
Published online 25 April 2008 Nucleic Acids Research, 2008, Vol. 36, No. 10 3341–3353
doi:10.1093/nar/gkn208

Direct inhibition of the DNA-binding activity of POU
transcription factors Pit-1 and Brn-3 by selective
binding of a phenyl-furan-benzimidazole dication
Paul Peixoto1,2, Yang Liu3, Sabine Depauw1,2, Marie-Paule Hildebrand1,2,4,

David W. Boykin3, Christian Bailly1,2, W. David Wilson3 and

Marie-Hélène David-Cordonnier1,2,*

1INSERM U-837, Team 4-‘Molecular and cellular targeting for cancer treatment’, Jean-Pierre Aubert Research
Center, Institut de Recherches sur le Cancer de Lille, Place de Verdun, F-59045 Lille, 2IMPRT-IFR114, Lille,
France, 3Department of Chemistry, Georgia State University, Atlanta, GA, USA and 4Institut de Recherches sur le
Cancer de Lille - IRCL, Lille, France

Received February 5, 2008; Revised and Accepted April 8, 2008

ABSTRACT

The development of small molecules to control gene
expression could be the spearhead of future-
targeted therapeutic approaches in multiple pathol-
ogies. Among heterocyclic dications developed with
this aim, a phenyl-furan-benzimidazole dication
DB293 binds AT-rich sites as a monomer and
5’-ATGA sequence as a stacked dimer, both in the
minor groove. Here, we used a protein/DNA array
approach to evaluate the ability of DB293 to specif-
ically inhibit transcription factors DNA-binding in a
single-step, competitive mode. DB293 inhibits two
POU-domain transcription factors Pit-1 and Brn-3
but not IRF-1, despite the presence of an ATGA and
AT-rich sites within all three consensus sequences.
EMSA, DNase I footprinting and surface-plasmon-
resonance experiments determined the precise
binding site, affinity and stoichiometry of DB293
interaction to the consensus targets. Binding of
DB293 occurred as a cooperative dimer on the
ATGA part of Brn-3 site but as two monomers on
AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA
or AT-rich mutated sequences identified the con-
tribution of both sites for DB293 recognition. In
conclusion, DB293 is a strong inhibitor of two POU-
domain transcription factors through a cooperative
binding to ATGA. These findings are the first to show
that heterocyclic dications can inhibit major groove
transcription factors and they open the door to the

control of transcription factors activity by those
compounds.

INTRODUCTION

The aim of exerting precise control over the expression
level of specified genes using a small molecule drug is an
objective with major consequences for many therapeutic
applications including cancer, chronic inflammatory dis-
orders, neuro-degenerative or cardiovascular diseases
(1–4). This control requires the specific targeting of
DNA at defined sequences that are essential for a gene
directly implicated in the origin of the pathology. With
this view a number of natural or synthetic compounds
designed to specifically target fixed DNA sequences were
analyzed for sequence selectivity and affinity for DNA
recognition sites and specific DNA-interacting protein
displacement. For example, binding of distamycin A to its
minor groove DNA target suppresses the DNA interac-
tion of various proteins such as OTF-1, NFE-1, AntpHD,
TBP or the EBV nuclear antigen 1. Derived from
distamycin, the pyrrole-imidazole polyamides series (5–9)
were designed to specifically target some well-known
transcription factors such as Ets, TBP, GCN-4 or NF-kB
(5) and more recently the estrogen or androgen receptors
(10), NF-Y (11), AP-1 (12) or HIF-1 (13,14). Other classes
of compounds also inhibited transcription factors DNA
binding: mithramycin A and its relative chromomycin A3
against Sp1 (15,16), cryptolepine against NF-kB (17) or
echinomycin against HIF-1 (18,19).
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In the present study, we evaluate the ability of a small
compound to precisely modulate well-known transcription
factors in a global and competitive approach in order to
rapidly identify the best targets for a designed molecule.
We focused on the phenyl-furan-benzimidazole diamidine
derivative DB293 (Figure 1A) as an interesting molecule
for transcription factor modulation. This compound
derives from the diphenyl-furan diamidine DB75 that
binds to DNA at AT-rich sequences in the minor groove
and has promising activity against a variety of micro-
organisms, including Pneumocystis carinii and others infec-
tious diseases (20,21). The biological effects of DB75 result
from its interactions with DNA and subsequent inhibition
of DNA-dependent enzymes (22). Replacement of amidine
groups by imidazolines shifts the mode of binding to DNA
and confers intercalative properties in GC-rich sequences
(23), whereas the replacement of a phenyl ring by a benzi-
midazole moiety leads to the additional specific recognition
in the minor groove of the 50-ATGA sequence. Binding to
G�C-containing specific sequences involves hydrogen bond
contacts within a wider and more shallow minor groove in
comparison with the minor groove of A�T base pairs and is
a challenge for sequence-specific targeting using small
compounds. Stoichiometric studies of the DB293 binding
to DNA revealed its interaction as a monomer on AT-rich
tracks but as dimers stacked head-to-tail on 50-ATGA site
(24), both within the minor groove (25). In most cases,
mutation within the 50-ATGA reduces the strength of
DB293 binding to the DNA target, such as substitution of
the central dinucleotide, shows a profound impact on drug
binding (26). Although the DNA sequence specifically tar-
geted by this compound is well established, there has been
no investigation of its activity on transcription factors. In
this article, we present the first evidence to show that
DB293 is a potent inhibitor of some transcription factors
that have an ATGA sequence in their recognition sites.

MATERIAL AND METHODS

Plasmid constructions

To obtain DNA fragments containing the various tran-
scription factor binding sites, pUC19 plasmid was digested
at a unique BamHI restriction site and then ligated using T4
DNA ligase (BioLabs, Ipswich, Massachussetts, USA) in
the presence of double-stranded oligonucleotides contain-
ing the Brn-3 (50-GATCAGCTCGTCTGCGCGTTA
ATGAGCTGTGCGAGTCGCC), IRF-1 (50-GATCAG
CTCGTGGAAGCGAAAATGAAATTGACTAGTCG
CC) and Pit-1 (50-GATCAGTGTCTTCCTGAATATG
AATAAGAAATAAGTCGCC) consensus-binding sites
(underlined) with the sequence context identical to that
used in TranSignal DNA arrays. To get a clearer view of
the sequence-specific binding of DB293 compound on Pit-
1-binding site, the Pit-1 DNA-binding sequence defined in
the sequence context used for SPR analysis was sub-cloned
as described above in pUC19 as a wild-type form (Pit-
1-WT: 50-GATCAGTGTCTTCCTGAATATGAATAAG
AAGTCAGTCGCC) or mutated binding sites (bold) at
the ATGA site (Pit-1-M1: 50- GATCAGTGTCTTCCTGA
ATACGAATAAGAAGTCAGTCGCC), the AT-rich site

(Pit-1-M2: 50-GATCAGTGTCTTCCTGAATATGAACG
AGAAGTCAGTCGCC) or both (Pit-1-M3: 50-GATC
AGTGTCTTCCTGAATACGAACGAGAAGTCAGTC
GCC) or lacking the two AT-rich sites 50- and 30- to the
ATGA (Pit1-M4: 50- GATCAGTGTCTTCCTGAGTA
TGAACGAGAAGTCAGTCGCC). The attempted con-
structs were verified by sequencing and further amplified
and purified using Qiagen maxi preps.

The pCMV-IRF-1, pCMV-Pit-1 and pcDNA3-HNF-4
expression vectors were generous gifts from Dr Angela
Battistini (Rome, Italy) (27), Dr Clara V. Álvarez
(Santiago de Compostela, Spain) (28) and Dr Bernard
Laine (Inserm U837, Lille, France) (29), respectively. The
pRK5-Brn-3 expression vectors were generously provided
by Dr Mengqing Xiang (Piscataway, USA) (30).

TranSignal protein/DNA array I

The binding process was performed as described by the
manufacturer (Panomics, Fremont, California, USA) with
small changes (31). Briefly, the biotinylated TranSignal
probes TM mixture was incubated in the absence (control)
or presence of 1 or 5 mM of DB293. HT-29 nuclear extracts
(15 mg), prepared using the Panomics nuclear extraction kit
as recommended by the manufacturer, were then added
and incubated for 1 h to allow the formation of transcrip-
tion factor/DNA complexes. Such complexes were then
isolated after electrophoresis on a 2% agarose gel in 0.5X
TBE using 8-mm wide combs for 20min at 120V and the
portion of gel containing the transcription factors/DNA
complexes was recovered by cutting the gel area as
recommended. The DNA probes were denatured and
hybridized on TranSignalTM membranes at 428C overnight
in the appropriate buffer. After three washings, chemolu-
minescent revelation was carried out and the spot
intensities quantified using ImageQuantTM. Results are
expressed as the ratio of the intensities obtained in the
presence of DB293 versus in the absence (control mem-
brane). The data points showing at least a 1.5-fold change
are considered as significant.

Electrophoretic mobility shift assay (EMSA)

The oligonucleotides 50-GCGCGTTAATGAGCTGTG
for Brn-3 (32), 50-GTCTTCCTGAATATGAATAAGAA
ATAA for Pit-1 (33), 50-GGAAGCGAAAATGAAATT
GACT for IRF-1 (34) and 50-TCAGCTTGTACTTTGG
TACAACTA for HNF-4 (35) binding sites were 50-end-
labeled by T4 polynucleotide kinase prior to hybridization
to their complementary sequence and purified on poly-
acrylamide gels as reported (61). Pit-1-WT, -M1 to -M4
sequences are described above. The additional Pit1-M5
(50-GATCAGTGTCTTCCTGAGTATGAATAAGAAG
TCAGTCGCC) and Pit1-M6 (50-GATCAGTGTCTTCC
TGAGTACGAATAAGAAGTCAGTCGCC) sequences
were specifically designed to provide further insight in
Pit-1 protein binding to the specified sequence by com-
pleting the single and double mutant series. Both double-
stranded oligonucleotides were 30-end-labeled using
[a-32P]dGTP (GE Healthcare, Vélizy, France, 3000
Ci/mmol) as described (36). The binding experiment was
derived from (37) with the following modifications.
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The drug/DNA interaction was performed in the presence
of the indicated compound at the specified concentration
with 0.66 mg of poly(dG�dC)2 as a nonspecific competitor
[poly(dI�dC)2 must be avoided due to a minor groove
structure that is similar to that of the DB293 target
sequence poly(dA�dT)2] in binding buffer (15mM Tris–
HCl, pH 7.5, 50mM KCl, 1.5mM EDTA, 10% glycerol,
1.5mMDTT, 10 mg BSA) for 20min at room temperature.
Nuclear extract (5mg) or reticulocyte lysate (1 ml)
(Promega, Madison, Wisconsin, USA) was then added
for an additional 30min incubation at 48C and the protein/
DNA complexes separated on 6% nondenaturing poly-
acrylamide gels for 3 h at 300V in 0.5� TBE buffer (89mM
Tris–borate pH 8.3, 1mM EDTA).

DNase I footprinting

The pUC19-Brn-3, pUC19-IRF-1 and pUC19-Pit-1 plas-
mids containing the sequences established from Panomics,
as well as the pUC19-Pit-1-WT, pUC19-Pit-1-M1,
pUC19-Pit-1-M2, pUC19-Pit-1-M3 and pUC19-Pit-1-M4
were digested using EcoRI and PstI restriction enzymes,
30-32P-end labeled using [a-32P]dATP (GE Healthcare,
Vélizy, France, 3000 Ci/mmol) and experiments were
conducted as recently described (38). A Molecular
Dynamics STORM 860 was used to collect data, which
were then analyzed using ImageQuant 3.3 software. Each
resolved band was assigned to a particular bond within the
DNA fragments by comparison of its position relative to
the guanine ladder obtained from Maxam and Gilbert
sequencing standard method.

SPR-biosensor binding determinations

The sequence of the 50-Biotin labeled hairpin DNA
oligomers are presented in the appropriate figures. SPR
measurements were performed in MES buffer at 258C with
a BIAcore 2000 optical biosensor system (BIAcore Inc.,
Piscataway, New Jersey, USA) as recently described
(38,39). In all cases, two strong binding sites were observed
and the equilibrium constants were obtained from
fitting plots of r (RU/RUmax) versus Cfree with a two site
interaction model: r=(K1�Cfree+ 2�K1�K2�Cfree

2)/
(1+K1�Cfree+K1�K2�Cfree

2) (r, moles of bound
compound per mole of DNA hairpin duplex; K1 and K2

macroscopic binding constants; Cfree, free compound
concentration in equilibrium with the complex).

RESULTS

Selective inhibition of transcription factor DNA binding by
DB293 using TranSignalTM protein/DNA array I

This microarray approach was used as a rapid and
convenient method to simultaneously profile the modula-
tion of the DNA-binding propensities of 54 transcription
factors by DB293, in a single manipulation (31). DB293
(Figure 1A) binds AT-rich sequences as monomer and
50-ATGA sites as dimers, both in the minor groove of the
DNA. A number of transcription factor binding sites
contain either an ATGA or an AT-rich sequence.
Comparison of the experiments performed using probes

pretreated or not with DB293 provides an insight into the
specific modulation of the DNA binding of transcription
factors by this ligand (Figure 1). The 54 different
transcription factor targets are spotted on a membrane as
presented in Figure S1. Each sequence is recognized by a
specific transcription factor or by a family of closely related
transcription factors. Incubation with two concentrations
of DB293 (1 and 5 mM, Figure 1C and D, respectively) and
comparison to the control results (Figure 1B) reveals the
inhibitory effects of the compound on DNA-binding
activity (Figure 1E). Interestingly, both Pit-1 and Brn-3
contain an ATGA site within their respective binding
sequence (32,33) and both are inhibited by DB293. By
contrast, the IRF-1 protein, whose DNA-binding sequence
also contains an ATGA site (34), failed to be affected by the
presence of DB293. A table representing the ratio obtained
using the ATGA and/or AT-rich containing DNA targets
as well as all inhibited transcription factors is presented in
Figure S1B. In this study, we choose to focus on ATGA-
containing binding sites such as Pit-1 and Brn-3 (both of
them belonging to the POU transcription factor family)
and compared the results with those for IRF-1.

Validation of the targets using EMSA

To validate the macroarray results, we carried out EMSA
using Pit-1, Brn-3, IRF-1 and HNF-4 transcription factors
from HT-29 nuclear extract (Figure 2A and B) or proteins
expressed from reticulocyte lysate (Figures 2C and S2).
The formation of both protein/DNA complexes specific to
Pit-1 or Brn-3 sequences (arrows) is efficiently inhibited by
increasing concentrations of DB293. The identity of
transcription factor was determined using super-shift
experiments (data not shown). The Brn-3 family of
proteins is expressed from three distinct genes encoding
the closely related factors Brn-3a, Brn-3b and Brn-3c
(40,41). In our experiments, Brn-3b failed to interact with
our target sequence (data not shown) whereas both Brn-3a
and -3c proteins recognize this sequence and are inhibited
by DB293 (Figure S2). The transcription factor HNF-4
was used as a negative control since its consensus-binding
site (35) neither contains an ATGA nor an AT-rich
sequence and its DNA-binding ability is not affected even
by high amounts of DB293 (Figure S2).
The same validation was performed using Pit-1 protein

expressed from reticulocyte lysate. We used Pit-1 c-DNA
fromRattus norvegicuswhose POU-specific and homeobox
domains present a high degree of identity with human Pit-1
(Figure S3). The Pit-1 protein/DNA complex observed
from nuclear extracts is certainly a homo- or hetero-dimer
based on the level of migration of the complex from
comparison with that obtained using Pit-1 protein
expressed alone in reticulocyte lysate (Figures 2A and
S2C, respectively). In all cases, competition for Pit-1 and
Brn-3 protein/DNA complex formation confirms the
inhibitory effect of DB293 (Figure 2A and B). The
quantification of the inhibitory effect indicates an IC50 of
1.5mM for both Pit-1 and Brn-3 protein/DNA complex
formation (Figures 2A and –B, and S4). In contrast, the
IRF-1/DNA complex is only slightly inhibited by DB293
(IC50 > 50 mM) (Figure 2C and S4). The same results were
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obtained using Pit-1 and Brn-3a and Brn-3c expressed in
reticulocyte lysate (Figure S2). As in TranSignal DNA
arrays I screening, no displacement of the HNF-4/DNA
complex was observed, even using the highest amount of
DB293 (Figure S2). These gel shift experiments clearly
validate the use of TranSignal protein/DNA arrays as a
useful and convenient tool to efficiently and rapidly screen
the modulation of the DNA interaction of transcription
factors by small sequence-specific DNA ligands.

Location of the DB293 binding to the various
consensus-binding sites

To understand why DB293 inhibits Pit-1 and Brn-3 but not
IRF-1 protein/DNA complexes despite the presence of

both ATGA and AT-rich target sequences in all three
consensus-binding sites, we explored more precisely the
DNA-binding profile of DB293 on Pit-1, Brn-3 and IRF-1
consensus-binding sites. An 80-bp radiolabeled DNA
fragment containing the cloned consensus-binding sites
(dotted lines on Figure 3) of Pit-1, Brn-3 and IRF-1
transcription factors, in the same context as that used in
TranSignal protein/DNA array, was used for footprinting
experiments. For Pit-1 DNA-binding site (Figure 3A
and D), the differential cleavage analysis shows footprints
centered on nucleotide positions 43 to 34 (ATGA site) and
is further displaced on the surrounding AT-rich sequences
(50-TTATTCATATT). Nevertheless, it was difficult to
discriminate between ATGA and AT-rich exact DNA
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Figure 1. Screening for the modulation of transcription factor DNA binding using TranSignal protein/DNA array I. (A) Structure of DB293
compound. (B–D) Membrane of protein DNA/array I. The mixture of TranSignal biotinylated oligonucleotides was incubated with HT-29 nuclear
extracts in the absence (B, control) or presence of 1mM (C) or 5 mM (D) of DB293. (E) Inhibition ratio for the transcription factor/DNA-binding
activities induced by DB293. The DNA-binding activity of these transcription factors is specified: ‘ATGA’ corresponds to a consensus-binding
sequence containing an ATGA site and ‘other’ to a consensus-binding site that contains neither an ATGA nor an AT-rich site. The values
correspond to the ratio between the analyses performed in the presence or absence of the drug, after normalization of the points relative to the
internal controls (right and bottom lanes in Figure 1B–D).
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recognition by DB293. For the Brn-3-binding site
(Figure 3B and E), gel autoradiography and densitometric
analysis reveal an interaction onATGA and the juxtaposed
30-AT-rich sequence (TTAATGA). Therefore, with both
Pit-1 and Brn-3, the presence of an AT-rich site in 30- or in
50- of the ATGA sequence does not modify the interaction
of DB293 to ATGA. In contrast, for the IRF-1 fragment
(Figure 3C and F), the differential cleavage analysis shows
the binding of DB293 on two independent AT-rich sites but
not on the centered ATGA sequence as underlined:
50-AAAATGAAATTGAC. This evidences that DB293
clearly prefers the AT-rich tracks rather than the central
ATGA sequence of the IRF-1 consensus-binding site, in
contrast to the results obtained using Pit-1 and Brn-3.
Those experiments also show that DB293 efficiently binds
Pit-1, Brn-3 and IRF-1 consensus-binding sites even if it
failed to displace all three protein/DNA complexes,
suggesting that the ATGA dimer recognition could be a
determinant for the transcription factor DNA-binding
inhibition.

Stoichiometry of the interaction

Biosensor-surface plasmon resonance (SPR) analyses were
performed to obtain quantitative insight into the precise
organization of DB293 binding to the Pit-1-, Brn-3- and
IRF-1-binding sites. The results were evaluated to
determine the stoichiometry of the interaction as well as
the binding affinity and cooperativity. SPR sensorgrams
(Figure 4A) were obtained for increasing concentrations
of DB293 in solutions injected over the 50-biotinylated
hairpin oligonucleotides containing the DNA-binding
sites for Pit-1, Brn-3 or IRF-1 transcription factors

(sequence in red, Figure 4) and blank surfaces. The
sensorgrams (RU for a DNA surface–RU for the blank)
were globally fitted with a two sites model (Figure 4B, see
also Material and methods section) to obtain the equili-
brium constants for the interactions (Figure 4C). The
maximum RU for all of these DNAs is twice the RUmax

value for a compound binding to one site and this clearly
shows that two DB293 bind to each DNA. The relative
values of the macroscopic equilibrium constants, K1 and
K2, reflect the cooperativity of the interaction. For a
noncooperative interaction K1=4�K2, while for positive
cooperativity K1< 4�K2 and for negative cooperativity it
is >4. A cooperativity factor to assess the degree of
cooperativity is defined as, CF=(K2/K1)� 4. For interac-
tion with no cooperativity, CF=1, and CF is >1 for
positive cooperativity and <1 for negative cooperativity.
The results clearly show that DB293 binds Brn-3-binding
site with strong positive cooperativity. There is no
significant cooperativity of DB293 binding to IRF-binding
site and an intermediate cooperativity for Pit-1 recognition
site. This quantified cooperative mode of binding, and
previous results for DB293 binding to ATGA sequences
(24,26), suggests that DB293 interacts cooperatively as a
dimer stacked in the minor groove of the ATGA sequence
in Brn-3 and to a lesser extent at the Pit-1 ATGA-binding
site. In contrast, the lack of cooperativity in the binding of
DB293 to the IRF-1-binding site confirms the previous
footprinting data (Figure 3C and F) and the conclusion
that DB293 interacts as monomers at the two independent
AT-rich sites but not at the central ATGA sequence. This
conclusion is strongly supported by SPR-binding studies
with DB75, a related diamidine that does not form stacked
dimers but only interacts with the AT-rich site. DB75 binds
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strongly and noncooperatively in a 2:1 complex to the IRF
sequence but very weakly to Brn-3 (Figure S5). The Pit-1
results for DB75 are intermediate and this suggests that the
Pit-1 AT sites and the ATGA compete for binding of
DB293 while DB75 selects only the AT sequences.

Precise localization of DB293 on Pit-1 consensus-binding site

Tomore clearly define the precise mechanism of interaction
of DB293 with Pit-1-binding site, DNaseI footprinting
experiments were performed in a series of Pit-1 mutated
sequences (Figure 5) with various point mutations derived
from wild-type (WT) Pit-1 (see Material and methods
section for point mutations). The M1 mutation, which
affects only the 50-TCAT site, modifies the DNA-binding
profile of DB293 relative to that obtained with the

Pit-1-WT site. Indeed, such a mutation point that changes
the specific 50-TCAT site to a nonspecific 50-TCGT
sequence abolishes the cleavage observed using the WT
sequence and yields a maximum of cleavage inhibition
centered on the C residue at position 41. Moreover, such
removal of the ATGA/TCAT target site induces a shift of
the DNaseI footprint toward the AT-rich site, TTATT,
localized 50 to the mutation point (position 42–46). TheM2
fragment has base modifications in positions 44 and 45 that
break the AT-rich site, and DNaseI cleavage carried out
using this fragment shows roughly the same differential
cleavage as obtained using theWT Pit-1 sequence (WT, top
panel) with strong binding on the ATGA/TCAT site and
the AT-rich site at the 30 position. The mutations of either
the ATGA/TCAT sequence and the AT-rich site of Pit-1
sequence on the M3 fragment totally abolish the DB293
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interaction to Pit-1-binding site. Only a small binding to the
TATT site at position 36–39 was observed. Finally, the
removal of the AT-rich site located 30 of the TCAT
sequence results in an enhancement of the DB293 binding
to the ATGA sequence (Figure 5, panel M4), the
differential cleavage observed being even stronger than
that obtained with the wild-type Pit-1 fragment (Figure 5B,
panel WT). These results show that the binding of DB293
to the DNA sequence containing the Pit-1 consensus-
binding site, used previously for TranSignal protein/DNA
arrays and EMSA, requires the interaction with the ATGA
site but also the surrounding AT-rich tracks.
To more quantitatively define the interaction of DB293

with Pit-1, biotin-labeled wild-type, M1 and M2 Pit-1
sequences were captured in three different channels of a
four-channel streptavidin-surface sensorchip (Figure 6).
The sensorgrams for DB293 binding to all three DNAs
again have RU maximum values that are twice the value
per site and, as above, this indicates two DB293-binding
sites per DNA (Figure 7B). Both the wild-type and M2
sequences have cooperativity factors between 5 and 6
(Figure 6C), in good agreement with the Pit-1 results from

the sensorchip described above (Figure 4C). The results
with the M1 sequence are strikingly different with a
cooperativity factor of only 1.3. This is similar to the value
for IRF sequence and is indicative of noncooperative
binding when the ATGA site is removed by mutation. The
DNaseI footprinting and SPR results are thus in good
agreement for all three DNA sequences.

Identification of the DB293-binding sequences
essentials for Pit-1 protein/DNA binding

To define the base requirements for Pit-1 protein/DNA
binding in our precise Pit-1-binding sequence, we evaluated
the ability of Pit-1 protein, from nuclear extracts (Figure 7)
or expressed in reticulocyte lysates (Figure S7), to interact
with the WT or any of the M1 to M6 mutated sites
(Material and methods section). Single mutation at
either the ATGA sequence (M1), the 30-AT-rich (M2) or
50-AT-rich sites (M5) reduces the DNA-binding propensity
of Pit-1 transcription factor. Concomitant mutations at the
50-AT-rich site with either the ATGA (M4) or the 30-AT site
(M6) totally abolish the Pit-1/DNA complex formation
whereas double mutant on both the ATGA and the 30-AT
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site (M3) does not totally prevent Pit-1/DNA complex
formation. Those data suggest that the AT-rich site
positioned 50- to ATGA is the main determinant for
DNA interaction by Pit-1 (Figure 7B, larger arrow) but
that either the ATGA or the 30-AT-rich are also implicated
to increase the DNA-binding affinity of Pit-1 protein. Such
data also support the high flexibility for DNA-binding
mode of the POU transcription factors as described by
Jacobson et al. (42). The mutation of only one site weakens
the DNA binding efficiency of POU domains whereas
mutation at two of the three potential binding sites (either
AT-rich or ATGA) strongly affects this potency, comfort-
ing the reality of a flexible DNA-binding mode for POUH

and POUS subdomains.

DISCUSSION

In the present work, we identified DB293 as a potent
inhibitor of DNA binding for Pit-1 and Brn-3, but not
IRF-1, both transcription factors targeting an ATGA-
containing consensus site. EMSA, DNaseI footprinting
and SPR reveal that protein/DNA-binding inhibition
correlates with cooperative dimer binding of DB293 to
the ATGA site within the consensus sequence (Brn-3,
Pit-1). The monomeric recognition of DB293 to both
AT-rich sites surrounding the ATGA sequence does not
affect the DNA-binding potency of IRF-1 (Figure 8A).
There is therefore a strict correlation between binding
mode and location of DB293 with the biological
consequences of binding.
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These observations with Brn-3, Pit-1 and IRF-1 binding
by DB293 agree quite well with our knowledge about
selective binding of dications at AT-sites. The compounds
bind quite strongly to sequences with A-tracts (An) and AT
steps (AnTn), but not TA steps (43). The two AT sequences
in IRF (A5T and A3T2) are thus strong AT-binding sites
and binding at those sites prevents interaction with the
ATGA dimer site. With Brn-3, the TTAAT site is quite
weak and DB293 binds to ATGA as a cooperative dimer.
The Pit consensus is more complex. Both AT sequences
contain a TA step that weakens AT sequence binding, but
there is still some competition between the AT monomer
and ATGA dimer binding.
Structurally, the IRF-1 DNA-binding domain is com-

posed of a succession of a-helices, b-sheets and linker
domains (a1–b2–L1–a2–L2–a3–b3–L3–b4) organized to
present the a3-helix in the major groove of the DNA
resulting in a bending of the DNA axis toward the major

groove (44). The sequence-selective DNA binding is due to
amino acids contacts with GA (top strand) and TT
(bottom strand) (Figure 8A). Other contacts between
amino acids from a1 and a2-helices, L1, L2 and L3 linkers
and the DNA phosphate backbone stabilized the protein/
DNA complex. Such interaction is not affected by the
interaction of DB293 on the opposite side (minor groove)
of the AT-rich sites.

The POU domain is composed of two structurally
independent domains: the POU homeodomain (POUH)
and the POU-specific domain (POUS) functionally coop-
erating as a DNA-binding unit and endowing an intrinsic
conformational flexibility (42,45). To our knowledge, no
X-ray crystallography of Brn-3 DNA-binding domain was
performed but it was assumed that the binding mode of
Brn-3 could be similar to that of the POU-domain
transcription factors Oct-1 (45) and Pit-1 (Figure S6).
From crystallographic structure of the Oct-1 protein bound
to the octamer sequence ATGCAAAT (46), we suggest that

WT  : -TCCTGAATATGAATAAGAAGT-
M1  : -TCCTGAATACGAATAAGAAGT-
M2  : -TCCTGAATATGAACGAGAAGT-
M3  : -TCCTGAATACGAACGAGAAGT-
M4  : -TCCTGAGTATGAACGAGAAGT-
M5  : -TCCTGAGTATGAATAAGAAGT-
M6  : -TCCTGAGTACGAATAAGAAGT-
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POUH of Brn-3 interacts with the AT-rich part and POUS

with ATGA on the other strand of the DNA (Figure 8B).
Both sub-domains could be displaced upon binding of
DB293 (black boxes) on the ATGA and AT-rich parts of
Brn-3 binding site (localized in figures 3B–E). Since DB293
increases the size of the minor groove upon dimeric binding
on ATGA, we assume that the subsequent reduction in the
size of the major groove on the opposite side inhibits the
correct positioning of the POUS a3-helix in the major
groove of the ATGA sequence.

For Pit-1 DNA-binding domain, the X-ray crystal-
lographic structure was established in complex with DNA-
binding sites from the growth hormone GH1 and the
prolactine promoters (42,47). From those data and our
results, we propose that the binding of POUH domain
implies interactions between Arg46, Val47, Cys50, Asn51
and Gln54 residues of a3-helix and the major groove of
the 50-ATGA sequence with contacts in the minor groove
through binding of Arg5 (amino-terminal tail of POUH)
on the 30-A of ATGA (top strand) and the T of the 30-AT-
rich site (bottom strand). In the same manner, we suggest
that POUS makes contacts within the major groove of the
AT-rich part through residues Ser43, Gln44, Thr45 and
Arg49 of its a3-helix (Figure 8C). According to DNaseI
footprinting (Figures 3A–D and 5) and SPR experiments
(Figures 4 and 6), DB293 can interact with Pit-1 site on
each AT-rich sites as monomers and two other DB293
molecules as dimer in the minor groove of ATGA
sequence (black boxes, Figure 8C). This correlates with
the sequence determinants implicated in the Pit-1 protein/
DNA complex formation evidenced from gel shift analysis
(Figure 7). Therefore, we hypothesized that the interaction
of DB293 with both the AT-rich sites and the ATGA
sequence in the minor groove can block the interaction of
POUS with the 50-AT-rich sequence as well as that of
POUH with the ATGA sequence (Figure 8C).

POU transcription factors play an important role in
cellular differentiation but Brn-3 and Pit-1 are also
implicated in tumorigenesis. Indeed, Brn-3a regulates the
growth of cervical cancer cells in vivo with a level of Brn-
3a being overexpressed of 300-fold in cervical intraepithe-
lial neoplasia type 3 (48). Brn-3b was shown to be a key
element in cellular growth and proliferation in human
breast cancer cells (49), can repress expression of the
BRCA-1 antioncogene in breast cancer cells (50) or
overexpress CDK4 implicated in the regulation of cell
growth (51). Pit-1 is responsible for the development of
three from five of the endocrine cells types and the trans-
activation of genes including prolactin and growth
hormone genes (33,52). Pit-1 expression was implicated
in pituitary tumor proliferation (53) and pituitary
adenomas (54) but its role was subjected to controversy
(55). Pit-1 was also associated with proliferation and
tumorigenesis in breast cancers (56).

In conclusion, as a first point, we have validated the
TranSignal protein/DNA array as a useful tool to screen
for the modulation of the DNA binding of multiple
transcription factors by small sequence-selective com-
pounds. As a second point, we have shown that the
presence of a target sequence is a prerequisite but is
not sufficient to induce an effect on the transcription

factor activity. The inhibition by a compound depends
more specifically on the precise positioning on the target
DNA sequence and the orientation toward the DNA helix
of the amino acids thatmakeDNA contacts. The inhibition
of Pit-1 and Brn-3 binding to DNA by DB293 occurs also
probably as a consequence of DB293 binding as a dimer in
the ATGA. This binding enlarges the minor groove thus
reducing the size of the major groove on the opposite side
and subsequently prevents the correct positioning of the
a3-helix of the POU-domains on their consensus-binding
sites.
Specific transcription factors are key regulators of

oncogenesis and often play a major role in the develop-
ment of severe human diseases. As yet, it has been difficult
to selectively modulate their activity through the control
of their DNA-binding capacity. This study, and others,
suggest that this goal can be envisaged. DB-type molecules
built on the model of DB293 and analogs (21) can be fine-
tuned to recognize distinct DNA sequences and this may
lead to the guided modulation of transcription factors
activity. Novel therapeutic approaches based on transcrip-
tion factor control can become a reality as we develop a
broader understanding of the molecular recognition of
DNA by small molecules.
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