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Abstract

Background: Albeit the molecular mechanisms of gene expression are well documented, our understanding of
their dynamics is much less advanced. Recent experimental evidence has revealed that gene expression might be
accurately organized in space, with several molecular actors localized to specific positions in the cell. However, the
influence of this spatial localization on the dynamics of gene expression is unclear. This issue is also central in synthetic
biology, where one usually considers the spatial localization in the cell of the genes of the inserted synthetic construct
as irrelevant for its temporal dynamics.

Results: Here, we assessed the influence of the spatial distribution of the genes on the dynamics of 3-gene
transcriptional ring networks regulated by repression, i.e. repressilator circuits, using individual-based modelling
to simulate their dynamics in two and three space dimensions. Our simulations suggest that variations of spatial
parameters – namely the degree of demixing of the positions of the gene or the spatial range of the mRNA and
proteins (i.e. the typical distance they travel before degradation) – have dramatic effects by switching the dynamical
regime from spontaneous oscillations to a stationary state where each species fluctuates around a constant value.
By analogy with the bifurcations arising from the variation of kinetic parameters, we referred to those transitions as
space-induced bifurcations.

Conclusions: Taken together, our results strongly support the idea that the spatial organization of the molecular
actors of transcriptional networks is crucial for the dynamics of gene expression and suggest that the spatial
localization of the synthetic genes in the cell could be used as an additional toggle to control the dynamics of the
inserted construct in synthetic biology experiments.
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Background
In a seminal paper published more than 50 years ago
[1], F. Jacob and J. Monod proposed a generic mecha-
nism for protein synthesis in cells, whereby a DNA gene
produces a messenger RNA molecule (mRNA) which is
then used to produce the corresponding protein. They
also described how this gene expression process is con-
trolled by cytosolic macromolecules called repressors,
that stop the expression of a given gene by binding to it.
Since then, it was discovered that repressors are actually
proteins (or sometimes RNAs) produced by other genes
and that positive effectors (activators) also exist [2]. Fifty
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years of molecular studies have unravelled the complex-
ity of the underlying molecular machinery [3,4], but the
existence and biological significance of such repression-
based transcription systems have been thoroughly
confirmed.

The design, insertion in cells and theoretical analy-
sis of small synthetic transcriptional regulation networks
have proven to be very useful to our understanding of
the temporal dynamics of gene networks. From a purely
theoretical standpoint [5-7], repression-based transcrip-
tional regulation loops (i.e. ring networks), are generi-
cally expected to exhibit bistability with hysteresis (even
numbers of genes) or a regime of spontaneous periodic
oscillations (odd numbers of genes). Accordingly, inser-
tion of 2-gene repression-based synthetic loops in bacteria
indeed may give rise to bistable dynamics [8], whereas
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3-gene repression-based synthetic loops inserted into liv-
ing bacteria are capable of spontaneous oscillations with
a very long period (more than 2.5 hours, i.e. twice the cell
doubling time) [9]. In both articles [8,9], the construction
of the synthetic networks and their insertion and study in
living bacteria were accompanied by a short theoretical
study explaining why the observed dynamics were to be
expected. In both cases, the complex dynamics of inter-
est arose in the models via a bifurcation from a unique
stable steady state: varying one kinetic parameter, the
model predicts the occurrence of a saddle-node bifurca-
tion supporting bistability (2 genes) or a Hopf bifurcation
explaining the appearance of a limit cycle and its spon-
taneous oscillations (3 genes). Interestingly, both models
consisted of ordinary differential equations (ODE) that
assume mass action kinetics [10] for all the reactions.
This corresponds to a strong assumption about the inter-
nal medium of the cell that is supposed to be dilute,
perfectly-stirred and spatially homogeneous. Beyond its
importance for switch-like or oscillator circuits, this view
in fact has deep impact in the whole field of synthetic biol-
ogy. When inserting synthetic gene network constructs in
chassis cells, synthetic biologists usually do not consider
that the spatial localisation of the corresponding plasmids
or of the insertion points on the chromosome is an impor-
tant parameter for the temporal dynamics of the synthetic
construct. Whereas this viewpoint seems reasonable if
the hypothesis of a perfectly-mixed internal space is
valid, it should be questioned if spatial homogeneity
is violated.

Actually, the traditional view of the interior of the cell
as a perfectly-stirred and spatially homogeneous medium,
where the concentration of each reactant would be iden-
tical wherever one measures it inside the cell, has increas-
ingly been challenged by recent results, especially in
bacterial cells. First, recent advances in the measurement
of single particle trajectories inside living cells have unrav-
elled that the bacterial cytoplasm is a complex, extremely
crowded and dense medium that strongly affects molecule
mobility in a spatially non-homogeneous way [11-15].
Therefore, due to the intrinsic physical nature of the
cytoplasm, mobility inside the cytoplasm may not guar-
antee perfect mixing and homogeneous spatial distribu-
tion of its constituents. Recent experimental results have
shown that the position of chromosomes in the nucleus of
eukaryotic cells or the location of the genes on the bacte-
rial chromosome are not random or perfectly-stirred but
self-organized to sit on specific locations forming spatial
maps that are stable over long time scales [16,17]. Even
in bacteria, transcription is believed to be organized spa-
tially, with the major molecular actors assuming stable and
defined intracellular locations [18-20].

Despite this accumulating evidence of the localization of
the elements of transcriptional regulation networks inside

the cell, the influence of spatial properties on the tem-
poral dynamics of gene expression remains to be fully
described. Indeed, in the simplest instance of classical bio-
chemical reactions, the impact of spatial localization has
only recently received attention in the case of enzyme
complexes [21-23] and in the case of signalling clusters in
membrane domains [24-26]. All these results show that
spatial correlation strongly modifies the apparent chemi-
cal affinity involved in the pathway both for the transient
and equilibrium behaviors. Additionally, some evidence
suggest that this depends strongly on the actual diffusion
values.

In this paper, we use computer simulations to explore
if and how the localization of the genes can influence
the dynamics of small repression-based transcriptional
regulation ring networks. We focus on repression-
based transcriptional regulation loops composed of three
genes, i.e. repressilators. Using stochastic spatially-explicit
individual-based computer simulations, we find that the
localization in space of the genes is of crucial importance
to the dynamics of the system since it controls even the
global dynamics regime, i.e. whether the system fluctuates
around stationary values or exhibits spontaneous oscil-
lations. We show that when parameters related to the
spatial organization of the genes change, the repressila-
tor undergoes a sharp transition between the oscillatory
and stationary regime. Effective control spatial parame-
ters include the degree of demixing of the gene locations
or the spatial range (i.e. the typical distance travelled
before degradation) of the mRNA and proteins. Since this
transition is very similar to the bifurcations along the
kinetics parameters that are usually evoked to explain the
appearance of the oscillatory regime, we refer to it as a
space-induced bifurcation. Our results therefore unravel
the importance of spatial properties in the dynamics of
transcriptional regulation networks. Moreover, they sug-
gest that the spatial localisation of the synthetic genes in
the cell could be used as an additional toggle to control the
dynamics of the inserted construct in synthetic biology
experiments.

Methods
Our objective is to study the dynamics in time and
intracellular space of a generic transcriptional circuit
in a bacterial cell like E. coli. Extensively detailed real-
istic modelling of bacteria (whole-cell models), with
experimentally-derived values for most rate constants,
realistic cell space volume, protein size and diffusion coef-
ficients, and interaction with the metabolism, starts to
be accessible to today computer power [27-30]. However,
those models bear the limitation that many of the param-
eters still lack experimentally-derived values. Moreover,
their computational cost still forbids to use them for thor-
ough exploration of the parameter space with reasonable
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statistical significance, which is precisely the objective of
the present work. We therefore opted for simpler mod-
els and restricted our focus to the study of the major
processes implicated in transcriptional regulation (and
described in the seminal Jacob and Monod paper [1])
rather than taking into account extensive details of the cell
intracellular machinery.

Gene expression model
We considered a generic transcriptional circuit consist-
ing of three genes Gi, i ∈ {0, 1, 2} assembled in a cir-
cular circuit, or ring network, so that gene i represses
the expression of gene i + 1 (Figure 1A). Each gene Gi
is spontaneously (constitutively) transcribed into mRNA
Mi, that is in turn spontaneously translated to protein
Pi. Each gene features two binding sites for its repressor
protein set so as to achieve cooperative binding, i.e. the
binding affinity is larger when the gene is already bound
to a single protein. According to the circular circuit of
Figure 1A, each gene Gi can bind the protein product of
gene ī = (i + 2)mod(3) and single- or double-binding of a
gene shuts-off transcription (repression). These processes
can be described according to the following reaction
schemes:

∀i ∈ {0, 1, 2},

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gi
α−→ Gi + Mi

Mi
β−→ Mi + Pi

Mi
1/τM−→ ∅

Pi
1/τP−→ ∅

Gi + Pi
kon−−⇀↽−−
koff

G�
i

G�
i + Pi

kon−−⇀↽−−
koff2

G��
i

(1)

where i = (i+2)mod(3); α and β are the transcription and
translation rates, respectively; τM and τP are the lifetimes
of mRNA and proteins; G�

i and G��
i denote the singly-

and doubly-bound genes, respectively and kon, koff, koff2
the corresponding reaction rate constants. Note that to
keep the model as simple as possible, the values of those
constants were chosen identical for all genes i.

Mass action kinetics approximation
According to classical mass action kinetics, the reactions
of (1) are transcribed in the following system of ordinary
differential equations (ODEs):

where we used mass conservation for the different bound
fractions of the genes, i.e. Gi +G�

i +G��
i = GT

i = constant.

Parameter values and numerics
Numerical integration (4th order Runge-Kutta method)
and bifurcation analysis were performed with Xppaut
(available at www.math.pitt.edu/~bard/xpp/xpp.html). To
keep the model as generic as possible, we expressed time
in multiples of the integration time step (�t = 1),
thus yielding reaction rate constants expressed as inverse
of time steps. The bifurcation diagram was explored
along the protein lifetime τP and the transcription rate α

(Figure 1B-C). Those parameters were thus varied over
several orders of magnitude. The values of the trans-
lation rate β and the mRNA lifetime τM were set so
as to ensure realistic copy numbers of proteins and
mRNAs. mRNA copy number in single E. coli cells was
quantified between < 0.1 and 5 [31] or even up to
50 for strongly expressed promoters like the Plac pro-
moter under strong induction [32]. Protein copy numbers
vary over a wide range, from 10 to 105 [31,33], result-
ing in a protein/mRNA copy number ratio that is roughly
between 102 to 104 [31]. In our model, the range of
mRNA/Protein copy number Mi/Pi is given by the prod-
uct of parameters τPβ . Since τP was varied between 103

and 106 in the bifurcation diagram, we set β = 0.1. In
E. coli, the typical lifetime of mRNAs (minutes or less) is
much smaller than that of proteins (larger than one cell
cycle), especially fluorescent reporter proteins (like GFP)
[31,34]. Considering the range of values over which the
protein lifetime τP was varied, we fixed τM = 50 time
steps.

The affinity of DNA regulation proteins (transcription
factors) for their specific DNA site is also variable, but typ-
ically reported values are between 0.5–1.0 nM [35] and
several tens (to few hundreds) of nM [36,37]. Given a total
E. coli cell volume of 3 fl [38], we set kon = 10−5 per
molecule per time step and koff = 10−3 and koff2 = 10−5

per time step. This corresponds to affinities of 55 and
0.55 nM for the free (unbound) and singly-bound genes,
respectively. Finally, we considered that each of the three
genes can be present in the bacterial cell in multiple copies
(i.e. GT

i > 1). Indeed, even with low copy number plas-
mids (as used in [9]), each gene is introduced in 3 − 4
to 10 copies [39]. Therefore, unless otherwise specified
the number of copies per gene type was set to GT

i = 5
(∀i ∈ {0, 1, 2}).

∀i ∈ {0, 1, 2},

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dGi
dt = −konGiPi + koffG�

i
dMi
dt = αGi − Mi/τM
dPi
dt = βMi − Pi/τP − konPi

(
Gi−1 + G�

i−1

)
+ koffG�

i−1 + koff2
(

GT
i−1 − Gi−1 − G�

i−1

)

dG�
i

dt = konPi
(
Gi − G�

i
) − koffG�

i + koff2
(
GT

i − Gi − G�
i
)

(2)

www.math.pitt.edu/~bard/xpp/xpp.html
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Figure 1 Mass action kinetics predict that 3-gene repression-based transcriptional circuits are generic oscillators. (A) A generic transcriptional
circuit with three components and circular repression. Gi , Mi and Pi refer to the gene, mRNA and protein, respectively, of components i ∈ {0, 1, 2}.
(B) Bifurcation diagram of the mass action kinetics approximation of the model of (A) ((2)) in the (τP − α) plan. Two Hopf-Bifurcation branches
(full lines) separate a region of spontaneous oscillatory behavior (grey area) from stable steady state behavior. (C) Bifurcation diagram along τP for
α = 0.1 (green dashed line in B). Full thick black lines locate stable steady-states, the dashed black line locates unstable steady-states, and thick
green lines show minimal and maximal values (envelope) of limit cycle oscillations. (D) Spontaneous oscillations of the three proteins for α = 0.1
and τP = 3 × 105 (green star in B). All other parameters were according to the standard set defined in the Methods section.

Individual-based simulation of the spatial dynamics
A spatially-explicit stochastic individual-based (Monte-
Carlo) simulator of the set of biochemical reactions given
by (1) was implemented as a lattice-based algorithm pro-
grammed in C. Boundary conditions were periodic. Each
of the 3 gene types were present in GT copies.

Spatial configuration of the genes
The initial locations of the 3GT genes were set according
to one of the following three scenarios (Figure 2):

• In the uniform configuration, the 3GT gene copies
were positioned at independent randomly-chosen
lattice sites (with uniform probability).

• In the clustered configuration, we first positioned
GT internal boxes of linear size r on the lattice.
One copy of each gene i ∈ {0, 1, 2} per box was
then positioned at a randomly chosen location
inside the box.

• In the segregated configuration, we first positioned 3
internal boxes of linear size r on the lattice. Each of
the 3 boxes received all of the GT copies of gene 0, 1
or 2, positioned at randomly chosen locations inside
the box.

When the box size r converges toward the lattice size
R, the clustered and segregated configurations are clos-
ing to the uniform one. The ratio r/R can thus be used

to quantify the amount of demixing (segregation or clus-
tering): vanishing demixing for r/R → 1 and strong
demixing for r/R → 0. The thus defined gene locations
were kept constant during the simulation, i.e. the genes
were immobile.

Simulation algorithm
At the beginning of each simulation, we place 10 mRNA
and 104 proteins of each type i at random positions (with
uniform distribution) on the lattice. At each Monte-Carlo
time step (�t = 1), the reaction events (transcription,
translation, binding and unbinding) are simulated accord-
ing to the following schedule:

1. Each free (unbound) gene copy transcribes a new
mRNA molecule Mi with probability α.

2. Every mRNA molecule Mi can be degraded (with
probability 1/τM) or can translate a new protein Pi
(with probability β ≤ 1 − 1/τM). If not degraded,
each mRNA then undergoes a random walk step
(see below).

3. Each free (unbound) protein is degraded with
probability 1/τP or undergoes a random walk step
(with probability 1 − 1/τP).

4. Whenever a free protein Pi shares its lattice site with
a free target gene Gi−1 or singly-bound target gene
G�

i−1, binding occurs with probability kon.
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Figure 2 Spatial configurations of the genes in the individual-based model. This scheme illustrates the case GT = 5 in 2D. In the uniform
configuration, the 15 gene copies are positioned at independent randomly-chosen lattice sites, whereas in the clustered and segregated configurations,
we start by positioning internal boxes of linear size r at random positions in the lattice, and place the gene copies inside the boxes. In the clustered
configuration, each box contains one copy of each gene type i ∈ {0, 1, 2}, randomly positioned, while in the segregated configuration, each box
receives all the GT copies of gene 0, 1 or 2, positioned at randomly chosen locations. When the internal box size r tends to the lattice size R, both
clustered and segregated configurations converge to the uniform configuration.

5. Bound gene-protein complexes that were formed
before the current time step can unbind depending
on their occupancy status, i.e. with probability koff or
koff2, if singly- or doubly-bound, respectively.

At each random walk step, the walker changes its cur-
rent location with probability pmove, moving to one of
its 4 (2D) or 6 (3D) randomly-chosen nearest neighbors
(with uniform probability). This corresponds to diffu-
sion coefficient D = pmove/4 (2D) or D = pmove/6
(lattice spacing)2/time step (3D). Note that all diffusive
molecules (mRNA and proteins) have identical diffusion
coefficient.

Parameter values and numerics
The internode distance of the space lattice was set to
�x = 1 (arbitrary units, a.u.) and the lattice size was
set to R × R = 400 × 400 a.u.2 (2D) or R × R × R =
60×60×60 a.u.3 (3D). Time was expressed in numbers of
Monte-Carlo (MC) time steps. Regarding the values of the
other parameters, our goal here was to compare with the
dynamics predicted by mass action kinetics. Therefore,
unless otherwise specified, the standard set of parameters
in the individual-based simulations was taken identical to
the mass action kinetics model above, i.e. GT = 5 copies,
τM = 50 MC time steps, τP = 103 MC time steps;
probability rates in (MC time steps)−1: α = β = 0.10,
koff = 10−3 and koff2 = 10−5. Note that the value of
kon for individual-based simulations is expected to differ

from the value used in mass action law kinetics. Indeed
in the former, kon is a reaction probability rate upon reac-
tant encounter in space, while in the latter kon is a classical
reaction rate constant that, in addition to the reaction
probability upon reactant encounter also accounts for
reactant encounter probability. Taking the size of the reac-
tion volume into account (400 × 400 or 60 × 60 × 60) we
estimated that kon = 1 per MC time step per encounter
in individual-based simulations was comparable with the
value used in the mass action kinetics model. Finally, the
standard value of the movement probability was set to
pmove = 1.0, yielding diffusion coefficients D = 0.250 or
0.167 a.u.2/MC time step in 2D and 3D, respectively.

Quantifying gene expression dynamics
To analyze the resulting simulation dynamics, we used
the first zero crossing of the autocorrelation function.
For each protein time series Pi(j�t), j ∈ {0, 1, . . . , 107}
resulting from the individual-based simulations, we first
sliced each protein time series into 100 segments of iden-
tical length l = 105 time steps. On each window, the
autocorrelation function was computed as

ACF(τ ) = E
[(

Pi(j�t + τ) − Pi
) (

Pi(j�t) − Pi
)]

σ 2
Pi

where E[ ] denotes expectation over the time points, Pi is
the mean of the time series over the window, σ 2

Pi
its vari-

ance, j ∈ [0, l − τ ] and the lag time τ ∈ [0, l − 1]. We then
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averaged the ACF(τ ) values across each segment of the
time series. The first zero crossing of the thus averaged
ACF (FZCA) is the smallest value τ0 such that ACF(τ0) =
0. One FZCA was computed for each protein time series
resulting from the individual-based simulation. For each
simulation run, we retained the minimal value among the
three estimated values (one per protein type). Note that
the first 2 × 106 MC time steps of each time series were
rejected to discard transient behaviors.

Results
Here, we study a generic transcriptional circuit consisting
of three genes Gi, i ∈ {0, 1, 2} forming a transcriptional
ring network of repression: G0 represses the expression of
G1, G1 represses G2 and G2 closes the loop by repress-
ing G0 (Figure 1A). Such repression-based transcriptional
circuits are sometimes referred to as “repressilator” cir-
cuits in the literature [9], because circuits made of odd
numbers of negative interactions are, generically, poten-
tial spontaneous oscillators [6,7]. In agreement with the
model proposed by Jacob and Monod [1], we assume that
each gene Gi is active in the absence of bound protein,
thus producing mRNA transcripts Mi (at rate α) then the
corresponding protein Pi (rate β). Each gene Gi can bind
up to two copies of its repressing protein, with cooperative
binding. Once bound, genes stop transcribing mRNAs.
mRNAs and proteins have finite life-times τM and τP
respectively. See Methods for further details, in particular
the set of elementary reaction schemes (1) that describes
the system.

In the following, we study this generic repression-based
transcriptional circuit with two modelling approaches: the
traditional mass action kinetics, that assume perfectly-
stirred conditions (infinitely fast mixing) thus neglect-
ing the effects of spatial fluctuations and stochastic
individual-based (Monte-Carlo) simulations that explic-
itly take into account spatial fluctuations.

Mass action kinetics predict spontaneous oscillations
The traditional approach in biochemistry to model the
kinetics of such generic repression-based transcriptional
circuit is based on the theory of elementary chemical reac-
tion kinetics, usually referred to as “Mass action kinetics”
[10]. Mass action kinetics are mean-field approximations
assuming that the reaction medium is dilute, perfectly-
stirred and spatially homogeneous. Under those assump-
tions, one considers that the local fluctuations of reactant
concentration (induced by e.g. the reaction itself ) can be
neglected and replaces local reactant concentrations by
their average values over a large spatial domain (usually
the whole reaction volume). For the generic repression-
based transcriptional circuit studied here, mass action
kinetics yield the system of 3×4 coupled Ordinary Differ-
ential Equations (ODEs) shown as (2).

Figure 1B-C shows a bifurcation analysis of these
equations. In the two-dimensional parameter space
defined by the transcription rate α and the protein life-
time τP, the system presents two regions delineated by two
Hopf bifurcation branches. Outside the region enclosed
by the Hopf bifurcation branches, (2) has a single, sta-
ble steady-state (the white region in Figure 1B). All the
reactants are therefore predicted to converge at long
times to stationary values. Inside the grey region of
Figure 1B, this steady-state loses its stability and this sta-
bility loss is accompanied by the birth of a stable limit
cycle (Figure 1C). The points in the parameter space
where the steady-state changes stability and the limit cycle
appears constitute the Hopf Bifurcation branches. The
dynamics in the region delimited by the Hopf bifurca-
tion branches thus consists in spontaneous oscillations
where all the mRNA and protein species oscillate in time
(Figure 1D). Because of the cyclic cooperative repression,
protein oscillations are two-by-two anti-synchronized:
protein Pi reaches its peak values when Pi−1 is minimal.

Individual-based simulations predict strong dependence
on the spatial locations of the genes
Mass-action kinetics, albeit widely used, is actually just
one methodology among several others to model the
dynamics of the reaction set (1). To evaluate the possi-
ble effects of the spatial extension of these reactions, one
has to employ alternative modelling methodology. Spa-
tially explicit individual-based simulations (Monte-Carlo
simulations, see Methods) explicitly describe the diffusive
motion of each individual mRNA and protein molecules
and emulate the reaction steps of (1) as stochastic pro-
cesses whenever the concerned reactants encounter in
space along their respective random walk (diffusion). Just
like for the mass action kinetics, each gene type i ∈
{0, 1, 2} is present in GT copies. In agreement with previ-
ous models of the influence of diffusion on gene expres-
sion [40,41], we assumed that the amplitude and speed of
the gene displacements in space can be neglected com-
pared to the mRNA and protein, so in our simulations,
the genes are immobile and only the mRNAs and pro-
teins move via Brownian motion (with identical diffusion
coefficients).

To set the positions of the 3GT genes in space, we com-
pared three scenarios that correspond to various degrees
of mixing (Figure 2):

• The uniform configuration corresponds to a perfect
mixing of the genes: all 3GT gene copies are positioned
at independent randomly-chosen locations.

• The clustered configuration corresponds to a first
case of demixing: GT gene triplets composed of one
G0, one G1 and one G2 gene are restricted inside
non-overlapping subregions of space
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• The segregated configuration illustrates a different
case of demixing: the 3 gene types i ∈ {0, 1, 2} are
segregated into 3 subregions of space, each subregion
containing all the GT copies of a given type.

The degree of demixing of the genes can be continu-
ously adjusted by setting the ratio r/R between the size
of the local segregation subregions r and that of the total
reaction space R. Demixing is strong for r/R → 0 (either

for the clustered or segregated scenario) but disappears
when r/R → 1.

Figure 3A shows the time courses of the three protein
types during a typical simulation of the individual-based
stochastic model with uniform gene configuration in 2D.
Obviously, the time series have highly noisy aspects since
in these simulations, both the occurrence of reactant
encounter and the reaction realization upon encounter of
the reactants are random processes. The oscillatory nature
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Figure 3 The spatial configuration of the genes may alter the dynamical regime (2D simulations). These time courses of the total number of
proteins (P0 in blue, P1 red and P2 green) in the reaction space were obtained using spatially-explicit stochastic individual-based simulations in 2D.
The spatial configuration of the genes corresponded to the (A) uniform, (B) clustered (r = 3) or (C) segregated (r = 3) scenarios of Figure 2. The
autocorrelation function for each of these three spatial configurations is shown in (D) (see Methods for calculation of the autocorrelation function).
Size of the spatial domain R = 400, GT = 5 copies. All other parameters were according to the standard set defined in the Methods section.
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of the time series is however apparent beyond the noise.
The peak protein number roughly agrees wight the predic-
tions of the mass action kinetics with identical parameters
(i.e. between 1,000 and 3,000 copy numbers; compare
with Figure 1D). The protein peaks still show a certain
level of two-by-two anti-synchronization, although it is
much less strict than in the deterministic version (i.e. P2
peaks most often coincide with low levels of P0 but this
is not systematic anymore). To quantify the oscillatory
trend, we computed the autocorrelation (ACF) function
of the time series (Figure 3D). In the uniform configu-
ration, the autocorrelation function has a shape typical
of oscillatory time series. It slowly decreases to its first
zero crossing, after which it becomes negative and pro-
ceeds to oscillate. The first zero crossing of the ACF
(FZCA) occurs at a delay of 0.264 × 106 MC times steps.
This large value actually defines the period of the oscil-
lations in Figure 3A. Again this value is similar to the
period predicted by mass action kinetics for the same
parameter values (Figure 1D). Moreover, visual inspec-
tion of the time series for the clustered configuration with
strong demixing (small r/R, Figure 3B) indicates that the
dynamics are very similar to the uniform case. Accord-
ingly, the ACF in the clustered case hardly departs from
the uniform one (Figure 3D) and yields almost identical
FZCA (0.260 × 106 MC time steps). We conclude that for
the uniform and clustered gene configurations (even with
strong demixing), the individual-based stochastic simula-
tions in 2D show temporal dynamics that are very similar
to those predicted by mass action kinetics, even though
their salient features are blurred by a high degree of
stochasticity.

The results of the 2D individual-based stochastic sim-
ulations for the segregated gene configuration with large
demixing however show a strikingly different behavior
(Figure 3C). After a transient period, protein levels do
not show evidence of oscillations any longer but reach
a stationary level around which they fluctuate. In some
cases, the stationary regime for one of the proteins can
even correspond to a stably and completely repressed state
(G2 in the example shown in Figure 3C). As a result,
the dynamics consists of two proteins (P0 and P1 in the
case shown in Figure 3C) fluctuating around a station-
ary level, while a third one (P2 in Figure 3C) has van-
ished. We insist here on the fact that the only difference
between the oscillatory regime in Figure 3A-B and the
stationary one in Figure 3C are the spatial locations of
the 5 × 3 immobile genes. All the other parameters (rate
constants, species densities/concentrations, lifetimes . . . )
are identical. This is a major result of our paper: chang-
ing a purely spatial characteristics (here the positions
of the genes) is enough to change the system dynamics
in a qualitative manner (from oscillatory to stationary).
Since they do not include spatial characteristics, mass

action kinetics cannot account for this kind of global
change of dynamics. Even worse, the dynamics illus-
trated in Figure 3C cannot be predicted at all by mass
action kinetics. Indeed, according to mass action kinet-
ics ((2)), the only reachable regime consists in a stationary
state in which the stationary quantities of protein Pi are
identical ∀i ∈ {0, 1, 2} (since the kinetic parameters are
identical for the 3 genes/mRNA/protein types). In other
words, the only accessible stationary state according to
mass action kinetics should have P0(∞) = P1(∞) =
P2(∞), whereas Figure 3C evidences the existence of a
stationary regime where P0(∞) = P1(∞) � 0 and
P2(∞) ≈ 0.

To quantify the difference between those two regimes,
we found that the first zero crossing of the ACF is a very
good quantifier. Figure 3D shows the ACF for the segre-
gated case of Figure 3C. This ACF is typical of stochas-
tic time series fluctuating around a stationary mean: it
decreases very rapidly with the autocorrelation delay and
is roughly devoid of subsequent oscillations. It is very easy
to distinguish it from the ACF of the uniform and clus-
tered configuration that are typical of oscillating regimes,
with large period. In particular the first zero crossing
(FZCA) is found much smaller in the stationary segre-
gated configuration (0.041 × 106 MC time steps) than in
the oscillatory uniform or clustered ones (> 0.2×106 MC
time steps). In the following, the FZCA will thus be used
as a quantifier to distinguish between stationary regimes
(FZCA on the order of 10 thousands MC time steps) and
oscillating ones (FZCA of several hundred thousands MC
time steps).

A bifurcation based on the spatial localization of the genes
The segregated and clustered configurations illustrated in
Figure 3 above correspond to high demixing (i.e. r/R <

0.010). We then investigated how the observed effects
depend on the degree of demixing.

Figure 4 shows the evolution of the FZCA averaged
over several simulation runs, as the degree of mixing
(r/R) changes. As expected, the three spatial configu-
rations converge to the same regime when the location
of the genes is well-mixed (r/R → 1). This corre-
sponds to the oscillatory regime with long period (aver-
age FZCA ≈ 0.16 × 106 MC time steps) illustrated in
Figure 3A. Therefore, when the positions of the genes
are well-mixed, the effect of the gene position vanishes,
and all tested spatial configurations tend to the uni-
form one, corresponding roughly to the prediction of
the mass action laws. In the clustered configuration, the
average FZCA keeps large values whatever the degree of
mixing (at least within the range of tested parameters).
Therefore the dynamics of the clustered configuration is
expected to mostly agree with the prediction from mass
action kinetics, yielding slow oscillations for all mixing
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Figure 4 The switch from oscillations to stationarity as a demixing-induced bifurcation of the segregated configuration (2D simulations).
The average value of the first zero crossing of the ACF (FZCA) is reported as a function of the degree of demixing r/R, for uniform (black line),
clustered (brown circles) or segregated (magenta circles) gene configurations. For each value of r/R and each gene configuration, 20 simulations
were run (with different realizations of the random choices). Circles (or full horizontal lines) are the average of the 20 resulting FZCA while bars
(or dashed horizontal lines) show ± 1 s.d. Labels (a), (b) and (c) locate the parameters used to generate the corresponding subpanels of Figure 3.
Size of the spatial domain R = 400, GT = 5 copies. All other parameters were according to the standard set defined in the Methods section.

degrees (period = several hundred thousands of MC time
steps).

Here again the segregated scenario yields a very
different picture (Figure 4). For large enough mixing
(i.e. r/R � 0.5), the dynamics remain oscillatory, with
FZCA values that are indistinguishable from the uniform
case. For r/R < 0.5, though, the average FZCA progres-
sively decreases with increasing demixing, switching from
oscillatory values (> 0.1 million MC time steps) to val-
ues typical of stochastic fluctuations around a stationary
state (<0.05 million MC time steps). The correspond-
ing curve actually describes a bifurcation: as demixing
crossovers the critical value (r/R)c ≈ 0.5, the dynamics
undergoes a global (qualitative) change from oscillatory to
a stable stationary state. However, the bifurcation param-
eter here is not a kinetic parameter or density parameter,
as usually the case, but a parameter related to the spa-
tial locations of the genes. We refer to this behavior as a
space-induced bifurcation.

In the results of Figures 3 and 4, the mRNA have a
finite lifetime of τM = 50 MC steps. With infinite mRNA
and protein lifetimes, each protein molecule would be
able to reach any gene position given enough time, yield-
ing perfect mixing (albeit possibly slow). One therefore
does not expect to observe the spatial effects reported
in Figures 3 and 4 when the protein or mRNA lifetimes
diverge. Figure 5A shows the FZCA values obtained for
different values of the mRNA degradation rate (i.e. the

inverse of the mRNA lifetime 1/τM). When the degrada-
tion rate vanishes (i.e. the lifetime diverges), the FZCA
converges to a unique value (around 80 thousands time
steps, labels a′ − c′), independently of the gene spatial
configuration. This common regime (see Figure S1 in the
Additional file 1) corresponds to an oscillatory regime for
all the spatial configurations, even the segregated config-
uration with high demixing r/R → 0. Therefore, in the
limit of very large mRNA lifetimes, the observed regime
is in agreement with the predictions of the mass action
kinetics: an oscillatory regime that does not depend on the
positions of the genes. The space-induced effects unveiled
in Figures 3 and 4 start to be significant when the spa-
tial range of the mRNAs τMD or proteins τPD (i.e. the
typical average distance travelled before degradation, also
referred to as the Kuramoto length [41]) decreases. In
other words, the oscillatory regime disappears when the
distance between a given segregated gene cluster and the
cluster of its repressive genes is too large compared to
the mRNA or protein spatial range, thus failing to yield
efficient repression.

Finally, Figure 5B shows the FZCA values obtained
when the copy number of each gene (GT ) is varied. In
the spatial configurations with large demixing (clustered
or segregated configurations), decreasing the number of
genes does not qualitatively change the dynamics (see
Additional file 1: Figure S1b′′ and c′′ in the Supporting
Material): even with a single copy of each gene type,
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Figure 5 The space-induced bifurcation depends on kinetics parameters (2D simulations). The average value of the first zero crossing of the
ACF (FZCA) is reported as a function of the mRNA degradation rate 1/τM (A) or the number of gene copy GT (B) for uniform (black circles), clustered
(brown circles) or segregated (magenta circles) gene configurations. For each value of parameters and each gene configuration, 20 simulations
were run. Circles are the average of the 20 resulting FZCA and bars ± 1 s.d. In both panels, the horizontal coordinates are shifted for readability.
Labels (a), (b) and (c) locate the parameters used to generate the corresponding subpanels of Figure 3, while labels (a’), (b’), (c’) and (a”), (b”), (c”) refer
to the examples shown in Additional file 1: Figure S1 (a”), (b’) and (c’) and Additional file 2: Figure S2 (a”’), (b”) and (c”), respectively, in the Supporting
Material. Wherever applicable (i.e. except for the uniform configuration), the size of the internal boxes was r = 3. All other parameters were
according to the standard set defined in the Methods section.

the segregated configuration keeps stationary dynamics
whereas the clustered one maintains its oscillatory regime
(albeit with modified waveform). The behavior with the
uniform configuration is more complex. By definition,
with a unique copy of each gene (GT = 1), the uni-
form and segregated spatial configurations are identical.
One the other hand, with standard parameters (i.e. GT =
5 copies of each gene), the above results show that the
dynamics of the uniform configuration is essentially iden-
tical to the clustered configuration. Therefore, in the
uniform configuration, one expects a transition from the
oscillatory to the stationary regimes when the number of
gene copy decreases from 5 to 1. Figure 5B shows that
this transition occurs between GT = 2 and GT = 3. For
GT ≤ 2 copies the uniform spatial configuration display
the stationary dynamics typical of the segregated config-
uration (Additional file 2: Figure S2) whereas for GT ≥
3, the dynamics is oscillatory, similar to the clustered
configuration.

Taken together, those results show that with spatially
explicit dynamics, the system still displays bifurcations
when the kinetic parameters are varied. Spatial parame-
ters thus bring an additional dimension to the bifurcation
diagrams, in addition to the kinetic ones.

Space-induced bifurcation in three dimensions
In the above results, the movement of the reactants
in the stochastic individual-based simulations occurred
along a two-dimensional spatial domain. Lattice-based

simulations of Brownian diffusion in two dimensions are
less demanding in terms of computation cost than in three
dimensions, thus permitting exploration of the parame-
ter space with reasonable accuracy and sampling. How-
ever, compared to two dimensions, Brownian diffusion
in three dimensions has fundamentally different prop-
erties regarding how space is explored (compactness of
the random walk) [42,43]. In this section, we show that
the occurrence of space-induced bifurcation is robust to
those changes in compacity and is preserved in three
dimensional systems.

Figure 6A shows the evolution of the average FZCA
when the degree of demixing changes in 3D. Just like in
2D (Figure 4), the dynamics remains oscillatory for the
clustered configuration whatever the degree of demix-
ing, while a space-induced bifurcation occurs at large
demixing (small r/R values) for the segregated configura-
tion: the dynamics changes from oscillatory to stationary
when demixing increases. Note that the effect of increas-
ing degrees of demixing is less marked in 3D than in
2D (Figure 4), as a result of the changes in the proper-
ties of diffusion. However, like in 2D, the space induced
bifurcation is mostly governed by the spatial range of the
proteins and mRNA, i.e. the average distance travelled
before degradation (τMD and τPD). In Figure 6B, we thus
manipulate the spatial range by changing the diffusion
coefficient D of the mRNA and of the proteins. Since we
keep the lifetime of both species constant in those sim-
ulations, the smaller the diffusion coefficient, the smaller
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Figure 6 Space-induced bifurcations are also observed in three dimensions. The average value of the first zero crossing of the ACF (FZCA) is
reported as a function of the degree of demixing r/R (A) or the diffusion coefficient D (B) for uniform (black full line), clustered (brown circles) or
segregated (magenta circles) gene configurations in 3D. For each value of parameters and each gene configuration, 20 simulations were run. Circles
and horizontal full black line are the average of the 20 resulting FZCA while bars and horizontal dashed line show ± 1 s.d. The protein times series
shown in (C) illustrate the two dynamic regimes reached when changing the diffusion coefficient in the uniform configuration: stationary state
((C1), D = 1.67 × 10−3) or oscillations with low ((C2), D = 1.67 × 10−2) or high ((C3), D = 1.67 × 10−1) frequency (note the difference in time
scale in C3). All other parameters were according to the standard set defined in the Methods section.

the spatial range. For very large values (D > 0.1 a.u.2/MC
time step), the spatial range is so large that each mRNA
and each protein can explore most of the whole accessible
space before degradation, thus yielding effective perfect
mixing, even if the gene positions are not well mixed.
In this case, the three types of gene configurations yield
oscillatory dynamics (Figure 6C3). Note that in this case,
the regime is oscillatory with high frequency (period of
roughly 50,000 MC time steps). The low FZCA value in
Figure 6B for D > 0.1 thus reflects those low-period oscil-
lations, not noisy fluctuations around a stationary state. In
a qualitative way, this is a similar phenomenon to labels
(a′−c′) in Figure 5A: when the spatial range is large (either
because the degradation rate is low or the diffusion coef-
ficient large), spatially explicit simulation converge to the
predictions of the mass action kinetics and whatever the
spatial configuration of the genes, the dynamical regime is
oscillatory.

When the diffusion coefficient decreases, the dynamics
in those 3D simulations exhibits two phases: for inter-
mediate diffusion coefficients, i.e. D � 10−2 a.u.2/MC
time step (Figure 6B) the regime remains oscillatory for all
the gene configurations (Figure 6B), but the period of the

oscillations increases to recover the values observed for
the oscillatory regimes in 2D above (i.e. close to 200,000
time steps, compare Figure 6C3 with Figure 3A). When
the diffusion coefficient decreases further (D � 2 × 10−2

a.u.2/MC time step), the behavior depends on the spatial
configuration of the genes. With the clustered configura-
tion, the oscillatory regime persists (with low frequency),
at least in the limit of the values of D that we tested.
With the uniform or segregated configurations however,
the dynamics exhibit a qualitative change as D decreases
below 2 × 10−2, switching from an oscillatory regime
(Figure 6C2) to a stationary one where all species fluctu-
ate around a constant steady state (Figure 6C1). Therefore,
this is a further illustration that space-induced bifurca-
tions are also observed in 3D when the spatial range
decreases. In agreement with our 2D results above, the
segregated configuration appears to be more sensitive
than the uniform one: the oscillatory-stationary bifurca-
tion seems to necessitate less reduction of the diffusion
coefficient in the segregated configuration than in the uni-
form one. This observation is a further example that the
dynamic regime in our system is strongly controlled by the
gene positions in space.
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Discussion
Our goal in this study was to investigate whether
space can influence the temporal dynamics of repressi-
lator circuits i.e. 3-gene repression-based transcriptional
regulatory loops, that exhibit prototypical spontaneous
oscillations in certain ranges of kinetic parameters (tran-
scription/translation rate, species lifetimes). We used
spatially-explicit stochastic individual-based modelling to
simulate repressilator circuits in 2D and 3D, with vari-
ous degrees of demixing of the gene positions in space.
Our main finding is that variations of some spatial param-
eters (degree of demixing of the genes, spatial range of
the mRNA and proteins) can have dramatic effects on the
system dynamics, switching it from the spontaneous oscil-
latory regime to a stationary regime where each species
fluctuates around constant values. This effect is similar
to the bifurcations along the kinetic parameters that are
usually evoked to explain the appearance of the oscilla-
tory regime in those systems. We thus referred to it as a
space-induced bifurcation. Our study therefore indicates
that spatial parameters should be considered as addi-
tional bifurcation dimensions to the kinetic parameters to
predict the dynamics of those systems. This conclusion
strongly supports the idea that the spatial organization of
the molecular actors of transcriptional networks is crucial
for the dynamics of gene expression.

The possibility that the positions in space of the ele-
ments of intracellular biochemical systems may control
their dynamics has already been suggested in previous
works (see e.g. [24-26,44-46]). In the specific case of the
dynamics of gene expression, the study of the influence
of space on the dynamics of the expression of an isolated
gene has recently started to be explored with compu-
tational or theoretical approaches. The main conclusion
was that diffusion of mRNAs and proteins and the spa-
tial correlations created by the coupling with reaction,
can strongly increase the fluctuations of gene expres-
sion, i.e. noise [40,41,47]. Our results is a significant
advance in this problem since we consider gene networks
(albeit small ones), not a single isolated gene and we
show that the alterations of the dynamics due to spatial
parameters in those systems may be qualitative: beyond
changing the mean value or the fluctuations, they may
even alter the global regime of the dynamics (stationary
vs oscillatory).

From our simulation results, two major experimental
predictions emerge concerning the dynamics of 3-gene
repression-based transcriptional ring networks. If each of
the 3 genes is present in a single copy (see Figure 5B, GT =
1), we expect the dynamics to be stationary in most cases,
except if each of the repressor gene is located very close
to its repressed target gene (i.e. the clustered scenario).
In other words, we predict that spontaneous oscillations
may be difficult to obtain in networks with a single copy

of each gene. Moreover, our study suggests that the spa-
tial range of the proteins and mRNAs, i.e. their Kuramoto
length (the typical distance they travel before degrada-
tion), is a major determinant of the system dynamics.
The precise location of the genes is likely to control the
dynamics when the spatial range (i.e. the product of the
protein or mRNA lifetime and its diffusion coefficient)
is not too large. For large spatial ranges (i.e. Figure 5A,
1/τM = 0.005 or Figure 6B, D = 0.167), the expected
regime agrees with the prediction of mass action kinetics,
i.e. spontaneous oscillations with the kinetic parameters
we used. Therefore, in vivo, space-induced bifurcations
should be significant in systems where the lifetimes and/or
the diffusion coefficient of the mRNAs and/or proteins are
limited.

Estimating the spatial range of intracellular proteins in
vivo is still a challenge for experimental biology. Based
on the measured diffusion coefficient of Fus3 MAP
kinase in the yeast [48] or that of GFP in E. coli [49],
Cottrell et al. [41] obtained coarse estimates leading to
the conclusion that cytoplasmic proteins should have spa-
tial ranges that are much larger than the cell itself. This
leads to the widespread opinion that the spatial distri-
bution of cytoplasmic proteins in the cell is uniform
(well-mixed). However, even in bacteria like E. coli, this
idea is questionable. First, consistent recent experimen-
tal evidence suggest that many proteins adopt localized
distribution inside the cell, in opposition to a well-mixed
situation [50-53]. The molecular actors of gene expression
in C. crescentus or E.coli may even present a very specific
spatially-organized intracellular structure [20], with, in
particular, chromosomally-expressed mRNAs that exhibit
very low diffusion coefficients [19]. Another recent and
very symbolic example is LacI, the repressor of the lac
operon. Direct measurements of the diffusion coeffi-
cient of LacI in living E.coli cells indicate rapid diffusion
(D of the order or 0.1–1 μm2/s) and consequently suggest
a very large spatial range [54]. However, recent measure-
ment of the steady-state distribution of LacI inside living
E.coli revealed that depending on the location of the lacI
gene on the bacterial chromosome, the distribution of the
LacI protein can either be homogeneous or highly inho-
mogeneous and mostly localized [55]. In fact, the diffusion
of proteins and mRNAs in living cells, even in simple and
small cells like E.coli is far from a simple Brownian motion.
This may lead to violations of the hypotheses that underly
coarse estimations of the spatial range. First, for macro-
molecules that interact with DNA, the diffusion process
itself is composite (facilitated diffusion) because part of it
occurs in 3D in the bulk and part of it as a restricted slid-
ing movement along the DNA molecule [56-58]. More-
over the bacterial cytoplasm itself does not present the
usual properties of a liquid. It is a complex, extremely
crowded and dense medium that strongly protein and



Lo Van et al. BMC Systems Biology 2014, 8:125 Page 13 of 14
http://www.biomedcentral.com/1752-0509/8/125

mRNA mobility in a spatially non-homogeneous way
[11-15]. How exactly those complex properties arise from
the intracellular elements and how exactly they alter
molecule mobility is still unclear [15], but theoretical
arguments indicate that such macromolecular crowd-
ing may strongly affect the dynamics of gene expression
[47,59]. We conclude that, in spite of the rather large
values measured for the diffusion coefficient of some pro-
teins or mRNAs, the physical nature of the cytoplasm is
likely to considerably restrict the spatial range of proteins
and mRNAs. Therefore, one would generically expect that
space-induced bifurcations may be significant in living
cells.

One possibility that we have left unexplored in the
present work is that of an inverse transition: starting from
a region in the parameter space where mass action kinet-
ics predict a stable steady state (i.e. the white region in
Figure 1B), can oscillations be induced by manipulation of
some spatial parameter? We first stress that the observed
shunting down of oscillations resulting from spatial segre-
gation is not exactly a return to the steady state of the mass
action kinetics, since in the latter, all three proteins are
predicted to be expressed in equal amounts whereas in the
former, one of the proteins is often expressed at a much
lower level than the others. In previous works [24-26], we
have showed that in the absence of bifurcation in the mass
action kinetics, the unique equilibrium remains stable,
globally and asymptotically. However, when a bifurcation
does exist in the mass action kinetics approximation, the
question remains open, especially when the parameters
are very close to the bifurcation of the mass action kinetics
system.

Conclusion
Our model for gene expression is limited to the main
processes implied in gene expression and is limited to
a 3-gene network. We think that the basic mechanisms
underlying space-induced bifurcations are simple enough
that they should still be effective in other systems, in
particular, in transcriptional regulation networks com-
prising larger numbers of gene types or positive regu-
lation (activators). Likewise, we expect our conclusions
to be robust to increasing molecular details and more
realistic modelling of each subprocess (RNA polymerase,
initiation, elongation, termination, ribosomes. . . ). There-
fore, our results bring a strong support to the view that
the spatial organization of the molecular actors of tran-
scriptional networks is crucial for the dynamics of gene
expression. In a synthetic biology perspective, they sug-
gest that the spatial localisation of the synthetic genes
should be factored out in the global strategy used to shape
the dynamics of the synthetic network to be inserted in
the cell.

Additional files

Additional file 1: Figure S1. The effect of the spatial configuration of the
genes disappears when the lifetime of mRNAs is very large (2D simulations).
The time courses of the total number of proteins (P0 in blue, P1 red and P2
green) in the reaction space were obtained using spatially-explicit stochastic
individual-based simulations in 2D. The spatial configuration of the genes
corresponded to the (a’) uniform, (b’) clustered (r = 3) or (c’) segregated
(r = 3) configuration, corresponding to the FZCA points labelled (a’), (b’)
and (c’), respectively in Figure 5A. The mRNA degradation rate was set to
0.005 (MC time step)−1. All other parameters were according to the
standard set defined in the Methods section.

Additional file 2: Figure S2. Dynamics with a unique gene copy per
type (2D simulations).The time courses of the total number of proteins
(P0 in blue, P1 red and P2 green) in the reaction space were obtained
using spatially-explicit stochastic individual-based simulations in 2D. The
spatial configuration of the genes corresponded to the (a”) uniform, (b”)
clustered (r = 3) or (c”) segregated (r = 3) configuration, corresponding
to the FZCA points labelled (a”), (b”) and (c”), respectively in Figure 5B. Here,
GT = 1, while all other parameters were according to the standard set
defined in the Methods section.
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