
molecules

Article

Study on Antibacterial and Quorum-Sensing
Inhibition Activities of Cinnamomum camphora
Leaf Essential Oil

Wenting Wang 1, Dongxiang Li 1, Xiaoqin Huang 1, Huixiang Yang 1, Ziwen Qiu 1, Liting Zou 1,
Qin Liang 1, Yu Shi 1, Yingxiang Wu 2, Shaohua Wu 1,*, Chao Yang 1,* and Yongyu Li 1,*

1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
wangwtsci@163.com (W.W.); dongxiang_li@163.com (D.L.); 13305929270@163.com (X.H.);
13023832839@163.com (H.Y.); Qzw1996111@outlook.com (Z.Q.); Mizai_8zone@163.com (L.Z.);
liangqin_1130@163.com (Q.L.); sychiyu@163.com (Y.S.)

2 Qingyuan Agricultural Science and Technology Extension Service Center, Qingyuan 511518, China;
wuyingxing8501@163.com

* Correspondence: wsh6677@hotmail.com (S.W.); yycc32@126.com (C.Y.); lilin3182@163.com (Y.L)

Received: 24 September 2019; Accepted: 19 October 2019; Published: 21 October 2019
����������
�������

Abstract: Many essential oils (EOs) regulate the quorum-sensing (QS) system of pathogens and inhibit
the virulence expression. Interference with QS can potentially reduce bacterial multidrug resistance
and aid the biological control of bacterial disease. In the present work, the antibacterial and anti-QS
activities of Cinnamomum camphora leaf EO were investigated. A total of 23 chemical components
with relative levels ≥0.11%, including a large number of terpene compounds, were identified in
C. camphora leaf EO by gas chromatography–mass spectrometry (GC-MS). The principal component
was linalool, followed by eucalyptol, with relative levels of 51.57% and 22.07%, respectively.
The minimum inhibitory concentration (MIC) and antibacterial activity of C. camphora EO were
examined, and P. aeruginosa and E. coli ATCC25922 showed the highest and lowest sensitivity to
C. camphora EO, respectively. Tests of QS inhibitory activity revealed that C. camphora EO significantly
decreased the production of violacein and biofilm biomass in C. violaceum, with the maximum
inhibition rates of 63% and 77.64%, respectively, and inhibited the biofilm formation and swarming
movement, independent of affecting the growth of C. violaceum. Addition of C. camphora EO also
resulted in downregulation of the expression of the acyl-homoserine lactones (AHL) synthesis gene
(cviI) and transcription regulator (cviR), and inhibited the expression of QS-regulated virulence genes,
including vioA, vioB, vioC, vioD, vioE, lasA, lasB, pilE3, and hmsHNFR. Collectively, the prominent
antibacterial activity and anti-QS activities clearly support that C. camphora EO acts as a potential
antibacterial agent and QS inhibitor in the prevention of bacterial contamination.

Keywords: Cinnamomum camphora leaf essential oil; gas chromatography–mass spectrometry (GC-MS);
antibacterial activity; Chomobacterium violaceum ATCC31532; quorum sensing (QS)

1. Introduction

In recent years, antibiotics and antimicrobial agents have been widely used for the prevention
and control of bacterial diseases. Traditional antimicrobial agents inhibit and kill bacteria by
interfering with their biochemical metabolism as well as by affecting their structure and functions [1].
Bacteria rapidly mutate under selective pressure, which results in rapid increases in drug-resistant
bacteria and leads to many difficulties in the prevention and treatment of bacterial diseases.
Therefore, the discovery of different novel therapies to treat or decrease cases of bacterial infections
is urgently required. Inhibition of quorum sensing (QS) may be a suitable solution. Bacterial
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quorum sensing is a regulatory mechanism in bacterial colony communications whereby bacteria
produce and secrete specific signal molecules and perceive the changes in the bacterial quantity
in their surrounding environment through the changes in the concentration of the signal molecule
(autoinducer, AI). QS endows a large number of individual bacteria with the ability to coexpress
certain genes under specific conditions. Bacterial activities, including the release of pathogenic
factors, the formation of biofilms, fluorescence, the formation of spores, the production of antibiotics,
and DNA transcription, can be regulated by QS [2]. Studies have shown that quorum sensing (QS)
is capable of regulating the activities of protein, fat, pectin, chitosan, and other decomposing enzymes
related to pathogenic bacteria, and different types of QS signal molecules have also been detected in
diseased tissue [3]. To date, a few antimicrobial agents with broad-spectrum antimicrobial activity
have been shown to have QS inhibitory effects at sub minimal inhibitory concentration (sub-MIC) [4,5].
Many QS inhibitors (QSIs) of plant origin can inhibit the QS activities and reduce the pathogenicity
of pathogens without inhibiting bacterial growth and these QSIs have the advantage of both not
inducing drug resistance and being capable of preventing and controlling bacterial contamination [6].
Therefore, plant natural products could be the useful biological control agents targeted at bacterial QS
networks. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1 are well-known bioindicators
used to identify substances that can block the QS mechanism [7,8].

Studies have shown that plant essential oils (EOs) can be used as QSIs to control bacterial diseases
due to their broad and prominent antibacterial properties [9]. In addition, plant-derived EOs are the safe
alternative to chemical antimicrobial agents. Husain et al. [10] found that Mentha piperita EO interfered
with the production of AHL signal molecules and the biofilm formation in gram-negative bacteria
and showed significant QSI activity. A study by Vattem et al. [11] hypothesized that the mechanism
by which oregano essential oil reduces violacein may be associated with its principal component,
carvacrol, which may inhibit the expression of AHL synthesis genes. Eugenol, the principal component
of Cinnamomum verum EO, in combination with antibiotics, synergistically inhibited the QS activity
of Escherichia coli [12]. The curcumin in Curcuma longa inhibited the formation of bacterial biofilms
and QS-mediated physiological behaviors [13]. Trans-cinnamaldehyde inhibited AHL signal molecule
synthesis by interacting with the substrates of the signal molecule synthase and thus inhibited the QS
activity of P. aeruginosa [14].

Cinnamomum camphora, a species of evergreen trees in the Lauraceae family, is a primary tree species
in the subtropical broad-leaved forest and is a commonly used aromatic tree species for afforestation in
China. The roots, bark, leaf, and fruits of C. camphora can be used for medicinal purposes and are rich in
EOs with antibacterial, anti-inflammatory, and insect-repellent properties [15]. Notably, C. camphora EO
is the primary raw material for camphor and borneol in the medical industry. The antimicrobial activity
of C. camphora has been studied recently, but its anti-QS ability has never been described, thus we
identified the components of C. camphora EO and demonstrated antibacterial activity and QS inhibitory
activity. We provided theoretical and experimental support for the development of C. camphora EO
into a potential biological control agent.

2. Results

2.1. Analysis of the Components in C. camphora EO

The yield of EO extracted from C. camphora leaf by steam distillation was 1.4%. A total ion flow
chromatogram of the C. camphora EO analyzed by gas chromatography–mass spectrometry (GC-MS)
is shown in Figure 1. Correlations of the peak area normalization results with the mass spectrometry
database were performed to qualitatively and quantitatively analyze the components of the EO. Table 1
shows that 23 components with relative levels ≥0.11% were identified from the C. camphora EO,
accounting for 97.55% of the total content. The C. camphora EO primarily contained linalool, eucalyptol,
sabinene, α-terpineol, caryophyllene, nerolidol, α-pinene, camphor, and β-pinene, which accounted
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for more than 90% of the total content. The principal component was linalool (51.57%), followed by
eucalyptol (22.07%), which indicated that the C. camphora in this study belonged to the linalool type.
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Figure 1. The GC-MS total ion chromatogram of C. camphora EO.

Table 1. Chemical composition of C. camphora EO.

NO. Compound Name Molecular
Formula

Molecular
Weight

Relative
Content

Retention
Time/min

Retention
Index

1 Linalool C10H18O 154.25 51.57% 11.25 1021
2 Cineole C10H18O 154.25 22.07% 9.47 981
3 Sabenene C10H16 136.23 5.38% 12.42 1046
4 α-Terpineol C10H18O 154.25 3.81% 7.78 939
5 Caryophyllene C15H24 204.35 2.77% 13.54 1069
6 Nerolidol C15H26O 222.37 1.97% 6.61 911
7 1R-α-Pinene C10H16 136.23 1.68% 8.74 963
8 camphor C10H16O 152.23 1.42% 7.92 943
9 β-Pinene C10H16 136.23 1.12% 9.43 980

10 Terpineol C10H18O 154.25 0.89% 13.20 1062
11 Methyleugenol C11H14O2 178.23 0.83% 18.17 1167
12 a-Humulene C15H24 204.35 0.76% 9.39 986
13 Myrcene C10H16 136.23 0.56% 8.26 951
14 Caryophyllene oxide C15H24O 220.35 0.45% 10.18 998
15 g-Terpinene C10H16 136.23 0.40% 15.81 1117
16 α-Phellandrene C10H16 136.23 0.35% 18.91 1182
17 Limonene C10H16 136.23 0.32% 17.71 1157
18 Elixene C15H24 204.35 0.26% 9.86 990
19 cis-4-Thujanol C10H18O 154.25 0.24% 9.25 975
20 Terpinolene C10H16 136.23 0.22% 19.09 1186
21 Germacrene D C15H24 204.35 0.19% 17.71 1157
22 α-Selinene C15H24 204.35 0.16% 6.38 905
23 2-isopropyltoluene C10H14 134.22 0.11% 19.89 1203

2.2. Determination of Antimicrobial Activity and MIC of C. camphora EO

The antimicrobial activity of the C. camphora EO is shown in Table 2. C. camphora EO
demonstrated significant inhibitory effects against S. aureus ATCC25933, E. coli ATCC25922, P. aeruginosa,
and C. violaceum ATCC31532. The inhibitory effect was enhanced with increasing concentrations of
C. camphora EO and P. aeruginosa exhibited a greater inhibitory effect than S. aureus ATCC25933, E. coli
ATCC25922, and C. violaceum ATCC31532 at the same concentration.

The minimum inhibitory concentration (MIC) is defined as the minimum sample concentration
with no obvious bacterial growth. The MIC of C. camphora EO was assessed for all test pathogens using
doubling dilution method with concentration varying from 80%� to 2.5%�. The MIC of C. camphora EO
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was 2.5%� for P. aeruginosa, 5%� for S. aureus ATCC25933 and C. violaceum ATCC31532, and 10%� for
E. coli ATCC25922.

The results of antimicrobial activity and MIC indicated that P. aeruginosa and E. coli ATCC25922
showed the highest and lowest sensitivity to C. camphora EO, respectively.

Table 2. Antibacterial effect of C. camphora EO.

Bacteria
Concentration/Antimicrobial Diameters (mm)

MIC
100% 50% 25% 12.5% Methanol Kanamycin

(250 µg/mL)

Escherichia coli
ATCC25922 11.94 ± 0.235 ah 11.81 ± 0.607 ah 10.89 ± 0.545 bg 8.44 ± 0.144 cg 6.00 ± 0.00 15.72 ± 0.15 10%�

Staphylococcus
aureus ATCC25933 14.35 ± 0.489 af 13.46 ± 0.364 bf 11.74 ± 0.432 cf 10.22 ± 0.020 df 6.00 ± 0.00 20.78 ± 1.81 5%�

Pseudomonas
aeruginosa 16.61 ± 0.44 ae 15.19 ± 0.60 be 13.59 ± 0.41 ce 11.71 ± 1.17 de 6.00 ± 0.00 21.02 ± 0.41 2.5%�

Chromobacterium
violaceum

ATCC31532
13.93 ± 1.09 ag 12.37 ± 0.57 bg 11.89 ± 0.74 bcf 10.52 ± 0.17 cf 6.00 ± 0.00 19.89 ± 2.33 5%�

Note: Different letters (a–d) within the same row represent significant difference at the different concentration (p < 0.05).
Different letters (e–h) within the same line represent significant difference at the different concentration (p < 0.05).

2.3. The Effect of C. camphora EO on Violacein of C. violaceum CV026

The zone diameters of non-violacein on agar plate and the inhibition extent of violacein production
in CV026 by C. camphora EO were both observed in Figure 2, which indicated that C. camphora EO had
a good inhibitory effect on the QS-mediated violacein production of CV026. Thus, further experiments
in the present study were performed at sub-MIC concentrations (2.5%�, 1.25%�, 0.625%�, and 0.3125%�)
of C. camphora EO against C. violaceum ATCC31532.
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2.4. Growth Curve Analysis

In the early stage of treatment (0–3 h), the C. violaceum in the treatment groups and control group
was in the lag phase. At 3–6 h, the C. violaceum was in the logarithmic phase, in which the treatment
groups contained different concentrations of C. camphora EO. During the later stage of treatment (≥6 h),
the C. violaceum was in stationary phase in both the control group and the treatment groups, and there
was no significant distinction among the groups (Figure 3). These results indicate that the C. camphora
EO had no inhibitory effect on the growth of C. violaceum under the tested concentrations. We therefore
assessed the specific effect of C. camphora EO on QS in C. violaceum.
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2.5. Violacein Detection in C. violaceum

The synthesis of violacein is regulated by the QS system, and violacein is usually used as a simple
and intuitive indicator for screening QSIs [16]. In our assay, we observed that C. camphora EO showed
a notable and concentration-dependent inhibition of violacein production, which was dependent on
QS regulation (Figure 4a). The results of purification and quantitative analysis of the violacein in
the culture supernatant demonstrated the inhibitory effect of C. camphora EO on violacein production,
and the maximum inhibition (63%) in C. violaceum occurred upon treatment with C. camphora EO at 2.5%�.
(Figure 4b).Molecules 2019, 24, x FOR PEER REVIEW 2 of 3 
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experiments and SD are shown. Bars indicate standard errors and different letters (a–c) above the bars
represent significant differences (p < 0.05).
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2.6. Effect of C. camphora EO on Biofilm Development

Biofilms enhance bacterial tolerance to antibiotics, environmental pressure, and attacks by the host
immune system. The formation of bacterial biofilms is regulated by the QS system [17]. The antibiofilm
activity of C. camphora EO could be observed by biofilm staining with crystal violet (CV) (Figure 5a).
The quantitative results exhibited an obvious concentration-dependent reduction in the biofilm biomass
of C. violaceum. The C. camphora EO at sub-MIC (2.5%�, 1.25%�, 0.625%�, and 0.3125%�) decreased
the biofilm biomass by 77.64%, 69.21%, 64.03%, and 26.83%, respectively (Figure 5b). In addition,
we found that C. camphora EO influenced biofilm formation. Compared with the control group,
the biofilms of C. violaceum in the EO-treated groups were distributed loosely and did not aggregate
(Figure 5c).
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2.7. Swarming Motility

Swarming movement refers to the use of flagella to migrate from the inoculation point to
the surrounding area. This colony-level activity depends on bioactive substances on the surface of
the medium in a colony manner [18]. Swarming plays an important role in the preliminary stage
of QS-regulated bacterial biofilm formation. Our results showed that C. camphora EO inhibited
the swarming motility behavior of C. violaceum, and clear inhibition was observed upon treatment
with sub-MICs (2.5%� and 0.625%�) (Figure 6).
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2.8. Expression of the QS-Related Gene in Response to C. camphora EO

We further assessed the effects of C. camphora EO on the expression of QS genes in strain C. violaceum
by RT-qPCR. As expected, the expression of the cviI and cviR genes decreased with an increase of
C. camphora EO concentration and displayed the concentration-dependent change, independent of
a direct effect on growth rate (Figure 7).
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and cviR genes. Expression of the housekeeping gene, rpoD, was used as the internal control for each
sample. Bars indicate standard errors and different letters (a–e) above the bars represent significant
differences (p < 0.05).

Violacein synthesis and biofilm formation are important virulence factors in C. violaceum.
Accordingly, we also evaluated the effect of C. camphora EO on the expression levels of genes that are
directly involved in violacein synthesis and biofilm formation, including vioABCDE and hmsHNFR.
These genes are downstream of the QS cascade and are strictly controlled by the QS system [19].
The relative expression of the gene clusters vioA, vioB, vioC, vioD, vioE, hmsH, hmsN, hmsF, and hmsR were
clearly reduced by C. camphora EO relative to the control group (Figure 8). Furthermore, the effect of
C. camphora EO on the relative expression of genes lasA-B and pilE3, encoding bacterial elastase and pilus,
respectively, was assessed. lasA and lasB genes may be involved in limiting the host response, activating
inappropriate host responses [20]. PilE3, which encodes a type IV pilus protein, and these fimbriae
are involved in the enhancement of QS over aggregation and biofilm formation [21]. These genes
have been associated with virulence in C. violaceum, but their expression has not been reported to be
directly associated with QS. Consistent with the clear effect observed on QS and QS-regulated genes,
the expression of lasA-B and pilE3 was affected by exposure to the C. camphora EO (Figure 8).
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3. Discussion

Resistance to antibiotics and chemical drugs is one of the greatest public health problems.
This problem is a natural consequence of the adaption of infectious pathogens to antimicrobials used
in several areas, including in medicine, food animal production, crop production and disinfectants
in farms, hospitals, and households [22]. To find novel antimicrobial agents with new modes of
action, plants have been explored as sources for the identification of new and effective antimicrobials.
Plant EOs have shown clear inhibitory effects against fungi, bacteria, and viruses. Eos are natural,
environmentally protective, safe, nontoxic, and widely present, thus indicating the great value of
the application and utilization of Eos [23]. Our study also showed that C. camphora EO had marked
antibacterial activity against the pathogens, including S. aureus ATCC25933, E. coli ATCC25922,
P. aeruginosa, and C. violaceum ATCC31532. The multiple components of EOs often play a synergistic
role in antibacterial activities, thus plant EOs exhibit not single-target but rather multitarget synergistic
mechanisms [24].

The infection ability of bacteria can be effectively reduced by inhibiting the QS system, which will
not threaten the growth of bacteria or prevent drug resistance [25]. Plant EOs exhibit great potential
against pathogen contamination due to their prominent antibiofilm and anti-QS properties. Studies have
shown that bacteria treated with sub-MIC concentrations of EO or their chemical individual constituents
(ICs) were highly insensitive to bactericides and physical treatments, indicating that EOs or their ICs
could reduce the incidence of bacterial drug resistance [26,27]. While planktonic bacteria are already
resistant to many antimicrobials, in biofilms this resistance can increase several times. Biofilms may
be formed on a variety of surfaces including living tissues, indwelling medical devices, and contact
lenses [28]. Biofilm formation by pathogens is one of the most notable aspects of their pathogenicity
and resistance, and QS plays a vital role in biofilm formation, thus interference with the QS system
might be a preferable and convenient method to block its pathogenicity [25]. The inhibition of
pathogen biofilms by C. camphora EO can effectively reduce the incidence of bacterial drug resistance,
which makes this EO a suitable agent to combat pathogens.
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QSIs interfered with the QS system primarily through the following three pathways: (1) the signaling
molecule synthesis protein LuxI is affected such that the signal molecules, known as autoinducers
(AIs), cannot be produced normally; (2) by degradation of the signaling molecules (AIs) to interfere
with the expression of QS-related genes, even when the cell reaches the threshold population density;
and (3) by prevention of the binding of the signaling molecule (AHL) to receptor protein LuxR,
resulting in the inactivation of the transcriptional functions [29]. Plant phenolic aromatic compounds,
including carvacrol and eugenol, directly interact with the signal molecule synthase and receptor
proteins of Pectobacterium aroidearum PC1 and P. carotovorum subsp. brasiliense Pcb1692, thereby inhibiting
the expression of QS-related genes, the biofilm formation, and synthesis of plant cell wall degradation
enzymes (PCWDE) [30]. Our results showed that the C. camphora EO (sub-MIC) disturbed the swarming
movement of C. violaceum, reduced the production of violacein and biofilm biomass, and inhibited
biofilm formation. Inhibition of the QS major components (CviI/CviR) and virulence genes (vioA, vioB,
vioC, vioD, vioE, lasA, lasB pilE3, and hmsHNFR) exposed to C. camphora EO was further reflected in lower
virulence activities (violacein production, biofilm formation, and swarming movement). Our studies
showed that C. camphora EO can reduce the bacterial pathogenicity by quenching bacterial QS instead of
killing bacteria, providing a new pathway for the biological control of bacterial contamination.

Studies have shown that linalool and eucalyptol, as the main components in C. camphora
EO, are capable of inhibiting bacterial biofilm formation [31,32]. We inferred that linalool (51.57%)
and eucalyptol (22.07%) might be the important factors that interfered with the QS activity of C. violaceum.
Linalool and eucalyptol may interfere synergistically with the AHL synthase and/or receptor proteins
LuxR of C. violacem and regulate the expression of QS genes, thus affecting related physiological
activities. The specific regulatory mechanisms still require further study. In the future, we plan to isolate
bacterial QSIs from the C. camphora EO using the QS activity tracing method to clarify the regulatory
mechanism and provide new methods for the biological control of pathogen contamination.

4. Materials and Methods

4.1. Materials

Cinnamomum camphora leaf was harvested on the campus of Fujian Agriculture and Forestry
University (Fujian, China); a voucher specimen of the plant (Cinnamomum camphora (L.) Presl. officinal
bar code No 00189531) was confirmed and deposited in the Institute of Botany, Chinese Academy
of Sciences. The C. camphora leaf (Cinnamomum camphora (L.) Presl) in this study was identified
by Professor Fangying Li in the College of Art and Landscape Architecture of Fujian Agriculture
and Forestry University (Fujian, China).

Bacterial strains, medium, growth conditions: Chromobacterium. violaceum ATCC31532,
Chromobactrium violaceum CV026, Staphylococcus aureus ATCC25933, Escherichia coli ATCC25922,
and Pseudomonas aeruginosa were stored in the College of Horticulture in Fujian Agriculture and Forestry
University (Fujian, China), and inoculated in LB broth and grown under the conditions of 30 ◦C,
150 rpm for 12 h.

N-hexanoyl-l-homoserine lactone (C6-HSL) was purchased from Sigma-Aldrich (Germany).
n-alkanes (C8~C20) standard solution was purchased in Fluka.

4.2. Equipment

The gas chromatography–mass spectrometry technology (GC-MS) (GC, Clarus®680; MS, SQ8T;
Perkin Elmer (USA), Shanghai branch (China)), ultraviolet spectrophotometer (U-290, Hitachi Company,
Tokyo, Japan), Biobiology incubator (BPMJ-150F, Yiheng Company, Shanghai, China), ELISA (iMark,
Bio-Rad Company, Hercules, CA, USA).
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Extraction of C. camphora EO by Steaming

50 g of C. camphora leaf was placed in a round-bottom flask supplemented with distilled water
at a 1:10 ratio. The EO was distilled in the essential oil extractor. The C. camphora EO was collected
and the yield was calculated, and the calculation formula was shown in Equation (1). The experiment
was repeated three times.

Yield of essential oil (%) = (weight of essential oil/weight of leaf) × 100% (1)

4.3. Determination of Components of C. camphora EO by GC-MS

The C. camphora EO was subjected to a GC-MS analysis using a GC (Clarus®680) equipped
with a mass selective detector (SQ8T) in the electronic ionization (EI) mode and Turbomass
Ver 6.1.0 software. The method was performed by using the following procedure with slight
modification [33,34]. Sample injection was performed in split mode (20:1) into a DB-5MS capillary
column, 30 m × 25 mm × 0.25 µm film thickness coated with 5% Ph Me Siloxane. Helium was used
as the carrier gas at 1 mL min−1. The GC injector temperature was set at 200 ◦C. The oven temperature
program was optimized to hold at 60 ◦C for 5 min, then heat to 150 ◦C at a rate of 3 ◦C/min (maintain
for 5 min), and finally increase by 50 ◦C/min up to 250 ◦C (maintained for 2 min). The transfer line
temperature was adjusted to 200 ◦C. Mass spectrometry conditions were as follows: electron ionization
source set to 70 eV, MS transmission line to 250 ◦C, MS source to 230 ◦C. The mass spectrometer was
run in full-scan mode (m/z 45–550). The essential oil production was analyzed by peak area.

The essential compounds were identified on the basis of a comparison of their retention index (RI)
relative to n-alkanes (C8~C20), standard substance, as well as published data and EI mass spectra from
the literature. Compounds were further compared and their MS data authenticated to the National
Institute of Standards and Technology mass spectral library (NIST). The relative mass fraction of the EO
was calculated using the peak area normalization method. The formula for retention index (RI) [35,36]
is as follows in Equation (2):

RI = 100Z + 100[RT(x) − RT(z)]/[RT(Z + 1) − RT(z)] (2)

where Z = the number of C in the smaller alkane; RT(x) = the retention time of the unknown compound;
RT(z) = the retention time of the smaller alkane; RT(z + 1) = the retention time of the larger alkane.

4.4. The Determination of Antimicrobial Activity and MIC of C. camphora EO

The test strains, S.aureus ATCC25933, E.coli ATCC25922, P. aeruginosa, and C. violaceum ATCC31532
were cultured in LB broth at 150 rpm, 30 ◦C for 12 h. The C. camphora EO was serially diluted to 50%,
25%, and 12.5% with methanol. The plate perforation method was performed by using the following
procedure with some modification [37]. Briefly, 1% overnight cultured test bacterium was added to
the heated LB medium (containing 2% agar) at a temperature of 50 ◦C. After blending, the mixing
was poured into the petri dishes quickly. Then, the solidified LB medium was punched with 6 mm
holes every 120◦ in the petri dishes. A 25 µL volume of C. camphora EO at different concentrations
(100%, 50%, 25%, and 12.5%) was added to the holes. The culture plates were incubated at 30 ◦C.
The antimicrobial activity was measured by the antimicrobial diameters. Methanol and kanamycin
(250 ug/mL) were used as negative control and positive control, respectively.

Doubling dilution method was applicable to test the minimum inhibitory concentrations (MIC)
of C. camphora EO. The method was performed by using the following procedure with some
modification [38]. Briefly, 1% of C. violaceum ATCC31532, S. aureus ATCC25933, E. coli ATCC25922,
P. aeruginosa were added to LB medium (150µL) supplemented with twofold serially diluted C. camphora
EO (150 µL) to attain final concentration ranging from 2.5%� to 80%� of an equal final volume in 1.5 mL
microcentrifuge tube, which was incubated for 24 h (30 ◦C, 150 rpm). The OD600 was measured.
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4.5. Quorum-Sensing Inhibition (QSI) Assays of C. camphora EO

Quorum-sensing inhibition (QSI) assay was performed according to the procedure described by
Zhang et al. [39] with a few modifications. An overnight culture of CV026 (1%) was spread on LB
plates (20 mL), and then C6-HSL solution (2 µL, 50 mg/mL) was added to the plates. The filter paper
(6 mm in diameter) was then placed into the center of the plate. Next, the C. camphora EO (15 µL)
was added to the filter paper, and the plates were incubated for 24 h at 30 ◦C. QSI was assessed from
the formation of a ring of inhibition extent of violacein production around the filter paper.

4.6. Growth Curve Analysis

The 1% C. violaceum was incubated in a 250 mL Erlenmeyer flask containing 20 mL of LB broth
supplemented with different concentrations of C. camphora EO (sub-MIC, 1.2 mL). The mixes were
cultured at 30 ◦C, under 150 rpm in a rotatory shaker. Bacterial growth was determined by UV-visible
spectrophotometry at OD600 during a 3–48 h period.

4.7. Violacein Detection in C. violaceum

Violacein synthesis of C. violaceum strain ATCC31532 was regulated by the quorum sensing [40].
An overnight culture of 1% C. violaceum was added into a glass tube containing 5 mL LB broth
supplemented with various concentrations (sub-MIC, 300 µL) of C. camphora EO. The mixture was
incubated at 30 ◦C for 24 h. The specific methods were followed as described [41]. Briefly, 1 mL of
the above solution was collected and centrifuged at 4 ◦C for 20 min. The supernatant was removed
and 1 mL dimethyl sulfoxide (DMSO) was added to the centrifuge tube. After vortexing, the violacein
was dissolved in DMSO at room temperature and centrifuged for 3 min to remove the bacterium.
Violacein production was measured by UV-visible spectrophotometry at OD595, and the calculation
formula was shown in Equation (3). Each assay was performed in triplicate.

Violacein inhibition rate(%) = (OD595(Contol group) − OD595(Treatment group))/OD595(Contol group) × 100% (3)

4.8. Effect of C. camphora EO on Biofilm Development

The effect of C. camphora EO on biofilms was determined by quantifying the biofilm biomass using
a microtiter dish with crystal violet (CV) and microtiter dish assay [42]. An overnight culture of 1%
C. violaceum was added into a 96-well dish containing 200 µL of LB broth supplemented with various
concentrations of C. camphora EO (sub-MIC, 6% v/v). The mixture was incubated at 30 ◦C for 24 h.
After incubation, the unattached cells and media components were removed with distilled water.
Then, 250 µL of a 0.1% solution of CV was added to each well of the microtiter plate and incubated
at room temperature for 10–15 min. Finally, the 30% acetic acid was added for further determination.
The absorbance at 600 nm was read in a microplate reader and recorded as the absorbance of CV dye
bound to the bacterial biofilm. Each assay was performed in eight replicates.

To identify the ability of C. camphora EO to disrupt the biofilm, a biofilm disrupting assay was
performed by following the revised method [43]. Briefly, the test pathogens treated with different
concentrations of C. camphora EO (sub-MIC) were incubated in a 24-well plate with cover glasses
1 × 1 cm for 24 h and then were observed under a light microscope.

4.9. Swarming Motility

We examined the effect of C. camphora EO on the swarming motility in C. violaceum, following
a previously described method [13]. Simply, 5 µL overnight cultured bacterium was incubated in 6 mm
filter paper at the center of the swarming motility medium containing 1% tryptone, 0.5% NaCl, 0.5%
agar, and 0.5% of D-glucose. Swarming motility was measured by the migration distance.
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4.10. Gene Expression Analysis

1% C. violaceum (OD600, 0.9) was incubated with 20 mL LB containing a range of concentrations
sub-MIC of C. camphora EO (1.2 mL). Cultures were grown for 24 h, the cells were harvested
by centrifugation (12,000× g, 2 min), and supernatant was discarded. Total RNA was extracted
using an RNAprep Pure Cell/Bacteria Kit (Code No. DP430, TIANGEN, China), according to
the manufacturer’s guidelines. The RNA was used for reverse transcription, using Transcript One-Step
gDNA Removal and cDNA Synthesis SuperMix (Transgen, China). The oligonucleotide primers
were designed and are listed in Table 3. Quantitative RT-qPCR was performed using Real-Time PCR
Master Mix (SYBR Green) (Transgen, China) under the following conditions: two steps of 30 s at 94 ◦C
and 40 cycles of 94 ◦C for 5 s, 60 ◦C for 30 s. The calculated cycle threshold of each gene was normalized
to the CT for rpoD amplified from the corresponding sample. The RT-qPCR was performed in Light
cycler96 (Roche company, France). Fold changes in gene expression were calculated according to
the 2−∆∆CT method.

Table 3. PCR Primers for Fluorescence Real-Time Quantitative PCR.

Gene Forward (5′-3′) Reverse (5′-3′)

cviI GAAACCGTCCTCGCATAAGG ACAAGGTGGACTGGTACTGG
cviR CCCAGCAATATGCCGCTATC CATTGAGCTTGCGGATCACA
vioA AAGAGCATGGCAAGGAATC CTGGTTGGCGTCGTTATC
vioB CTGGGCGTAATTGGGAATGG CAAATACCTGGCCCATGTCG
vioC GAACAAGTACGCCAACCT GGAAGAAAGTCTGCTGGAA
vioD GCCGCAACAAGTACATCT GAAGGTGCTCATCGTGTC
vioE ATAGGCCACCTTCTGCTTCC GGCTACTGCTGGTTCGACTA

hmsH CGCCGTATGTCTTCAGTT CGCAGCCTATCGTAGATG
hmsF GGCTGCTGATTCTCTGTTA GTATAGACGCTGCGGTAG
hmsN AAACCACACGCACCAGAAC TGCATGAGCATGAAGACGAC
lasA AGCCAGCCTTACGATTCCAT GAGGAATAGCCGTTGTCGTG
lasB AGAACGCCTTGTTGTACACG GCAAGAACGACTTCCTGGTC
pilE3 TACGCTGGTCGAGTTGATGA GCGAATAGCACTGCTCCATC
rpoD

(actin) TCGGACATCAGCAAGGTT GTGAAGGACAGCCAACAG

4.11. Statistics Analysis

All experiments were performed at least in triplicates and all data were analyzed by SPSS 19.0
software and presented as mean values. Differences with p < 0.05 were considered statistically significant.

5. Conclusions

Twenty-three components with a relative mass fraction of ≥0.11% were identified in C. camphora
EO, and the principal component was linalool (51.57%), which indicated that the species belongs to
the linalool type.

The C. camphora EO had a significant inhibitory effect against S. aureus ATCC25933, E. coli
ATCC25922, P. aeruginosa, and C. violaceum ATCC31532. In addition, the MICs of C. camphora EO were
2.5%� for P. aeruginosa, 5%� for S. aureus ATCC25933 and C. violaceum ATCC31532, and 10%� for E. coli
ATCC25922. Thus P. aeruginosa and E. coli ATCC25922 showed the highest and least sensitivity to
C. camphora EO, respectively.

The C. camphora EO also interfered with the QS phenotype behaviors without inhibiting its growth,
primarily as follows: the violacein and biofilm were reduced with the maximum inhibition rates
of 63% and 77.64%, respectively. Biofilm formation and the swarming movement of C. violaceum
were inhibited upon treatment with C. camphora EO. Furthermore, the expression of QS-related genes
decreased significantly in the presence of C. camphora EO at sub-MICs.
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Quorum-sensing quenching could be an alternative strategy to combat bacterial infections
as it lowers the development of multidrug resistance. The anti-QS activity of C. camphora EO lays
a foundation for developing camphor EO into a new biological pesticide targeting the bacterial QS
system. However, the further study of the interaction mechanism between EO and bacteria should be
analyzed in detail.
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