

rag2:
loxP-dsRed2-loxP-EGFP-mMyc

Cre-inducible mMyc; thymus Cre-induces mMyc transformation and
red to green color change; 81%
efficient with hsp70:Cre and heat shock
(Feng et al., 2007)

Progression similar to rag2: EGFP-mMyc
(Langenau et al., 2005); with
rag2-EGFP-bcl-2: accelerates T-LBL and
autophagy, inhibits T-ALL progression and
intravasation (Feng et al., 2010)

rag2: EGFP-ICN1 notch1 intracellular domain;
thymus

High latency (∼11 months),
GFP-tagged

Increased expression of Notch targets
her6/9; cooperation with rag2-EGFP-bcl-2
increases onset/incidence, survival and
resistance to irradiation (Chen et al., 2007);
enhances T-ALL progression in
combination with rag2:cMyc, does not
increase LSC frequency, molecularly similar
to human disease (Blackburn et al., 2012)

Srk
Hlk
Otg

ENU mediated
mutagenesis in
Lck:EGFP lines;
thymus

Genes affected not reported; high
latency (5–10 months to incidence)

Establishes viability of mutagenesis screen,
serially transplanted tumors are increasingly
malignant (Frazer et al., 2009)

B-ALL

β-actin: EGFP-TEL-AML1

xEf1α:EGFP-TEL-AML1

Human TEL-AML1
(ETV6-RUNX1)
fusion;
global

Low incidence (3%), long latency
(8–12 months); similar to CD10+
preB-ALL

Only zebrafish model of B-ALL; Likely
requires secondary mutation; deregulation
of survival genes; rag2- driven TEL-AML
does not produce B-ALL, needs early
precursor expression (Sabaawy et al., 2006)

fish. Analysis of the expression profiles and T-cell receptor (TCR)
rearrangements confirmed that the tumor cells derived from
clonal expansion of transformed T lymphocyte precursors and
originated in the thymus. Tumor cells could be transplanted into
irradiated recipients and quickly grew new tumors that homed to
the thymus before spreading throughout the animal. Overall, the
tumors progressed, similarly, to human T-ALL, at an accelerated
pace. However, most F1 progeny developed advanced disease
well before reaching sexual maturity (mean latency 32 dpf),
necessitating sperm collection and in vitro fertilization (IVF) to
continue the stable transgenic line. Subsequent characterization
of this model showed that the tumors express tal1/scl and lmo2,
genes associated with a molecular subgroup of Myc-induced
T-ALL in humans (Langenau et al., 2005).

To circumvent the necessity of IVF, Langenau et al.
sought to create an inducible version of their model. They
achieved this by inserting a loxP-DsRed2-loxP sequence cassette
between the rag2 promoter and EGFP-mMyc oncogene, creating
the rag2:loxP-dsRed2-loxP-EGFP-mMyc line (rag2: LDL-Emyc)

(Langenau et al., 2005). This allowed for default red fluorescent
expression with a switch to EGFP-mMyc expression in the
presence of Cre recombinase. The disease in these animals
was morphologically similar to that in the rag2:EGFP-mMyc
model, but with significantly decreased incidence (6.5%) and
delayed latency (mean 151 dpf). This was presumed to be due
to incomplete recombination of the transgene, as evidenced
by the persistence of red fluorescent expression within the
tumor. To combat this, they developed a heat shock-inducible
Cre line, hsp70: Cre (Feng et al., 2007). When combined
with their Cre-inducible rag2: LDL-Emyc line and subjected
embryos to heat shock at 3 dpf, the penetrance (81%) and
latency (120 dpf) were closer to those of the original rag2:
EGFP-mMyc model. This improved model allowed them to
explore the molecular events governing the progression of the
disease from the localized T-lymphoblastic lymphoma (T-LBL)
to disseminated T-ALL. All of the Myc-induced models of
T-ALL in zebrafish begin as T-LBL with thymic hyperplasia and
localized outgrowth before advancing to T-ALL and expanding
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into the circulation and other tissues. The investigation into this
transition led them to combine the rag2:LDL-Emyc; hsp70:Cre
model with a line overexpressing the survival gene bcl2 (Feng
et al., 2010). This combination accelerated T-LBL induction by
suppressing Myc-induced apoptosis. However, it also promoted
homotypic cell adhesion through s1p1 and icam1 that prevented
intravasation into the vascular space and restricted the tumor
to the thymus. The tumor cells then proliferated until they
exhausted their nutrient supply and underwent autophagy.
Because AKT-signaling is known to promote T-cell migration
and to suppress autophagy (Sotsios and Ward, 2000; Lum et al.,
2005), they hypothesized that addition of constitutively active
AKT could force progression to T-ALL. Indeed, when their
Myc;Cre;bcl-2 embryos were injected with a myristolated-akt2
transgene, the resulting tumors rapidly advanced to T-ALL (Feng
et al., 2010).

The importance of AKT signaling in zebrafish T-ALL
progression is not surprising, given the PTEN-PI3K-AKT
pathway is frequently disrupted in human T-ALL (Palomero
et al., 2008; Gutierrez et al., 2009). Gutierrez et al. further
investigated this connection with the aid of another Myc-induced
model, the tamoxifen inducible rag2: Myc-ER line (Gutierrez
et al., 2011). This model allows for conditional expression of
the c-Myc oncogene only in the presence of 4-hydroxytamoxifen
(4-OHT). When continually treated with 4-OHT these fish
develop T-ALL, but upon cessation of treatment and loss of
c-Myc expression, the tumor cells undergo apoptosis and the
tumor rapidly regresses. However, when AKT signaling was
increased through either loss-of-function mutations in pten or
constitutively active akt2, the tumors lost their dependence
on Myc expression and were able to continue progression
after removal of 4-OHT treatment. Further investigation into
the relationship between Myc and the AKT pathway revealed
that Myc drove the expression of the proapoptotic protein
bim, while the constitutively active myr-akt2 blocked that
induction (Reynolds et al., 2014). Additionally, loss-of-function
bim mutations allowed for increased persistence of T-ALL after
cessation of 4-OHT treatment and Myc expression. Overall, these
results suggest AKT-signaling enhances Myc-induced T-ALL
progression via promotion of T-cell migration, suppression of
autophagy, and inhibition of apoptosis.

Due to difficulty maintaining stable transgenic lines expressing
c-Myc, an alternative approach was developed involving co-
injection of the rag2-EGFP and rag2-mMyc transgenes into
single-cell embryos (Langenau et al., 2008; Smith et al., 2010).
In this model, the two transgenes randomly integrated into
the genome to be co-expressed such that GFP expression was
observed only in tumors and tumor induction only with GFP+
thymocytes. The resulting tumors followed the same pathology
as the stable Myc-induced models. Smith et al. (2010) used this
method to create tumors in clonal CG1 fish, demonstrating that
they could be transplanted into syngeneic recipient CG1 fish
without irradiation. This also allowed them to determine the
frequency of leukemia stem cells (LSCs) present in these tumors
through limit dilution analysis of the transplanted tumors.
Each successful engraftment requires at least one LSC, and by
transplanting different doses of cells, they were able to determine

that 0.1–1.4% of the primary T-ALL tumor cells were LSCs.
Transplantation of T-ALLs generated using this co-injection
model was further investigated by Blackburn et al. (2014) who
demonstrated that serial transplantation of T-ALL tumors led to
spontaneous clonal evolution of monoclonal tumor subclones.
As tumors were passaged from primary to secondary to tertiary
recipients, some subclones evolved increased LSC frequency,
growth, and/or resistance to therapy. Subclones with increased
LSC frequency also displayed increased AKT phosphorylation,
and treatment with an AKT inhibitor dramatically reduced their
engraftment after transplant. Co-expression of myr-akt2 with
Myc significantly increased proliferation of tumor cells, decreased
latency after transplantation, and increased LSC frequency
sixfold, and these effects are at least partially due to AKT’s
induction of mtorc1 expression. Additionally, the subclones
that had evolved glucocorticoid resistance were resensitized to
dexamethasone treatment by AKT inhibitors. Altogether, these
results provided further evidence of the connection between Myc
and AKT in T-ALL.

Another major player in the transformation of T-cell
precursors to T-ALL is Notch1, which has activating mutations
in over 65% of T-ALL patients (Weng et al., 2004). To further
study the role of Notch1 in T-ALL, Chen et al. (2007) created
a transgenic line expressing rag2:ICN1-EGFP, a GFP-tagged
Notch1 intracellular domain which acts as a constitutively active
transcription factor to drive Notch target gene expression. This
line develops T-ALL, but at a lower incidence (40%) and
higher latency (>11 months) than the Myc-driven tumors.
However, in the presence of bcl2 overexpression, the incidence
(60–80%) and latency (40 dpf to induction; 3 months to
dissemination) were significantly enhanced and apoptosis was
decreased. Blackburn et al. further demonstrated this by
combining the rag2:ICN1-EGFP and rag2:cMyc models which
accelerated leukemia onset and incidence (Blackburn et al., 2012).
They concluded that Notch signaling expanded pre-leukemic
clones that required Myc (or acquired secondary mutations)
to transform, and that Notch signaling did not increase the
overall frequency of LSCs. They also used this model to make
cross-species microarray comparisons with mouse and human
T-ALL to identify a common T-ALL gene signature and novel
Notch gene expression profile present in humans that is regulated
independently of Myc. These two studies suggest that Notch1
activation alone is not sufficient for induction of T-ALL and
requires additional oncogene activation and/or tumor suppressor
mutations.

Taking advantage of the ability to perform large-scale forward-
genetic screens in zebrafish to identify genetic modifiers of
disease, Frazer et al. (2009) developed one such screen for
causative mutations in T-ALL using ENU-mediated mutagenesis
of an lck-EGFP line. This screen identified three mutant lines
that developed outgrowth of the GFP-tagged thymus and
subsequently T-ALL. Two of these lines, shrek (srk) and hulk (hlk),
contained dominant mutations and one dubbed Oscar-the-grouch
(otg) contained a recessive mutation. Homozygous fish from all 3
lines had incidences around 50% and time to tumor induction
between 6 and 8 months. The mutated genes in these lines have
not yet been reported, but the screen demonstrates the potential
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for identification of genes driving different leukemias. The lab
also developed a chemical screen to identify small molecules
capable of eradicating immature T-cells, using the same lck-EGFP
line (Ridges et al., 2012). They identified Lenaldekar (LDK; 1H-
indole-3-carbaldehyde 8-quinolinylhydrazone) as a compound
capable of killing both normal and T-ALL blasts in zebrafish, and
showed it was effective in mouse xenograft and human primary
leukemia cells as well.

B-Cell Acute Lymphoblastic Leukemia
(B-ALL)
The TEL-AML1 (also known as ETV6-RUNX1) fusion protein
results from t(12;21), the most common translocation in
childhood cancer, present in ∼25% of B-cell acute lymphoblastic
leukemia (B-ALL) (Romana et al., 1995). However, attempts
to produce a model of B-ALL from this fusion gene were
unsuccessful in mice (Andreasson et al., 2001). Sabaawy et al.
(2006) created multiple lines expressing human TEL-AML1
from different promoters in zebrafish and were able to produce
the only zebrafish model of B-ALL. Three different promoters
were tested: the Xenopus ef1a (Xef1a) and zebrafish beta-actin
(zba) for global expression, and zebrafish rag2 for lymphocyte
specific expression. Both of the global promoters produced
B-ALL tumors in ∼3% of fish with 8–12 months latency
and similar molecular and morphological features to pediatric
CD10+ B-ALL. The low incidence likely indicates the need
for a secondary mutation for oncogenic transformation. They
surmised that the rag2: TEL-AML1 fish did not develop tumors
because the transformation occurs prior to the expression of
Rag2 in the common lymphoid progenitor, and instead occurs
in an earlier multipotent progenitor or hematopoietic stem cell
in the global promoter lines. With the apparent T-cell bias of the
rag2 promoter in zebrafish, it also seems possible that a different
promoter of common lymphoid or B-cell progenitors may have
more success. However, the recent discovery of B-ALL in the rag2:
cMyc fish provides an opportunity for studying B-ALL in a more
accessible model, with much shorter latency and higher incidence
(Garcia et al., 2018).

ZEBRAFISH LEUKEMIA MODELS:
MYELOID ORIGIN

Following the initial success of the zebrafish ALL models,
serious efforts began to recapitulate myeloid leukemias including
myeloproliferative neoplasms (MPN) and acute myeloid
leukemia (AML) in zebrafish. This was done largely through
creating transgenic lines that expressed oncogenic fusion genes
and mutations commonly found in patients with MPN and
AML. This section discusses the features and major findings
of the myeloid leukemia models developed to date in zebrafish
(Table 2).

Acute Myeloid Leukemia (AML) and
Myeloproliferative Neoplasms (MPN)
Many hematological malignancies are driven by oncogenic fusion
genes created after chromosomal translocations and these fusions

can often be expressed in animal models or cell lines to
drive transformation and oncogenesis. Zhuravleva et al. were
the first to do so with a myeloid malignancy in zebrafish
by creating transgenic fish expressing the MYST3/NCOA2
(MOZ/TIF2) fusion product under the spi-1 (pu.1) early myeloid
promoter (Hsu et al., 2004) along with EGFP (Zhuravleva et al.,
2008). This fusion protein is the result of the inv(8)(p11q13)
chromosome abnormality found in human AML, and fuses
two histone acetyltransferases (HATs). A small number of F0
fish (1.1%) expressing the transgene developed AML after
14–26 months, characterized by expansion of myeloid blast cells
and invasion of the kidney. This low incidence and long latency
suggest that secondary mutations may be necessary to induce
transformation.

Another model using the NUP98-HOXA9 (NHA9) fusion
gene [t(7;11)(p15;p15)] was developed by Forrester et al.
(2011) with an spi-1 promoter driving conditional expression
of either EGFP or the transgene after heat shock by the
hsp70-Cre line. This oncogenic fusion product is associated
with poor prognosis in AML and chronic myeloid leukemia
(CML) (Gough et al., 2011). Following heat shock at 24
hpf, NUP98-HOXA9;Cre embryos had perturbed hematopoiesis
promoting myeloid fates, and also showed reduced apoptosis
and cell cycle arrest in response to irradiation, correlating
with increased levels of bcl2. 23% of NUP98-HOXA9;Cre
fish developed myeloid tumors with a latency of 19–23
months. These tumors closely resembled the pathology of
the polyclonal MPN found in NUP98-HOXA9-transgenic mice
(Kroon et al., 2001). Further investigation into the model
uncovered an increase in HSCs, as well as a dependency on
meis1, the prostaglandin/cyclooxygenase pathway, and genome
hypermethylation via dnmt1 for the fusion gene’s oncogenic
potential (Deveau et al., 2015). This dependency could be
exploited through treatment with DNMT or COX inhibitors,
or sub-therapeutic doses of either in combination with HDAC
inhibitors. This study both revealed mechanistic details of
the NHA9 oncogene and demonstrated the potential of
zebrafish leukemia models in identification of new treatment
combinations.

Because most leukemia oncogenes produce early detectable
effects on hematopoiesis, along with the inherent advantages
of the zebrafish model, it is possible to develop drug screens
in preleukemic embryonic models. One such model was
developed by Yeh et al. (2008) using the AML1(RUNX1)-
ETO fusion oncogene under the heat shock responsive hsp-
70 promoter. After heat shock, embryos accumulated non-
circulating immature blast cells, with disruption of definitive
hematopoiesis via loss of runx1 and cmyb expression, loss of
gata1-expressing erythroid cells, and were ultimately driven to
a myeloid-granulocytic fate. These effects were all downstream
of AML1-ETO’s suppression of scl, and could be reversed
with scl overexpression. The transcriptional signature of AML1-
ETO-expressing embryos closely paralleled that of human
AML. Using the perturbation of embryonic hematopoiesis
and the AML transcriptional signature as a readout of
AML1-ETO oncogenic activity, they were able to develop a
chemical screen for inhibitors that can rescue AML1-ETO’s
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TABLE 2 | Zebrafish leukemia models of myeloid origin.

Model Gene/pathway; expression Model features Major findings

AML and MPN

spi-1: MYST3/NCOA2-EGFP Human MYST3/NCOA2
(MOZ/TIF2) fusion; Myeloid

EGFP-tagged, low incidence (1%) and
high latency (14–26 months) in F0 fish

First AML model in zebrafish
(Zhuravleva et al., 2008)

spi-1: LGL-NUP98-HOXA9;
hsp70-Cre

Human NUP98-HOXA9 fusion;
Myeloid

Cre-conditional EGFP or transgene
expression. Incidence ∼25%, latency
19–23 months

MPN-like disease, decreased apoptosis
and cell cycle arrest in response to
irradiation through bcl2 (Forrester et al.,
2011); increased HSCs, oncogenesis
requires dnmt1 or meis1, epigenetic
therapies restore normal hematopoiesis
(Deveau et al., 2015)

hsp70: AML1-ETO Heat shock-inducible human
AML-ETO fusion; global

Embryonic loss of circulating blood
cells, disrupted definitive hematopoiesis

Transcriptional changes mirror human
AML, blocks gata1 to bias granulocytes
over erythrocytes (Yeh et al., 2008);
embryonic screen of AML-therapeutics,
COX and β-catenin are novel
hematopoietic regulators/therapeutic
targets (Yeh et al., 2009)

CMV/Spi-1: tel-jak2a Zebrafish tel-jak2a mimicking
human fusion; Global and
myeloid

Embryonic Leukocyte expansion ALL- and CML-derived fusions bias
toward lymphoid or myeloid,
respectively (Onnebo et al., 2012)

β-actin: LGL-KRASG12D;
hsp70-Cre

Cre-inducible Human
KRASG12D mutant; global

Multiple different malignancies; MPN
incidence higher in non-heat shocked
(53%), latency 66 dpf

MPNs are not transplantable past
primary, does not confer self-renewal
potential to progenitors. MPN can be
induced by heat-shock ex-vivo (Le
et al., 2007)

HSE-MYCN-EGFP Heat shock inducible Murine
n-Myc; Global expression

∼75% incidence in F2 fish, rapid onset
(60 dpf), expanded myeloid populations
in kidney/spleen

n-Myc can promote AML phenotypes,
alters hematopoietic transcription factor
expression (scl, lmo2, gata1, pu.1,
runx1, cmyb) (Shen et al., 2013)

spi1: FLT3-ITD-2A-EGFP Human FLT3-ITD mutant;
Myeloid

Myeloid hyperplasia (6 months),
AML-like (9 months)

Double mutants develop leukemia by
6 months (Lu et al., 2016)

spi1: NPM1-Mut-PA Human NPMc+-cytoplasmic
mutant; Myeloid

Normal hematopoietic complement

mRNA: NPMc+ human Cytoplasmic NPMc+
mutant; global, transient

Embryonic increase of myeloid lineage Enhanced myeloid bias in p53 mutant
line, increased apoptosis dependent on
p53 (Bolli et al., 2010)

spi-1: CREB-EGFP creb; Myeloid Incidence 79%, latency 9–14 months;
∼66% monocytic leukemia

Similar expression profile to patients,
identified 20 shared creb targets,
blocks myeloid differentiation through
c/ebpδ, biases monocytic subtype
(Tregnago et al., 2016)

fli1:GAL4-FF;
UAS-GFP-HRASG12V

Human HRASG12V mutant;
Endothelial (hemogenic)

Myelo-erythroid proliferative disorder,
expansion of CHT and myeloid
progenitors

Caused by downregulation of Notch,
can be rescued with Notch ICD
expression (Alghisi et al., 2013)

LDD731: CBLH382T c-cblH382T mutant; global Embryonic expansion of myeloid
progenitors, lethal at 14–15 dpf

Increase in progenitors does not
correspond with differentiation block,
dependent on flt3 (Peng et al., 2015)

irf8157/157 irf8 knockout; global Embryonic myeloid expansion,
decreased lymphoid, survive to
maturity.

mertk signaling activated, required for
myeloid neoplasia (Zhao et al., 2018)

MDS

tet-2m/m Enzymatically inactive tet2;
global

Normal embryonic hematopoiesis,
MDS at ∼24 months, myeloid
progenitor dysplasia and anemia

Decreased 5hmC only in kidney
marrow, redundancy of tet family in
other tissues (Gjini et al., 2015)

pu.1G242D Human pu.1G242D (spi-1)
mutant; global

Embryonic myeloid (granulocyte)
expansion, phenotypes resemble MDS
by 18 months

Anti-proliferative drug cytrabine, but not
apoptosis drug daunorubicin, reduces
granulocyte expansion (Sun et al.,
2013)

C-mybhyper Hyperactive c-myb; global Embryonic myeloid (granulocyte)
expansion, phenotypes resemble MDS
by 1 year

MDS can progress to AML and ALL, are
transplantable, and respond to c-myb
target drug flavopiridol (Liu et al., 2017)
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effects (Yeh et al., 2009). This screen identified the COX
and β-catenin pathways as vital to the function of AML1-
ETO.

TEL(ETV6)-JAK2 fusion genes have been identified in both
ALL and atypical chronic myelogenous leukemia (aCML), with
slightly different translocations driving each, t(9;12)(p24;p13)
and t(9;15;12)(p24;q15;p13), respectively (Peeters et al., 1997).
Onnebo et al. (2012) created transgenic zebrafish lines expressing
these different fusions under CMV or spi-1 promoters to better
understand how they drive oncogenesis distinctly. These lines
differ from other fusion gene transgenic lines in that the
fusion proteins were generated from the zebrafish tel and jak2a
genes combined to mimic two different human translocations
found in T-ALL and aCML. Overall, the different genes
behaved true to form, with the T-ALL fusion gene disrupting
embryonic lymphopoiesis and the aCML fusion gene disrupting
myelopoiesis similar to an MPN, driven by either CMV or
spi-1. They were also able to demonstrate subtle differences in
activity, with the T-ALL fusion gene showing greater enzymatic
activity, but reduced downstream STAT activation and decreased
sensitivity to JAK2 inhibition.

Although Zhuravleva et al. were the first to claim production
of AML in a zebrafish model, the first myeloid malignancy
was created in the Zon lab. Le et al. (2007) generated β-
actin: LGL-KRASG12D; hsp70-Cre zebrafish, with conditional
global expression of an oncogenic KRAS inducible by heat
shock. This model produced a variety of tumors following
heat shock, including rhabdomyosarcoma, myeloproliferative
neoplasm, intestinal hyperplasia, and malignant peripheral nerve
sheath tumor. Although the heat-shocked fish had juvenile
lethality, they discovered that the non-heat shocked adult
fish developed MPN, likely due to the well-known “leakiness”
of heat-shock promoters. The MPN-affected fish displayed
classic disease characteristics such as expansion of myeloid
progenitors, invasion of the marrow (kidney), and depletion
of erythroid cells. Interestingly, these MPN cells could engraft
after primary transplantation into irradiated recipients, but were
unable to engraft after secondary transplantation, suggesting
that they lack self-renewal capabilities. Another model utilizing
an oncogenic RAS mutation was developed by Alghisi et al.
(2013) inducing expression in the hemogenic endothelium
prior to hematopoietic emergence. This fli1:GAL4-FF; UAS-
GFP-HRASG12V line developed an MPN characterized by
prominent expansion of the CHT, increased number of immature
hematopoietic cells, and a block of myeloid differentiation
in the kidney marrow. The Notch pathway was significantly
downregulated and overexpression of the active NICD rescued
the MPN phenotypes. They used this model to identify candidate
genes both downregulated by Notch and upregulated by RAS that
could be involved myeloid oncogenesis.

Similar to the connection of c-Myc to T-ALL, n-Myc is
frequently upregulated in AML and is a poor prognostic
marker. Shen et al. (2013) created a heat shock responsive
zebrafish line expressing murine n-Myc, MYCN:HSE:EGFP,
that simultaneously drives expression of EGFP. Following
heat shock, n-Myc overexpression promoted immature myeloid
blast cell expansion and enhanced the repopulating activity

of myeloid cells. N-Myc enhanced primitive hematopoiesis by
upregulating scl and lmo2 expression and promoted myelopoiesis
by inhibiting gata1 expression and inducing spi1 and mpo
expression. Many major cancer pathways were upregulated,
such as cell cycle, glycolysis/gluconeogenesis, MAPK/Ras,
and p53-mediated apoptosis. In contrast, mismatch repair
and transforming growth factor β (TGFβ) signaling were
downregulated. Overall, the model faithfully recapitulates AML
phenotypes with high incidence (∼75%) and rapid onset
(∼60 dpf).

Internal tandem duplications of the receptor tyrosine kinase
FLT3 (FLT3-ITD) is a common mutation in AML and
associated with poor prognosis and increased risk of relapse
(Takahashi, 2011; Hou et al., 2013). It frequently coincides
with mutations to the nucleophosmin NPM1 that restrict
it to the cytoplasm (NPMc+). Lu et al. (2016) sought to
investigate the interaction of these two mutations in AML by
making transgenic lines expressing each under the myeloid spi1
promoter, spi1:FLT3-ITD-2A-EGFP and spi1:NPM1-Mut-PA. The
FLT3-ITD mutant fish alone developed moderate myeloid
hyperplasia at 6 months and some of these progressed to leukemia
at 9 months. NPMc+mutants had grossly normal hematopoietic
composition. However, double mutants for both FLT3-ITD and
NPMc+ progressed to leukemia by 6 months, demonstrating
their synergistic effect in driving AML. In a different model
using NPMc+ mRNA embryonic microinjections, Bolli et al.
(2010) saw an increase in spi1+ early myeloid progenitors,
with a more pronounced effect in a p53 mutant line. NPMc+
expression resulted in increased erythromyeloid progenitors
in the posterior blood island and c-myb/cd41+ cells in the
ventral wall of the aorta. They suggest these results may
be relevant to human NPMc+ AML, where a multilineage
expression pattern implies transformation of a multipotent
HSPC.

Using a large-scale ENU mutagenesis screen, Peng et al.
(2015) identified a line with a significant increase in HSPCs
in hematopoietic organs, designated LDD731:CBLH382T. They
determined the causal mutation was in the c-cbl gene, which is
found frequently mutated in human MPN and acute leukemias
and acts as a tumor suppressor by depressing growth factor
and cytokine signals. The mutation was homozygous lethal at
∼15 dpf and led to an expansion of the myeloid/erythroid
lineages in definitive hematopoiesis. Flt3 was necessary for this
expansion, consistent with that observed in both mice and
humans, suggesting flt3 signaling promotes HSPC proliferation
and is regulated by c-cbl.

cAMP response element binding protein (CREB) is
another frequently overexpressed gene in AML, however, it
is unclear whether overactivation alone is sufficient to induce
leukemia. Tregnago et al. (2016) generated a zebrafish model
overexpressing creb with the spi1 myeloid promoter, which
resulted in a disruption of myelopoiesis in 79% of adult
fish with 66% progressing to a monocytic leukemia (latency
9–14 months) mirroring the human counterpart. These fish
showed a transcriptional signature with 20 differentially
expressed genes in common with pediatric AML, including
the CCAAT-enhancer-binding protein-δ (c/ebpδ). Increased
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c/ebpδ expression impaired myeloid differentiation which
could be reversed through silencing of the creb-c/ebpδ axis.
Identification of this creb-c/ebpδ axis in zebrafish AML led
Tregnago et al to classify C/EBPδ expression as a new pediatric
AML subgroup after validation in publicly available patient
databases.

To study the role of interferon regulatory factor 8 (IRF8)
in the pathogenesis of myeloid neoplasia, Zhao et al. (2018)
created a missense mutation, irf8157 that acted as a functional
knockout. IRF8 is a critical transcription regulator for myeloid
lineage commitment and closely tied to myeloid leukemia. irf8
mutants quickly developed MPN with expansion of myeloid
precursors, which recurred after transplantation, and invasion of
kidney marrow. Myeloid expansion was caused by both increased
proliferation and decreased apoptosis. mertk expression was
increased in irf8 mutants leading to hyperactivation of the
ERK pathway. Transgenic mertk overexpression recapitulated the
myeloid neoplasia and knockdown of mertk rescued irf8 mutant
myeloid expansion. These results support mertk signaling as
critical in the irf8-mediated regulation of myeloid proliferation
and survival.

Myelodysplastic Syndrome
Myelodysplastic syndromes (MDS) are a group of diseases
characterized by aberrant hematopoietic differentiation leading
to cytopenias and increased blasts, and often splenomegaly and
cytogenetic abnormalities (Gangat et al., 2016). Approximately
30% of MDS patients will eventually progress to AML or other
leukemias, which are frequently more resistant to conventional
therapies.

Somatic loss-of-function mutations of the 10–11 translocation
2 gene TET2 are frequently observed in patients with MDS.
TET2 encodes a DNA methylcytosine oxidase that converts
5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC)
to initiate the demethylation (and activation) of DNA. Gjini
et al. (2015) created an enzymatically inert tet2 mutant zebrafish
line through genome-editing technology. These fish had normal
embryonic hematopoiesis, but developed progressive clonal
myelodysplasia as they aged, eventually progressing to MDS by
24 months, with myeloid progenitor cell dysplasia and anemia.
Decreased levels of 5 hmC were present in hematopoietic cells of
the kidney marrow but not in other cell types, likely a result of
compensation in non-hematopoietic tissues by other Tet family
members.

The c-myb transcription factor is vital to hematopoietic
proliferation and differentiation, and is closely associated with an
array of hematological disorders. Liu et al. (2017) sought to better
define its pathogenic role through characterization of a zebrafish
model expressing a GFP-tagged c-myb mutant with increased
activity, c-mybhyper. This hyperactive c-myb resulted in the
dysregulation of cell cycle genes and subsequent proliferation of
hematopoietic progenitor cells. Abnormal granulocyte expansion
began embryonically and was maintained through adulthood,
ultimately resulting in MDS. A small number of c-mybhyper fish
developed AML or ALL and treatment with c-myb target drug
flavopiridol relieved the MDS-like symptoms in both embryos
and adult fish.

In addition to its previously discussed role in early myeloid
progenitors, spi1 (pu.1) is an Ets-family transcription factor
important in leukemogenesis. It is frequently impaired in
AML either through decreased expression or loss-of-function
mutations (Mueller et al., 2002; Dakic et al., 2007). Sun
et al. (2013) used the Targeting Induced Local Lesions IN
Genomes (TILLING) approach to create a hypomorphic spi1
mutant allele, dubbed pu.1G242D. These fish have expanded
myelopoiesis by 3 dpf, with increased immature granulocytes
within the CHT. By 18 months, immature myeloid cells were
increased at the expense of the lymphoid population in both
the kidney marrow and peripheral blood, consistent with an
MDS or AML-like disorder. The antiproliferative drug cytarabine
was able to relieve the myeloid expansion, while apoptosis-
inducing daunorubicin could not. This may indicate that spi1-
associated neoplasms are more susceptible to drugs limiting their
proliferation.

FUTURE DIRECTIONS AND EMERGING
METHODS

The discoveries described in this review open numerous avenues
for further research. Many of these models require further
characterization and could uncover important pathways in
leukemia initiation and progression. Drug screens utilizing
these models can teach us much about the resistance and
response to different therapies depending on the specific genetic
drivers of the leukemia. The advent of effective CRISPR-
Cas9 protocols has allowed for a rapid advancement in the
creation of knockout and transgenic zebrafish investigating
various genetic pathways and oncogene fusion products tied
to human leukemia. This development will only continue to
expand in scope, as ongoing research within the zebrafish
field continues to uncover more genes and pathways associated
with leukemia, as well as new discoveries made in the
clinic that are converted into zebrafish models for further
characterization.

One major emerging avenue of research is the identification
and characterization of LSCs within hematopoietic malignancies.
Cancer stem cells (CSCs), defined by their ability to regrow
a tumor from a single cell, are implicated as the cause of
cancer evolution, resistance to therapy, and relapse after therapy
(Adorno-Cruz et al., 2015). Increased tumor heterogeneity and
CSCs have been associated with resistance and relapse for many
tumor types, including AML and ALL (Mullighan et al., 2008;
Anderson et al., 2011; Notta et al., 2011; Ding et al., 2012).
Identification and isolation of these cells is difficult because of
a lack of defined surface markers, but there are some promising
methods being developed. The side population assay has long
been used to isolate normal tissue stem cells by exploiting their
ability to export Hoechst dye (Goodell et al., 1996), and has
more recently been shown to enrich for CSCs in many cancers
(Hu et al., 2010; Britton et al., 2011; Richard et al., 2013). Side
populations have also been defined in zebrafish hematopoietic
cells and leukemia (Kobayashi et al., 2008; Pruitt et al., 2017),
making it possible for LSCs to be further studied in zebrafish
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leukemia models. Another similar protocol of enriching for stem
cell activity is through the Aldefluor assay, which utilizes the
increased aldehyde dehydrogenase (ALDH) activity common in
stem cells to produce increased fluorescence from the aldefluor
reagent (Storms et al., 1999; Ma et al., 2010). This assay can
also be combined with the side population assay to isolate an
even greater enrichment of stem cells (Pearce and Bonnet, 2007;
Pierre-Louis et al., 2009). Genetic and functional characterization
of the combined ALDHbright and side population in zebrafish
leukemia models could uncover significant contributors to
leukemia resistance and relapse.

Another potential method for defining LSCs within a tumor
is through single cell sequencing. Single-cell RNA sequencing
techniques are capable of discerning expression profiles of each
cell within a population, allowing small subpopulations like
LSCs to be characterized within a tumor (Zhang et al., 2016).
Multiple microfluidic systems have been developed to produce
single-cell expression data, with the Fluidigm system already used
by Moore et al. (2016) in a zebrafish T-ALL model to identify
a small population with reactivated expression of putative stem
cell genes. The DropSeq system is an alternative with much
higher throughput that could potentially identify very small
subpopulations in tumors with lower LSC frequencies (Macosko
et al., 2015). Both systems allow for characterization of the
expression profiles of LSCs in the various leukemia models,
which opens up exciting possibilities in discovering what drives

the LSC subpopulation and their unique functions within the
leukemia.
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