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a b s t r a c t

Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-
β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and
pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and
sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β,
thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension.

Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily
for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied.
TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined
by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both
drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro
were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All
treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sec-
tional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen de-
position, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals.
Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-
induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2
activity.

Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity
in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic
effects of both drugs may translate into protective effects in patients.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vascular remodeling is critically involved in the pathogenesis of
hypertension and is initiated by smooth muscle cell proliferation
and migration that result in vascular hyperplasia and hypertrophy
[1]. This alteration is a consequence of imbalanced vascular matrix
metalloproteinase (MMP) activity, which promotes excessive de-
gradation of extracellular matrix and induces structural mod-
ifications of the vasculature, particularly in hypertensive subjects
B.V. This is an open access article u
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[1,2]. Indeed, upregulated MMP activity, especially MMP-2, has
been implicated in vascular remodeling in hypertensive patients
[3,4] and in animal models of hypertension [5–7]. In addition to its
effects on the components of the extracellular matrix, MMP-2
activates latent TGF-β [8] thus further contributing to vascular
pathogenetic mechanisms that impair vascular function [9]. In-
deed, TGF-β is a major profibrotic factor implicated in extracellular
matrix reorganization and collagen deposition during vascular fi-
brosis [10]. Therefore, drugs that inhibit MMP activity may con-
tribute to TGF-β downregulation and prevent vascular remodeling
in hypertension.

Statins inhibit 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A
reductase activity, an enzyme that plays a major role in the bio-
synthesis of cholesterol [11]. However, in the last few decades,
growing evidence has accumulated to support the notion that
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Effects of atorvastatin and sildenafil on cell proliferation. Rat aortic smooth
muscle cells (RASMCs) were treated with atorvastatin or sildenafil at different
concentrations and PDGF-BB (1 ng/mL) was added 1 h later for 24 h. 3H-thymidine
incorporation was measured. Control cells are untreated RASMCs without fetal
bovine serum in the medium. Data are expressed as mean7S.E.M. (n¼5 in the
control group and n¼6 in the other groups). *Po0.05 versus Control. **Po0.05
versus PDGF-BB alone.
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statins exert beneficial cardiovascular effects independent of their
effects on cholesterol levels [12]. Similarly, phosphodiesterase-5
inhibitors, particularly sildenafil, which are usually prescribed to
patients with erectile dysfunction or with pulmonary hyperten-
sion, have also been shown to exert protective effects that may
justify their use in patients with other cardiovascular diseases [13].
In fact, there is evidence that both statins and phosphodiesterase-
5 inhibitors may exert pleiotropic effects that counteract im-
portant mechanisms that promote vascular remodeling in hy-
pertension. For example, statins inhibit MMP-9 secretion by vas-
cular cells [14,15] and suppress TGF-β expression decreasing vas-
cular fibrosis [16]. Moreover, sildenafil prevents cardiovascular
remodeling [17] and inhibits MMP-9 and TGF-β expression [18,19].
Interestingly, some studies suggest that the combination of a statin
with sildenafil further increases the protective effects of each drug
alone [20–22]. However, although there is some evidence that
both statins and phosphodiesterase-5 inhibitors may inhibit pro-
fibrotic mechanisms, it is not known whether atorvastatin or sil-
denafil attenuates the vascular remodeling associated with hy-
pertension, or whether the combination of these drugs increases
the possible effects associated with each drug alone.

In this study, we aimed at testing the hypothesis that both
atorvastatin or sildenafil, inhibit proliferative mechanisms invol-
ving MMP-2 and TGF-β that result in vascular remodeling of re-
novascular (two kidney, one clip; 2K1C) hypertension. In addition,
we examined whether the combination of both drugs improves
the possible protective effects of each drug alone.
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Fig. 2. Systolic blood pressure (mmHg) measured by tail-cuff method (a) and body
weight (b) in the eight experimental groups along 10 weeks of study. Data are
shown as mean7S.E.M. *Po0.01 versus Sham Vehicle group; #Po0.01 versus 2K1C
Vehicle group. (2K1CþVehicle: n¼8; 2K1CþATORVA: n¼7; 2K1CþSILD: n¼8;
2K1CþATORVAþSILD: n¼9; ShamþVehicle: n¼8; ShamþATORVA: n¼10;
ShamþSILD: n¼8; ShamþATORVAþSILD: n¼10).
2. Materials and methods

The present study was carried out in accordance with National
Institutes of Health (NIH; USA) guidelines. All experimental pro-
tocols with animals were approved by our Institutional Animal
Care and Use Committee of the Ribeirao Preto Medical School,
University of Sao Paulo.

2.1. Isolation of rat aortic smooth muscle cells

Rat aortic smooth muscle cells (RASMCs) were isolated from
Sprague-Dawley rats (6–8 weeks of age) as previously described
[23]. The rats were anesthetized with an intraperitoneal injection
of pentobarbital. The aorta was isolated and immersed in 20% fetal
bovine serum-Dulbecco's modified Eagle's medium (DMEM) con-
taining 1000 U/mL heparin. Fat and connective tissue were re-
moved and the aorta was incubated in DMEM (serum-free) with
collagenase type II (2 mg/mL) for 45 min at 37 °C. After removal of
the endothelium, the vessel was cut lengthwise, and the smooth
muscle cells were removed mechanically.

2.2. Experiments with rat aortic smooth muscle cells to examine
antiproliferative effects of atorvastatin or sildenafil in the presence of
platelet-derived growth factor

RASMCs were examined by microscopy and used between
passages 5 and 8. Approximately 20,000 cells/well were plated in
24-well plates with 1 mL DMEM and F-12 HAM'S medium with
10% fetal bovine serum for 24 h followed by 24 h in serum-free
medium. The RASMCs were pre-treated with vehicle (Control,
untreated cells), atorvastatin (0.1, 1, or 10 μM) and sildenafil (0.1, 1,
or 10 μM) for 1 h and stimulated with platelet-derived growth
factor-BB (PDGF-BB) 1 ng/mL for 24 h [24].

2.3. Assessment of cell proliferation

Growth-arrested RASMCs (serum starvation for 24 h) were
subject to experimental conditions in the presence of 5 μCi/mL 3H-
thymidine (NEN) for 24 h. 3H-thymidine incorporation into tri-
chloroacetic acid-precipitated DNA was quantified by scintillation
spectroscopy as described [24].

2.4. Renovascular (2K1C) hypertension animal model and
treatments

Male Wistar rats weighing from 180 to 200 g were maintained
under the animal house conditions (12 h light/dark cycle at 25 °C),
and allowed free access to rat chow and water.

Under anesthesia (ketamine 100 mg/kg and xylazine 10 mg/kg
i.p.), 2K1C hypertension was performed by placing 0.2 mm silver
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Fig. 3. Panel (a) shows aortic structural alterations induced by 2K1C hypertension and the effects of treatment with atorvastatin (ATORVA), sildenafil (SILD), or both drugs.
Panels (b) and (c) show the cross sectional area (CSA) and media to lumen ratio (M/L), respectively, in each study group. Data are expressed as mean7S.E.M. *Po0.05 versus
Sham Vehicle group; **Po0.05 versus 2K1C Vehicle group. (ShamþVehicle: n¼9; ShamþATORVA: n¼9; ShamþSILD: n¼14; ShamþATORVAþSILD: n¼11; 2K1Cþvehicle:
n¼9; 2K1CþATORVA: n¼10; 2K1CþSILD: n¼11; 2K1CþATORVAþSILD: n¼14).
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clip around the left renal artery. As normotensive controls, sham-
operated rats underwent the same surgical procedure without
placement of the renal artery clip. Body weight and systolic blood
pressure (SBP) were assessed weekly. SBP were measured by tail-
cuff plethysmography, and the rats were considered hypertensive
when SBP4160 mm Hg two weeks after the surgery.

The animals were randomly assigned to one of eight groups:
2K1C and Sham groups that received ethanol 2% (vehicle used to
dilute both drugs); 2K1C and Sham groups that received atorvas-
tatin at 50 mg/kg per day [25]; 2K1C and Sham groups that re-
ceived sildenafil at 45 mg/kg [17]; and 2K1C and Sham groups that
received the combination of atorvastatin 45 mg/kg and sildenafil
50 mg/kg per day. The treatments were started two weeks after
2K1C surgery and were maintained for eight additional weeks. All
treatments were given by oral gavage. The animals were killed by
decapitation after 10 weeks of hypertension and their thoracic
aortas were isolated and cleaned of connective tissue and fat. Ar-
terial blood samples were centrifuged at 1000g for 10 min and
plasma fractions were immediately stored at �70 °C until used for
biochemical measurements.
2.5. Morphometric analysis of the aorta and assessment of aortic
collagen content

The thoracic aortas were carefully removed and cleaned of
connective tissue and fat. After that, the aortas were fixed in 4%
phosphate-buffered paraformaldehyde (pH 7.4) for 24 h, followed
by 70% ethanol (at least 24 h) and then embedded in paraffin. The
blocks of paraffin were cut at four micrometer thick slices and
stained with hematoxylin and eosin (H&E). The morphometric
parameters including media cross-sectional area (CSA) and media
to lumen diameter (M/L) were quantified as previously described
using ImageJ Program (Rasband, W.S., ImageJ, U.S. National In-
stitutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/
ij/, 1997–2011) [5].

Trichrome staining (Gomori) was used to determine the col-
lagen content in the aortic media layer with light microscopy
(DMLB; Leica, Bensheim, Germany) and the image was captured at
400� . These structural analyses in the media were evaluated by
two skilled blinded observers. The evaluation of collagen surface
was scored quali-quantitatively as absent (0), low (1), moderate
(2), or strong (3) in the study groups. Each score reflects changes in

http://imagej.nih.gov/ij/
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Fig. 4. Collagen surface area in the media layer of aortas from rats and effects of treatments. Panel (a) shows representative photomicrographs of aortic samples stained by
Trichrome (Gomori) (400� ). Panel (b) shows quantitative evaluation of the collagen surface area stained in blue. Data are expressed as mean7S.E.M. *Po0.05 versus Sham
Vehicle group; **Po0.05 versus 2K1C Vehicle group. (ShamþVehicle: n¼7; ShamþATORVA: n¼6; ShamþSILD: n¼7; ShamþATORVAþSILD: n¼5; 2K1Cþvehicle: n¼5;
2K1CþATORVA: n¼7; 2K1CþSILD: n¼7; 2K1CþATORVAþSILD: n¼5).
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the intensity and extension of staining.

2.6. Assessment of TGF-β by immunofluorescence

The aortas were frozen in Tissue-tek O.C.T. compound and 4-
μm thick cryostat sections were incubated with antibody against
TGF-β1 (polyclonal rabbit anti-TGF-β 1; 1:500, ab92486, Abcam,
USA) at room temperature in dark humidified chambers for 1 h.
Slices were washed 3 times with cold PBS and anti-rabbit rhoda-
mine conjugated secondary antibody (1:200, AP187R, Millipore,
USA) was added for 1 h. Immunofluorescence images were viewed
with a fluorescent microscope (Leica Imaging Systems Ltd., Cam-
bridge, England) and the images were captured at 400� . Red
fluorescence intensity was evaluated by using ImageJ Program
(National Institutes of Health) in 40 fields selected around the
vessel circumference (interassay coefficient of variation less than
3%), and the arithmetic of 40 fields was calculated for each slide
[26].

2.7. Measurement of aortic MMP-2 levels by gelatin zymography

Gelatin zymography was performed as previously described
[27]. Frozen aortic tissue samples (approximately 30 mg) were
homogenized with cold RIPA-buffer on ice. The protein con-
centration in the supernatant was performed with Bradford pro-
tein assay. Tissue extracts diluted 1:1 with 2� sample buffer were
subjected to electrophoresis on 7% SDS-PAGE co-polymerized with
gelatin (0.1%). After electrophoresis, the gels were soaked in a 2%
Triton X-100 solution for 30 min twice at room temperature. Then,
the gels were incubated in Tris–HCl buffer (10 mmol L�1 CaCl2, pH
7.4) overnight, at 37 °C. The staining was carried out for 3 h with
Coomassie Brilliant Blue G-250 (0.05%) and destained with 25%
methanol and 7% acetic acid for 2 h. Gelatinolytic activity was
detected as unstained bands against the blue background of
stained gelatin, and quantified by densitometry using a Kodak
Electrophoresis Documentation and Analysis System (EDAS) 290
(Kodak, Rochester, NY). Intergel analysis was possible after nor-
malization of the gelatinolytic activity with an internal standard
(fetal bovine serum).

2.8. Assessment of aortic gelatinolytic activity by in situ zymography
and aortic MMP-2 levels by immunofluorescence

In situ gelatinolytic activity in the media of frozen thoracic
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aorta was performed as previously described [28]. Frozen 4 μm
sections were incubated with dye-quenched (DQ) Gelatin (E12055,
Molecular Probes, Oregon 411, USA) diluted 1:20 for 30 min in dark
humidified chambers. The images were examined with fluorescent
microscopy (Leica Imaging Systems Ltd., Cambridge, England) and
captured at 400� . The intensity of the green fluorescent signal
was evaluated by using ImageJ Program (NIH – National Institute
of Health).

To co-localized aortic gelatinolytic activity with MMP-2 ex-
pression immunofluorescence for MMP-2 was performed. After
DQ gelatin, the sections were rinsed 3� with cold PBS and in-
cubated with mouse monoclonal MMP-2 antibody (1:500;
MAB3308, Millipore, USA) for 1 h. Slices were then incubated with
anti-mouse rhodamine conjugated secondary antibody (1:200,
AP181R, Millipore, USA) Sections were examined with fluorescent
microscopy (Leica Imaging Systems Ltd., Cambridge, England) and
the image was captured at 400� . The intensity of the red fluor-
escent signal was evaluated by using ImageJ Program [28].

2.9. Assessment of aortic MMP-2 expression by Western blot analysis

Aortic samples of about 30 mg were lysed with cold RIPA-
buffer. The protein concentration of tissue homogenate was de-
termined with Bradford protein assay. 40 μg of protein extracts
were separated by 12% polyacrylamide gels. Then, the proteins
were transferred to nitrocellulose membranes (GE Healthcare,
Madison, WI, USA). The membranes were blocked for 1 h at room
temperature with TBS-T (NaCl 100 mM; Tris–Cl 100 mM; Tween
0.1%) containing 5% BSA (bovine serum albumin) and incubated
overnight at 4 °C with primary antibody against MMP-2 (1:1000;
MAB3308, Millipore, USA). The membranes were then incubated
with 1:1000 horseradish peroxidase (HRP)-secondary goat anti-
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Fig. 6. Representative sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) gelatin zymogram of aortic samples (Panel (a)). Molecular weights of MMP-
2 bands (75, 72 and 64 kDa MMP-2) were identified after electrophoresis on 7% SDS–PAGE. STD: internal standard. Panel (b) shows the quantification of each molecular
weight form (75, 72 and 64 kDa) of MMP-2 in the aortic extracts. Data are expressed as mean7S.E.M. *Po0.05 versus Sham Vehicle group; **Po0.05 versus 2K1C Vehicle
group. (ShamþVehicle: n¼18; ShamþATORVA: n¼9; ShamþSILD: n¼9; ShamþATORVAþSILD: n¼9; 2K1Cþvehicle: n¼18; 2K1CþATORVA: n¼10; 2K1CþSILD: n¼9;
2K1CþATORVAþSILD: n¼10).
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rabbit antibody (AP132P, Millipore, USA) for 1 h. The protein bands
were revealed with ECL chemiluminescence kit (GE Healthcare).
MMP-2 expression was normalized with respect to β-actin ex-
pression (1:1000; MAB1501, Millipore, USA).

2.10. Assessment of direct in vitro effects of atorvastatin or sildenafil
on MMP-2 activity

To examine whether atorvastatin, sildenafil or both drugs (at
concentrations varying from 0.1 to 10 mM) inhibit MMP-2 activity
in vitro, we measured the direct effects of these drugs on re-
combinant human MMP-2 (rhMMP-2) activity obtained as pre-
viously described [29]. Proteolytic activity of 300 ng of rhMMP-2
was measured in absence or presence of these drugs by using the
Gelatinolytic Activity Kit (E12055, Molecular Probes, OR, USA) in a
microplate spectrofluorometer (at λexcitation 495, λemission 515 nm;
Gemini EM, Molecular Devices, Sunnyvale, CA, USA) after 30 min
of incubation at 37 °C, as previously described [28]. Phenanthro-
line (0.1 mM) was used as a positive control for MMP-2 activity
inhibition.
2.11. Statistical analysis

Results are expressed as means7S.E.M. Comparisons between
groups were assessed by two-way analysis of variance (ANOVA)
followed by the Bonferroni correction and by the Kruskal–Wallis
test or t test as appropriate using GraphPad Prism software. A
probability value o0.05 was considered significant.
3. Results

3.1. Both atorvastatin and sildenafil inhibit PDGF-BB-stimulated



Fig. 7. Effects of treatments on in situ gelatinolytic activity and MMP-2 levels detected by immunofluorescence in the aortas. Panel (a) shows representative photographs of
in situ gelatinolytic activity (400� ), MMP-2 detected by immunofluorescence, and their co-localization (merge) in the aortas. Panel (b) shows the quantification of aortic
in situ gelatinolytic activity detected as bright green fluorescence. Panel (c) shows the quantification of aortic MMP-2 levels detected by immunofluorescence as bright red
fluorescence. Data are expressed as mean7S.E.M. *Po0.05 versus Sham Vehicle group; **Po0.05 versus 2K1C Vehicle group. (ShamþVehicle: n¼6; ShamþATORVA: n¼7;
ShamþSILD: n¼8; ShamþATORVAþSILD: n¼7; 2K1Cþvehicle: n¼5; 2K1CþATORVA: n¼7; 2K1CþSILD: n¼8; 2K1CþATORVAþSILD: n¼8).
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RASMCs proliferation

PDGF-BB is a major inducer of smooth muscle cell proliferation
and migration and plays an important role in the pathogenesis of
vascular diseases including hypertension [30]. The RASMCs were
stimulated with PDGF-BB for 24 h and both atorvastatin (1 and
10 μM) and sildenafil (0.1, 1 and 10 μM) significantly inhibited
PDGF-BB-induced cell proliferation (all Po0.05; Fig. 1).

3.2. Effects of treatments on systolic blood pressure (SBP) and body
weight

We found similar baseline SBP in all groups and no significant
changes in SBP were seen in the groups of Sham-operated animals
treated with Vehicle or with the drugs (Fig. 2A; P40.05). While
SBP increased progressively in 2K1C rats treated with vehicle
(20774 mm Hg after 10 weeks), treatment with atorvastatin, sil-
denafil, or with both drugs exerted similar antihypertensive effects
(SBP¼14877, 15675, and 13874 mm Hg, respectively; Po0.05,
Fig. 2A).

No significant differences were found with respect to body
weight gain (P40.05; Fig. 2B).

3.3. Treatment with atorvastatin or sildenafil, or the combination of
drugs, ameliorated the vascular remodeling in 2K1C rats

2K1C hypertension was associated with vascular hypertrophy
as revealed by increased aortic cross-sectional area (CSA) and in-
creased media to lumen (M/L) ratio in hypertensive rats compared
to Sham-operated animals (both Po0.05; Fig. 3A–C). Interestingly,
while no effects were found in Sham-operated animals treated
with drugs, both atorvastatin or sildenafil, or the combination of
drugs blunted the morphological alterations induced by 2K1C
hypertension (all Po0.05; Fig. 3A–C).

In agreement with the morphological results, increased col-
lagen surface area was found in 2K1C hypertensive rats treated
with vehicle as compared with Sham-operated rats (Po0.05;
Fig. 4A and B). Again, while no effects were found in Sham-oper-
ated animals treated with drugs, both atorvastatin or sildenafil, or
the combination of drugs blunted the increases in collagen surface
area induced by 2K1C hypertension (all Po0.05; Fig. 4A and B).

3.4. Both atorvastatin or sildenafil, or the combination of drugs,
blunted the increases in aortic expression of TGF-β induced by
hypertension

Hypertension increased the aortic expression of TGF-β in 2K1C
rats treated with vehicle compared with Sham-operated animals
(Po0.05; Fig. 5A and B). While no significant differences were
found in Sham-operated animals treated with drugs, both ator-
vastatin or sildenafil, or the combination of drugs blunted the
increases in aortic TGF-β content induced by 2K1C hypertension
(all Po0.05; Fig. 5A and B).
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3.5. Treatment with atorvastatin or sildenafil, or the combination of
both, decreased aortic MMP-2 levels and activity and reduced in situ
aortic gelatinolytic activity

A representative zymogram of aortic extracts displaying bands
corresponding to the three usual molecular weights of MMP-2
(75 kDa, 72 kDa, and 64 kDa) is shown in Fig. 6A. As expected,
2K1C hypertension increased the aortic levels of the 3 isoforms of
MMP-2 when compared with Sham-operated animals treated with
vehicle (all Po0.05; Fig. 6A and B). While the drugs exerted no
effects in Sham-operated animals, both atorvastatin and sildenafil,
alone or in combination, attenuated 2K1C hypertension-induced
increases in aortic 72 kDa and 64 kDa MMP-2 levels (all Po0.05;
Fig. 6A and B). No significant effects were found on the aortic le-
vels of the 75 kDa MMP-2 levels.

To confirm aortic zymogram findings, we assessed aortic MMP-
2 levels by immunofluorescence and in situ gelatinolytic aortic
activity. Hypertension increased aortic in situ gelatinolytic activity,
as revealed by increased green fluorescence in the media layer in
the 2K1CþVehicle group compared with Sham-operated animals
(Po0.05; Fig. 7A and B), and the increased in situ gelatinolytic
activity co-localized with increased aortic MMP-2 expression as-
sessed by immunofluorescence (Po0.05; Fig. 7A and C). Inter-
estingly, both atorvastatin or sildenafil, or the combination, blun-
ted both increases in aortic in situ gelatinolytic activity and MMP-2
levels indeed by hypertension (all Po0.05; Fig. 7A–C).

To further confirm these findings, we assessed aortic MMP-2
expression by Western blot analysis. In agreement with the results
reported above, 2K1C hypertension increased aortic MMP-2 ex-
pression more than three-fold (Po0.05; Fig. 8A and B), and
treatment with atorvastatin or silfenafil, or both, significantly at-
tenuated hypertension-induced increases in aortic MMP-2 ex-
pression (all Po0.05; Fig. 8A and B).

3.6. Lack of direct inhibitory effects of atorvastatin or sildenafil on in
vitro MMP-2 activity

Given the positive results shown above, we examined the
possibility that atorvastatin or sildenafil could directly inhibit
MMP-2. While phenanthroline (non-selective Znþ2 chelating
MMP inhibitor) inhibited rhMMP-2 activity by more than 80%,
neither atorvastatin, nor sildenafil, either alone of combined, af-
fected MMP-2 activity (P40.05; Fig. 9).
4. Discussion

The present study shows that both atorvastatin or sildenafil
inhibit proliferative mechanisms and therefore attenuate the vas-
cular remodeling associated with hypertension. To our knowledge,
this is the first study to show that atorvastatin or sildenafil prevent
aortic hypertrophy caused by 2K1C hypertension, and that this
effect possibly involves lowered expression and activity of TGF-β
and MMP-2. Our findings may suggest a mechanism by which
these drugs exert beneficial, pleiotropic effects in hypertension.

Our findings showed clear antiproliferative effects of both
atorvastatin and sildenafil, which attenuated PDGF-BB-induced
RASMCs proliferation in vitro and blunted hypertension-induced
media hypertrophy. Supporting the antiproliferative effects re-
ported here, both atorvastatin and sildenafil inhibited vascular
smooth muscle cells proliferation stimulated under other condi-
tions, possibly as a result of interference with regulation of cell
cycle [31,32]. Importantly, while previous studies have already
shown that both atorvastatin [33] or sildenafil [17,34] may revert
cardiac remodeling, this is the first study to show that both drugs
blunt the vascular remodeling induced by renovascular
hypertension.

The 2K1C hypertension model critically depends on the acti-
vation of the renin–angiotensin system, with increased angio-
tensin-converting enzyme activity and angiotensin II levels, which
promotes oxidative stress and proliferative mechanisms leading to
arterial remodeling [35]. In agreement with the present results,
previous studies have notably implicated enhanced vascular MMP-
2 activity and TGF-β levels as major players in the collagen de-
position and other proliferative and profibrotic alterations asso-
ciated with vascular remodeling of 2K1C hypertension [6,7,26]. In
fact, MMP-2 activates TGF-β, which interacts with its receptors to
promote classic profibrotic pathways that lead to increased
synthesis of collagen and other components of the extracellular
matrix [8,10]. Moreover, angiotensin II, which is implicated in the
pathogenesis of 2K1C hypertension, stimulates TGF-β expression
and activity in vascular smooth muscle cells [36]. Then, angio-
tensin II-induced vascular remodeling depends partly of TGF-β
stimulation. Although unproven, the improvement of the vascular
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alterations after treatments with atorvastatin or sildenafil shown
in the present study probably results of inhibition of profibrotic
pathways, as suggested by the lower TGF-β levels that we found in
the aortas from hypertensive rats treated with atorvastatin or
sildenafil. The lower aortic TGF-β levels, in turn, may reflect de-
creased MMP-2 expression and activity with both drugs [8,10].
This suggestion is supported by previous studies showing that
atorvastatin blunts the increases in TGF-β expression in response
to angiotensin II infusion in rats [16]. Moreover, atorvastatin pre-
vents collagen secretion by smooth muscle cells [37,38]. Similarly,
sildenafil reduced TGF-β expression in the DOCA-salt hypertension
model, thus allowing regression of renal injury [19].

Activated MMPs proteolyze a variety of extracellular matrix
components including collagen, and therefore favor pathological
vascular remodeling by mechanisms that add to those activated by
TGF-β [1,39]. The increased MMP-2 levels and gelatinolytic activity
that we found in 2K1C hypertension confirms previous studies and
may reflect increased oxidative stress resulting from enhanced
angiotensin II signaling [5,7,40,41]. Because we found in a previous
study that both atorvastatin or sildenafil completely blunted 2K1C
hypertension-induced oxidative stress under the same conditions
of the present study [42], it is possible that antioxidant effects
exerted by both drugs may have inhibited hypertension-induced
increases in vascular MMP-2 expression and activity, as shown
with other antioxidant compounds [28]. Similar antioxidant effects
of sildenafil leading to lower MMP activity has been shown under
other conditions [18,20], and the same has also been reported with
atorvastatin [14,15,43]. Moreover, the inhibition of vascular re-
modeling associated with lower MMP-2 expression and activity
that we found are not explained by direct inhibition of MMP-2 by
either atorvastatin or sildenafil, as demonstrated by lack of sig-
nificant effects of both drugs on rhMMP-2 activity that we found
in the present study.

Both atorvastatin and sildenafil upregulate intracellular sig-
naling pathways involved in the vascular nitric oxide (NO) sig-
naling [44]. Atorvastatin increases endothelial NO synthase ex-
pression and activity, thus increasing NO production [42,44],
whereas sildenafil inhibits phosphodiesterase-5, increasing cyclic
GMP tissue levels [45]. Interestingly, while the combination of
both drugs resulted in improved effects in previous studies [20–
22], the same was not true in our 2K1C hypertension model and
vascular remodeling, and therefore pathways activated by cGMP
may not be critically involved in the effects reported here. Alter-
natively, since atorvastatin and sildenafil activate the same path-
way, the effects on intracellular cGMP levels were not amplified
when both drugs were associated. Consistent with our findings,
both drugs produced similar antihypertensive effects in other an-
imal models of hypertension [46–48], and in hypertensive patients
[49,50].

Some limitations of the present study should be taken into
consideration. The aortas used in the histological analysis in the
present study were fixed by simple immersion into the fixative
solution, and not after fixative solution perfusion via vascular
system, which could avoid arterial retraction upon excision of the
aortas [51]. While arterial retraction tends to increase vascular
cross-sectional area as compared to in vivo conditions, this effect is
probably not relevant when comparing aortas from treated and
untreated animals. Another limitation is that the doses of sildenafil
or atorvastatin used in the present study are more than one order
of magnitude above those used to treat patients. However, ex-
perimental studies in rats usually require such doses given sig-
nificant differences in many pharmacologic parameters when rats
are compared to humans.

In conclusion, treatment with atorvastatin and sildenafil was
associated with decreased vascular TGF-β levels and MMP-2 ac-
tivity in renovascular hypertensive rats and prevention of vascular
remodeling. These findings show novel beneficial pleiotropic ef-
fects of atorvastatin and sildenafil in a relevant hypertension
model and that may translate into clinical protective effects in
hypertensive patients. The similarity of biochemical effects asso-
ciated with both drugs may underlie the lack of sinergism between
them.
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