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Currently, there is a lack of comprehensive data on the diversity of chemicals present in
vaping liquids. To address this gap, a non-targeted analysis of 825 vaping liquids collected
between 2017 and 2019 from Canadian retailers was conducted. Prior to mass
spectrometry analysis, samples were diluted 1:500 v/v with methanol or acetonitrile.
Chemical compound separation and analysis was carried out using gas
chromatography and triple quadrupole mass spectrometry (GC-MS/MS) systems
operated in the full scan mode and mass range of 35–450m/z. Mass spectrum for
each sample was obtained in electron ionization at 70 eV and processed. Non-targeted
identification workflow included use of automated mass spectral deconvolution and
identification system (AMDIS), where required, as well as a number of commercially
available spectral libraries. In order to validate identities, an in-house database of
expected compounds previously detected in vaping liquids was used along with
genuine analytical standards for compounds of interest. This resulted in a dataset of
over 1,500 unique detected chemicals. Approximately half of these chemical compounds
were detected only once in a single product and not in multiple products analyzed. For any
sample analyzed, on average, 40% of the chemical constituents appeared to have
flavouring properties. The remainder were nicotine and related alkaloids, processing,
degradation or indirect additives, natural extractives and compounds with unknown roles.
Data published here from the project on the Open Characterization of vaping liquids is
unique as it offers a detailed understanding of products’ flavour chemical profiles, the
presence and frequency of chemicals of potential health concern, as well as trends and
changes in products’ chemical complexity over a three-year period. Non-targeted
chemical surveillance such as this present valuable tools to public health officials and
researchers in responding to emergent issues such as vaping associated lung injury or
informing chemical based strategies which may be aimed at addressing product safety or
appeal.
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1 INTRODUCTION

Nicotine containing vaping products are a less harmful source of
nicotine for people who smoke and are unable to cease the use of
traditional tobacco products such as combustible cigarettes
(Government of Canada, 2020a). Vaping products are not free
from harm, in fact, for people who do not smoke, inhalation of
vaping aerosol represents an unnecessary source of exposure to
chemicals of potential health concern. Vaping products are a highly
varied (Office of the Surgeon General, 2016) class of consumer
products that continue to rapidly evolve and exhibit dynamic
changes in product design and performance. This lack of
product homogeneity as well as high variability in product use
behaviors are thought to be one of the main reasons for not more
fully understanding the harms and benefits of vaping products. The
chemical exposure profile depends on vaping device parameters
and design, user behavior and vaping liquid chemical composition.
Elucidating the chemical composition of vaping liquids informs
not only on the product’s safety and health risks relative to
smoking, it can also provide information on aspects of product
appeal and addiction liability among the products studied.

Nearly all vaping products intended for use with nicotine
contain a liquid made up of approximately 90% carrier solvents
(humectants-propylene glycol and glycerol), 0–6% nicotine with
the remainder comprised of flavouring agents, processing aids,
contaminants and water. The chemical heterogeneity of the
vaping products originates from the variability among
flavouring and processing agents used and presence of
contaminants and post-formulation chemical transformations
due to product storage and ageing. The traditional approach
to analyzing chemicals in products is through targeted chemical
analysis, wherein known chemicals are examined using optimized
laboratory methods. Data generated using these methods offer an
important support for decisions and actions but are limited to the
known chemical space for which reference standards exist. In
comparison to traditional chemical analytical methods, non-
targeted analysis (NTA) methods aim to discover and
prioritize total chemical exposures from as many as possible
sources of chemicals present in the products. These methods use
advanced analytical equipment, chemical libraries, and software
based workflows to handle large datasets and detect as many
chemicals as possible, including those previously unknown or
understudied. The main aim of our study is to create a
foundational library of chemicals present in Canadian vaping
products using data collected from an analysis of 825 vaping
liquids. This work can be used to better understand health risks,
appeal and addiction associated with vaping products. In the
current report we outline the study design, details of the non-
targeted approach applied, large dataset organization and
preliminary data analysis.

2 MATERIALS AND METHODS

2.1 Chemicals and Reagents
99.7% pure propylene glycol and 99.2% pure glycerol were purchased
from Sigma-Aldrich (Oakville, ON, Canada). HPLC grade methanol

and acetonitrile were purchased from Fisher Scientific (Ottawa, ON,
Canada). For a full list of individual compounds used to detect select
chemicals refer to Supplementary Table S1.

2.2 Samples
A diverse sample of 825 vaping liquids were collected from vaping
stores and physical retailers in seven cities across Canada and
from online Canadian retailers, between 2017 and 2019. The
samples included liquids of various nicotine concentrations
(0–59 mg/ml) as well as varying proportions of propylene
glycol (PG) and vegetable glycerine (VG) (0/100% to 100/0%
PG/VG). Overall, samples represented 182 different brands.
While 8% of samples had no declared product origin, a
majority of products were formulated in Canada (82.5%),
followed by United States (7.3%), and elsewhere (2.2%).
Ninety-seven percent of products collected were packaged in
refillable bottle format (30 or 60 ml, glass or plastic), while the rest
were in plastic pod based format.

2.2.1 Vaping Liquid Flavour Classification
Flavour–related information from product packaging and from
product descriptions on manufacturer websites were used to
inform the primary, intended flavour of the vaping liquid and
systematically classify each sample into one of 18 flavour
categories in a modified vaping liquid flavour wheel
(Krüsemann et al., 2019), adapted for vaping liquid flavours
available in the Canadian market. The following 18 flavour
categories were used for product classification: Fruit (N �
108), Desserts (N � 76), Tobacco (N � 134), Mint/menthol
(N � 97), Coffee (N � 33), Tea (N � 35), Energy Drinks (N �
19), Confectionary (N � 49), Savoury (N � 24), Spices (N � 19),
Herbal/floral (N � 7), Nuts (N � 21), Alcohol (N � 34), Breakfast
cereals (N � 33), Soft drinks (N � 29), Milk/cream/yogurt (N �
26), Unflavoured (N � 26), and Other (N � 55).

2.3 Sample Preparation
Following thorough sample mixing, 40 µl of each vaping liquid
was diluted to 20 ml with methanol (Quantum TSQ GC MS/MS
methodology) or acetonitrile (7000C GC MS/MS methodology).
Diluted samples were vortex mixed and 1 µl was injected and
analyzed using gas chromatography mass spectrometry. Solvent
blank (methanol or acetonitrile) was injected after each sample to
ensure no carryover between samples. Matrix blank consisting of
propylene glycol and glycerol was used during the method
development process to assess possibility of PG/VG thermal
degradation during GC analysis.

2.4 GC MS/MS Analysis
Two instruments (Quantum TSQ and 7000C GC MS/MS) were
used to acquire data, as such, two different methods were
optimized. The acquisition mode for the both instruments was
full-scan acquisition mode. The Quantum TSQ MS/MS
instrument was coupled to a Trace GC Ultra gas
chromatograph (Thermo Electron Corp.). The oven ramp for
this instrument was set as followed: 65°C hold for 1 min, followed
by an increase of 5°C/min to 280°C and held for 3 min thereafter.
The source temperature and interface were held at 200°C and
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250°C, respectively. The MS was operated in Electron Ionization,
full-scan mode with scan range 35–450 m/z and emission current
set at 100 µA. Source temperature was set to 200°C, while GC
interface temperature was 250°C. The second instrument was a
6890N gas chromatograph coupled to a 7000C MSMS detector
(Agilent Technologies Inc.). The GC oven programming was
started at 50°C and held for 2 min, followed by a ramp at 5°C/min
to 240°C where it was held for 3 min. Both source and the
interface temperature were held at 280°C. The MS was
operated in a full-scan acquisition mode and scan range
30–450 m/z. GC analyte separation was performed using the
Zebron ZB-5HT GC capillary column (30 m × 0.25 mm ×
0.25 µm) from Phenomenex (CA, United States) on both
instruments. The injector temperature was set at 280°C for
both GCs with splitless injection mode for GC Ultra and
pulsed splitless mode for 6890N GC. In both cases GC carrier
gas was helium operated in constant flow mode at 1 ml/min rate.

2.5 Non-Targeted Workflow
Immediately following the sample analysis the chromatograms were
processed as described in Figure 1. In some instances, where peak
separation was poor, automated mass spectral deconvolution and
identification system (AMDIS) (NIST, National Institute of Standards
and Technology, 2019) was used for peak deconvolution. In general,
the spectrum of individual compounds was matched against spectra
from the National Institute of Standards and Technology (NIST 17)
library reference peaks. In addition, the Agilent GC MS/MS
instrument was also equipped with Wiley’s library of Mass Spectra
of Flavors and Fragrances of Natural and Synthetic Compounds
(FFNSC), 3rd Edition, while the Quantum GC also, used the
Wiley Registry of Mass Spectral Data, 11th Edition for improved

detection and confirmation. The peaks at signal intensity higher than
signal to noise 3:1 are at first tentatively identified. In general, the
compounds which score higher when matched against spectral
libraries (>70 Agilent, >700 Quantum) and have an appropriate
Retention Index, where available, are considered to be a good fit.
In order to improve the analyte identification “starting confidence” or
“prior probability”was utilized as previously described (Stein 2012). A
database of previously detected and reported chemical compounds in
vaping liquids fromother published sources (N� 151, Supplementary
Table S2 was used to develop categories of expected chemical
compounds in vaping liquids (Table 1). Moreover, the same
expected chemical compounds list served as the basis to set up an
internal mass spectral database using genuine analytical standards of
individual chemical compounds.

The chemical compounds with poor matching were compiled
and a follow up analysis (e.g., accurate mass determination) will
be performed in the future, if required.

2.6 Data Processing and Chemical Roles
Each identified chemical was assigned one or more roles in order
to have a better understanding of the function they may have
within a vaping liquid formulation. A literature synthesis was
conducted which involved drawing from a variety of sources
including published literature, open source websites and
databases (e.g. PubChem (NIH, National Institutes of Health,
2021a), Chem Spider (Royal Society of Chemistry, 2021), The
Human Metabolome Database (HMDB) (Wishart et al., 2018),
Flavor DB (Garg et al., 2018), FooDB (Harrington et al., 2019)),
manufacturer specifications, patents, Safety Data Sheets (SDS)
and others, in order to aid in data processing and assignment of
roles. Each chemical was classified into at least one of the six (6)

FIGURE 1 | Non-targeted workflow.
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roles: nicotine and related alkaloids, processing chemicals, natural
extracts, flavours or fragrances, indirect additives and chemicals
with unknown role. Supplementary information provides more
information on specific functional role categories.

3 RESULTS AND DISCUSSION

3.1 Workflow and Method Challenges
A number of challenges, which were successfully resolved,
were encountered during this project. During the method
development stages significant amount of time was invested in
optimizing methodology as to minimize any compounds that
may form during chemical analysis and degradation of product
carrier solvents. More details and discussion are provided on
method validation in Supplementary Section S2. Simple
matrix blanks of PG and VG were put through dilution and
analysis and no detected chemical compounds were formed
during the analysis run time. Of note is that there was no
carryover between samples analyzed as observed through
testing of analytical blank samples between each injected
sample. Simple dilution prior to mass spectrometry analysis
did not result in any background contamination either. The
500 times solvent dilution often resulted in a broad glycerol
peak and challenging chromatographic separation that, at
times, would overlap with a signal for another chemical
compound. In those instances, AMDIS was applied
successfully, Supplementary Section S3. Processing of the
resulting chromatograms was time consuming task, but was
simplified using genuine analytical standards and established
retention times for the group of chemical compounds
previously reported to be present in vaping products (Table 1;
Supplementary Table S1). This project was a significant
undertaking (development of NTA methodologies and
processing of large dataset with over 14,000 chemical
compounds identified), it required diverse skillsets and
frequent literature reviews to better elucidate chemical
information such as functional groups and possible functional
roles. While some parts of this process were automated,
many steps still required manual quality control and review of
results to ensure accuracy and completeness. Searching for
individual chemical characteristics was done using Chemical
Abstracts Services (CAS number) as provided in the mass
spectral libraries. Significant data clean-up was performed in
order to remove duplicate CAS numbers as some compounds
may have multiple CAS numbers (e.g. menthol) and different
mass spectral libraries may have preferences for CAS number
provided as primary one.

3.2 Chemical Space
The actual chemical space of all products tested was 1,507 unique
chemical compounds. Since some chemical compounds were
detected in more than one product, total number of chemicals
detected in 825 samples was over 14,000. Close to 50% (734/
1,507) of all chemicals were detected in just one vaping liquid,
illustrating the heterogeneity of this class of consumer products
and infrequency of occurrence among chemical compounds used.
Only four chemical compounds were detected in over 50% of all
products studied. These include nicotine, the carrier solvents
propylene glycol and glycerol, as well as β-Nicotyrine, a nicotine
oxidation by-product that may form during storage (Wada et al.,
1959). Seven hundred and thirty-eight products were labelled as
nicotine-containing, however, among these products 14 were
found not to contain any detectable nicotine. The lack of
detection of nicotine in these samples was not due to the
sensitivity of analytical method as this scan method is able to
detect nicotine down to 0.03 mg/ml. Themajority of samples with
this discrepancy were, in fact, labelled to contain nicotine at over
9 mg/ml. Out of 87 products labelled as nicotine free, one product
was detected to contain nicotine. These discrepancies on nicotine
presence are likely due to poor manufacturing practices or lack of
nicotine stability, as noted elsewhere (Goniewicz et al., 2015;
Kavvalakis et al., 2015). Of note is that all samples in question
were collected prior to September 2018 and, when labelled, were
marked as manufactured prior to this date. These products likely
precede the Government of Canada’s Tobacco and Vaping
Products Act (Government of Canada, 2018b) which includes

TABLE 1 | Identification of detected chemicals.

Spectral library matching Previously reported in vaping liquids (database)

Known (expected) Unknown (unexpected)

Known Known Known (e.g., nicotine) Known Unknown (e.g., cinnamaldehyde propylene glycol acetal)
Unknown Unknown Known (e.g., n-nitrosonornicotine-NNN) Unknown Unknown

FIGURE 2 | Detected chemical classes.
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limits on nicotine concentrations and brings forward compliance
and enforcement of the same.

All chemical compounds detected in the course of the study
can be classified into one of 170 chemical classes. The most
frequently detected chemical classes are alcohol, organooxygen,
carboxylic acid and derivatives, and esters, Figure 2.

3.3 Chemical Roles
There were 87 (0.6%) chemical compounds for which it was not
possible to assign or determine their identity using the mass
spectral libraries available. In the future, samples with these
compounds may be analyzed using different analytical
approaches to identify them. Each chemical compound with a
known identity was assigned at least one of the six functional roles
using the various sources of peer-reviewed literature and
supporting materials. Although identity was determined for
the vast majority of detected chemicals, a functional role was
not assigned to 8% of the chemicals detected as no supporting
materials were found. Of note, a larger number of the chemicals
with unknown roles have been previously detected in yeast
(University of Washington, 2018). At this time, it is not
known what the exact role or origin of yeast related chemicals
in vaping liquids is. Autolyzed yeast extract is used as a flavour
enhancer in foods and beverages (U.S. Food and Drug
Administration, 2010; U.S. Food and Drug Administration,
2010), while microbial contamination of vaping products has
been reported previously (Lee et al., 2019). Six percent of all
chemicals were assigned indirect additive roles with supporting
materials (Food and Drug Administration, 2017) often found
among records on indirect additives on foods or food contact
materials. It is likely these are found in products as a result of
leaching into the vaping liquid during processing or packaging.
Alkaloid roles were assigned to 10% of chemicals, which in the
majority of cases included nicotine and related minor alkaloids.
Thirteen percent of chemicals were found to have the natural
extract role while 27% of chemicals were likely used as processing
chemicals in the formulation. Examples of processing roles
include emulsifiers, humectants, diluents and others. Forty-
three percent of all chemicals detected were assigned a flavour
or fragrance role. The number of individual chemicals per vaping
liquid sample ranged between 4 and 66 compounds with a mean

of 18 chemical compounds detected per product. Although a
lower number of nicotine-salt based products were analyzed (N �
116) when compared to free-base nicotine products (N � 623),
nicotine-salt products were found to contain a lower number of
chemicals, with a mean of 16 chemicals detected per product. The
number of chemical substances present in vaping liquids
(e-liquids) can be used as one of the indicators of potential
toxicity of the product, as reported previously by the group of
researchers from North Carolina (Sassano et al., 2018) who
concluded that increasing chemical numbers were associated
with increasing toxicity when compared to solvent (PG/VG)
vehicle in high-throughput in-vitro toxicity testing. In addition
to nicotine type used in the product, the number of chemicals
detected varied with the liquid’ flavour categories, Figure 3.

As expected, the unflavoured products appeared to have the
least complex chemical profiles (mean number of nine
chemicals), followed by the tobacco flavour category (mean
number of 14 chemicals). The most complex chemical profiles
were found in the categories of milk/cream (e.g., Yogurt) and
spices (e.g. cinnamon), each with a mean of 22 detected
chemicals. On average per product flavour category, the
unflavoured category had the lowest proportion of flavour
chemicals (15% of total chemicals), and energy drinks had the
highest proportion of flavour chemicals (58% of total chemicals).
Flavour categories such as fruit, confectionary and dessert, which
may have a higher preference among youth, had higher
proportions of flavour chemicals on average (48, 54 and 55%
of all chemicals, respectively). This proportion of flavour
compounds is somewhat lower compared to proportions
(63%) reported by the Dutch study from European vaping

FIGURE 3 | Number of detected chemicals per flavour category.

FIGURE 4 |Overall chemicals (A) and Flavour chemicals (B) per popular
flavour category, 2017–2019.
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products (Krüsemann et al., 2021). The differences could be due
to the origins of the chemical datasets, as Dutch data is based on a
reporting system where manufacturers provide information on
ingredients added, while the non-targeted analysis based dataset
results from chemical analysis which may detect impurities,
indirect additives, as well as compounds that result from
chemical reactions post-product formulation and product
ageing (degradation, leaching and transformations). These
additional compounds would increase the total number of
compounds known to be present in the product, thereby
decreasing the percentage of flavouring compound in the final
composition.

Of note is that the mean number of chemicals detected per
product has in fact changed over the years; products collected in
2017 and 2018 appear to have a significantly higher number of
chemical compounds when compared to those collected in 2019.
This trend is observed regardless of flavour category analyzed,
Figure 4A. When the trend is examined for the number of flavour
compounds over this time period and in the same products a
similar trend emerges, suggesting a decrease in the chemical
flavour complexities among this group of products, Figure 4B.

This trend could be in part explained by the higher frequency
of nicotine-salt based products post 2018 which on average
appear to contain a lower number of chemicals. Nicotine-salts
are perceived to provide a less harsh and smoother sensory
experience for the product users (Leventhal et al., 2021), thus
it is likely they require less flavouring agents to mask the sensory
experience normally associated with free-base nicotine products.

3.4 Flavour Chemicals of Concern
Vaping products on the Canadian market come in a variety of
flavour categories. In the past few years, youth vaping prevalence
has increased in Canada (Government of Canada, 2020a) and
flavours play an important role in attracting youth to vaping
products. Recent evidence suggests that youth prefer flavour
categories such as fruit, confectionary and dessert
(Government of Canada, 2018a; O’Connor et al., 2019). The
chemicals detected in products are used to better understand
flavour chemicals and their role in imparting intended or declared
product flavours. Vaping product formulations are the
manufacturer’s interpretation of the intended or declared
flavour. Our data indicates that the chemical space of each
flavour category is diverse and there is a high degree of

chemical overlap between flavour categories. Similar to
previously published studies (Tierney et al., 2016; Omaiye
et al., 2019), our data shows that vaping liquids contain some
of the same flavour chemicals despite their flavour category.
Except for mint/menthol, herbal/floral and unflavoured
category, across all other products, the top five most
frequently detected flavour chemicals (Table 2) were vanillin,
ethyl maltol, ethyl vanillin, vanillin propylene glycol acetal and
cyclotene. Vanillin, ethyl maltol and ethyl vanillin were in the top
five flavouring chemicals for more than half of the flavour
categories studied. Collectively, the top five chemicals have
flavour descriptors such as “sweet,” “creamy” and “vanilla”
(Good Scents Company, 2021). Vanillin and ethyl maltol, but
not ethyl vanillin, were the most frequently detected flavour
chemical in the three categories likely to be more appealing to
youth. Ethyl maltol is a sweetener, with a sweet, caramellic,
jammy, strawberry-like odor description and sweet, burnt
cotton candy, caramel-like taste. Perception of sweet flavour in
vaping products has been shown to produce greater appeal and
perceived sweetness ratings among young vapers (Goldenson
et al., 2016). Moreover, sweet perception and appealing
flavours can enhance nicotine reward reinforcing effects in
vaping and other tobacco products (Kroemer et al., 2018;
Patten and De Biasi 2020).

In published studies, concentrations of ethyl maltol in vaping
liquids range between undetectable to 4,200 μg/ml (Aszyk et al.,
2017; Behar et al., 2018), compared to average maximum
concentration ranges of 12.4–152 μg/ml in non-alcoholic
beverages and baked goods, respectively, on which Flavor
Extract Manufacturers Association (FEMA, The Flavor and
Extract Manufacturers Association of the United States, 2021)
Expert Panel based its’ judgments that this substance is safe for
ingestion (Oser and Ford 1977). Although generally recognized as
safe for ingestion, the health effects of ethyl maltol, and more
broadly the majority of flavour compounds, have not been
assessed for the inhalation route (Flavor and Extract
Manufacturers Association, 2021). Currently, published studies
on vaping flavours focus on cytotoxic and mutagenic effects in
cell models (Behar et al., 2018; Muthumalage et al., 2018);
translating these study findings into a real-life setting is
challenging. While inhalation toxicity data is scarce for some
compounds, certain vaping flavour compounds are recognized as
those of concern for human health. For example, diacetyl and 2,3

TABLE 2 | The top five most frequently identified chemicals in all flavour categories and the flavour/odour description from the Good Scents Company website.

CAS Chemical name Organoleptic
propertiesa

Avg %
frequency (in
all liquids)

# Flavour
categories detected

as a
top 5

chemical

Top 5
chemical in
fruit (F),

confectionary (C);
dessert (D)

121-33-5 Vanillin Vanilla sweet creamy spicy phenolic milky 45 14 F, C, D
4940-11-8 Ethyl maltol Sweet burnt sugar candy jam strawberry 30 12 F, C, D
121-32-4 Ethyl Vanillin Sweet creamy vanilla smooth caramellic 30 11 C, D
68527-74-2 Vanillin propylene glycol acetal Sweet vanilla creamy phenolic smoky powdery 19 6 D
80-71-7 Cyclotene Caramellic maple 14 4 None

aThe Good Scents Company Information System (Good Scents Company, 2021).
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pentanedione are two buttery flavours, shown to cause lung
and respiratory airways damage in animal models and are
associated with respiratory disease and decreased lung
function in occupationally exposed employees of food
flavouring and food manufacturing facilities (NIOSH, The
National Institute for Occupational Safety and Health, 2016).
While diacetyl was detected in two vaping liquids acquired
prior to 2018, 2,3 pentanedione was not detected in any
vaping liquids analyzed in the Open Characterization dataset.
Another flavour, the monoterpene pulegone typically found in
extracts of mint oil, has been previously detected in vaping
products (Hutzler et al., 2014; Geiss et al., 2015). This
chemical has been shown to induce some carcinogenic effects
in mice and rats (National Toxicology Program, 2011). In the
Open Characterization analysis, 11 out of 825 (1.3%) products
were found to contain pulegone at unknown concentration levels,
mainly mint/menthol flavoured products (9/11 products).
Currently, no evidence is available that pulegone has any
vaping-related health effects in humans.

3.5 Chemicals of Health Concern
Within this dataset, the quantification of all chemicals identified
is untenable given the targeted study method developments may
take years to complete. Chemical prioritization or screening based
on known hazards was used to develop a list of chemicals for
quantification. Providing exposure estimates through targeted
analytical studies focused on these prioritized chemicals will
provide sufficient information to better elucidate the risk. The
majority of studies provide results on relative risk and
comparison to tobacco cigarettes. Vaping products in fact
infrequently contain tobacco specific toxicants and even in
cases when they do, these are often present at much lower
concentrations as observed in the exposure studies on product
users (Goniewicz et al., 2018; Engineering, andMedicine National
Academies of Sciences, 2018). For example, in our study there was
only one product that was found to contain
N-Nitrosodimethylamine (NDMA); no other nitrosamines
were detected. In addition to NDMA, 9 out of 93 US FDA’s

Harmful and Potentially Harmful Constituents (HPHC) (FDA,
US Food and Drug Administration, 2012) were detected in Open
Characterization samples (Table 3).

The reasons behind the higher frequency of detection of
naphthalene compared to other HPHC chemicals are unclear
at this time; this Polycyclic Aromatic Hydrocarbon is normally
present in tobacco smoke, but also in the extracts of various fruits
and other plants (Gómez et al., 1993; Paris et al., 2018), so it is
possible that naphthalene originates from the natural extracts
used to flavour the products. Of note is that other methylated and
naphthalene-related structural analogs, not on the HPHC list,
were also detected in vaping products studied. For example, 1-
methyl naphthalene, a flavour and fragrance agent normally
found in fruits (Good Scents Company, 2021), is also detected
in 12% of products analyzed. Exposure of laboratory animals to 1-
and 2-methylnaphtalene resulted in spleen and organ damage
while mice exposed dermally for 30 weeks developed pulmonary
alveolar proteinosis. Humans exposed to this compound
developed skin irritation and skin photosensitization (NIH,
National Institutes of Health, 2021b). In 2019, USFDA
proposed the addition of 19 chemical compounds to an
existing HPHC list of 93 (Food and Drug Administration,
2017), mainly to reflect potentially harmful chemicals present
in vaping products. The first proposed chemical is glycidol, a
probable human carcinogen (International Agency for Research
on Cancer, 2000) thought to result from thermal degradation of
glycerol. Glycidol has been previously detected in vaping product
emissions (Sleiman et al., 2016) and was found in 3% of the
liquids tested. Non-targeted studies such as this provide datasets
that can inform future steps and ultimately characterize product-
use specific harms. The prioritization can consider chemicals with
already established health effects of concern, detection frequency
or chemical presence in products with high market share. In our
dataset, most chemicals of concern were not detected in the
majority (>50%) of products studied, indicating that the
chemicals of concern can be used to identify products for
which the ingredients used may be a cause for concern. The
goal is to provide information that would lead to products which

TABLE 3 | Established list of constituents identified by US FDA as harmful and potentially harmful constituents and their detection frequency in vaping liquids.

Constituent CAS RN Carcinogen (CA), respiratory
toxicant (RT), cardiovascular
toxicant (CT), reproductive
or developmental toxicant

(RDT), addictive (AD)

Frequency
of detection (%)

Acetaldehyde 75-07-0 CA, RT, AD 1.2
Coumarin 91-64-5 Banned in food 0.6
Ethylbenzene 100-41-4 CA 4.5
Ethylene oxide 75-21-8 CA, RT, RDT 0.5
Methyl ethyl ketone 78-93-3 RT 1.0
Naphthalene 91-20-3 CA, RT 12.2
N-Nitrosodimethylamine (NDMA) 62-75-9 CA 0.1
Phenol 108-95-2 RT, CT 0.6
Quinoline 91-22-5 CA 0.5
Styrene 100-42-5 CA 0.7

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7567167

Kosarac et al. Open Characterization of Vaping Liquids

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


minimize the risk of vaping products for consumers looking to
completely switch from combustible tobacco products.

In comparison to traditional chemical analytical methods,
non-targeted analysis (NTA) methods aim to discover as
many chemicals as possible in products, including those
previously unknown or with limited data. To date, there has
been only one published study using non-targeted screening of
Canadian vaping liquids (Czoli et al., 2019). One hundred and
sixty-six vaping liquids collected in 2015 were analyzed using a
gas chromatography mass spectrometry instrument with limited
sensitivity and resolution. Similarly, a U.S. dataset generated by
the Centre for Tobacco Regulatory Science and Lung Health
(Center for Tobacco Regulatory Science and Lung Health, 2021),
chemically characterized approximately 300 vaping product
samples; significantly fewer than the Canadian Open
Characterization dataset (N � 825). Closed pod-system brands
that make up a majority of the vaping market in Canada were not
included in the U.S. dataset. In addition, limited information is
available on the products tested in the U.S. including classification
by flavour categories, as their product names are not self-
explanatory (e.g. Carnage, Magic Dragon, etc.). Finally, it is
unknown how many of these U.S. products are available for
sale in Canada. These factors present challenges in comparing the
two datasets. Overall, valuable information can be determined by
evaluating different market datasets, however direct comparisons
are challenging given the heterogeneity of vaping products within
and between different regions.
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