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COVID-19 is a complex disease with a multifaceted set of disturbances involving several
mechanisms of health and disease in the human body. Sex hormones, estrogen, and
testosterone, seem to play a major role in its pathogenesis, development, spread, severity,
and mortalities. Examination of factors such as age, gender, ethnic background, genetic
prevalence, and existing co-morbidities, may disclose the mechanisms underlying SARS-
CoV-2 infection, morbidity, and mortality, paving the way for COVID-19 amelioration and
substantial flattening of the infection curve. In this mini-review, we focus on the role of
testosterone through a discussion of the intricate mechanisms of disease development
and deterioration. Accumulated evidence suggests that there are links between high level
(normal male level) as well as low level (age-related hypogonadism) testosterone in disease
progression and expansion, supporting its role as a double-edged sword. Unresolved
questions point to the essential need for further targeted studies to substantiate these
contrasting mechanisms.
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INTRODUCTION

Almost one year has elapsed since the outbreak of the coronavirus disease 2019 (COVID-19)
pandemic, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). The
cumulative number of infected cases and death toll around the world continues to rise. As of
January 1, 2021, the number of confirmed global cases of SARS-CoV-2 is 81,658,440 and the
number of established human deaths is 1,802,206 cases, reported to WHO, while the numbers
continue to evolve. The availability of effective vaccines brings hope for an end to the pandemic,
though limitations of distribution might require a year or more to achieve global control.
Accumulating evidence suggests that male infection is predominant (1, 2), especially in cases
above 60 years of age and specifically in critically ill adults (2–5). Furthermore, intensive care unit
admissions and mortality rates are far higher for male than female patients, independent of
age (2–5).

Accumulating data from around the globe also shows that the incidence of COVID-19 is
strikingly variable in different populations and various ethnic backgrounds, with diverse
heterogeneity in virulence (6, 7). Evidence emerging from the United States and England shows
that COVID19 mortality is disproportionately high amongst African Americans, Black, Asian, and
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other ethnic minority communities. Estimates suggest that
American counties where Black residents are in the majority
have almost six times the rate of death due to COVID19
compared to counties with predominantly white residents (7–9).
Socioeconomic and lifestyle factors seem also to be implicated
in COVID-19 severity and gender differences (10–13). The
likelihood of SARS-CoV-2 infection is significantly higher
among minority ethnic communities even after adjustment for
important socio-demographic and co-morbidity factors (14).

Furthermore, the incidence of COVID-19 before puberty is
particularly low, and even when presenting it is generally mild (1,
15). Contrary to adults, there is no significant gender difference
in young patients (16).

Taken together, epidemiological data continue to accumulate
since the outbreak of the novel COVID-19 pandemic that suggest
the possibility that sex hormone differences between males and
females, specifically testosterone levels, normal male and age-
related hypogonadism, in addition to genetic factors between
different ethnic communities, may play a crucial role in the
occurrence, pathogenesis, severity, and subsequent mortality of
COVID-19.
SARS-COV-2 PATHOGENESIS
OF INFECTION

The entire cell cycle of SARS-CoV-2 infection has been lately
elucidated and clarified at the molecular level (17). It is currently
well accepted that the port of entry of SARS-CoV-2 to the lungs,
as to other vital organs of the body, is via the angiotensin-
converting enzyme 2 (ACE2) receptor. This receptor is a key
element of the renin-angiotensin-aldosterone system (RAAS), a
cardinal endocrine/metabolic axis that regulates blood pressure
and fluid balance. ACE2 is responsible for the generation of
angiotensin 1-7 from angiotensin II. The angiotensin 1-7-Mas
receptor axis provokes beneficial balancing and salutary actions
to counterpart the adverse actions of the ACE/angiotensin II/
AT1R pathway in vital organs, such as the lung, heart, and
kidney (18, 19). Therefore, being a receptor for SARS-CoV-2
penetration of host cells, ACE2 integrity plays a crucial protective
role against lung and other vital organ injuries (20). Coronavirus
mediated ACE2 receptor down-regulation may escalate the
counter-part impact of the renin-angiotensin I-angiotensin II-
AT1R axis and contribute to the deleterious hyper-inflammatory
response of COVID-19 in the lungs (21, 22). Yet, it has been
shown that this effect does not hold in all parts of the body
(23, 24).

SARS-CoV-2 is enveloped with a single-stranded positive
sense RNA genome. The viral envelope bears transmembrane
spike proteins (S) as well as other proteins (25). SARS-CoV-2
and SARS-CoV employ the same receptor-binding domain, via
their surface S glycoproteins, to attach to the ACE2 receptor (26,
27). The S proteins of both viruses have been shown to have a
high rate of homology, possess almost identical 3-D structures,
and share 76.5% identity in amino acid sequences (28), although
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the affinity of SARS-CoV-2 to ACE2 has been revealed to be 10 to
20- fold higher than that of SARS-CoV (29). The S proteins have
two fused binding subunits, S1 and S2 respectively. The first, S1,
is responsible for the virus surface attachment to the host cell, and
the second, S2, for the fusion of viral and cellular membranes and
viral internalization into the host cell (17). Viral infection and
entry to host cells require S protein priming by cellular proteases,
which entails S protein cleavage at the S1/S2 and the S2 sites (17).
Spike protein priming and cleavage are triggered by the host
cellular transmembrane protease serine 2 (TMPRSS2) (17, 30–32).
SARS-CoV-2 host cell entry was shown to be blocked by the
clinically validated inhibitor of TMPRSS2 - Camostate (17). The
priming process by TMPRSS2 seems to be vital for the entry of
SARS-CoV-2 into human host cells, and thus plays an integral role
in COVID-19 infection and disease progression. Moreover,
TMPRSS2may also cleave ACE2 thus augmenting viral entry (33).

More recently, it has been demonstrated that the S protein of
SARS-CoV-2 infects lung host cells by a two-step activation
mechanism. A pre-cleavage of the S proteins at the S1/S2 site by
furin proteases is essential for subsequent S protein priming and
activation (at the S2 site) by TMPRSS2 lung cells (33, 34). This
mechanism explains the fusion of infected cells with non-
infected cells, which might allow the virus to spread in the
body without leaving the host cell. Furin, encoded in humans by
the FURIN gene, is an enzyme that belongs to the subtilisin-like
proprotein convertase family. The latter consists of a family of
nine serine secretory proteases that regulate various biological
processes in both healthy and disease states (35, 36). Furin is a
calcium-dependent serine endoprotease that can efficiently
cleave precursor proteins at their paired basic amino acid
processing sites.
HIGH TESTOSTERONE IMPACT ON
COVID-19 SEVERITY—THE
TMPRSS2 CONNECTION

TMPRSS2 is a cell-surface protein expressed by the epithelial
cells of specific tissues including those in the aero-digestive tract.
It is a member of the type II Transmembrane Serine Proteases
(TTSPs) family that are involved in multiple physiological and
pathological processes, including viral infections and cancer,
although its exact physiological role is still under investigation.
TMPRSS2 transcription is regulated by the androgen receptor
(AR) (37). Specifically, AR activity is considered a requirement
for the transcription of the TMPRSS2 gene because no other
known TMPRSS2 gene promoter has been described in humans
to date (37).

The human AR, located on the X chromosome, functions as a
steroid hormone–activated transcription factor, which signals
through classical and non-classical signaling pathways (ligand-
dependent and independent actions) (38, 39). Androgens can
work along three known paths, by intracellular conversion of
serum testosterone into dihydrotestosterone (DHT), by
testosterone itself, or by intracellular conversion of testosterone
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to estradiol through aromatization. The AR has widespread
expression in many cells and tissues with a diverse range of
biological actions involving the development and maintenance of
the reproductive, musculoskeletal, cardiovascular, immune,
neural, and haemopoietic systems (39, 40).

Androgen receptor expression is low prior to pubertal
maturation and may contribute to the low incidence of severe
COVID-19 infection in children (41, 42). In addition, the lower
rate of severe COVID-19 infection in female patients may be
attributed to lower AR expression (43, 44). AR contains two
polymorphic nucleotide repeats, GGN and CAG, encoding for
glycine and glutamine, respectively (45). Several mutations or
polymorphisms have been described in the gene encoding the AR
in a variety of diseases or among various ethnic groups. Some of
these mutations/polymorphisms are associated with functional
changes in the AR expression and mutations in or around the
receptor (46–48). Testosterone’s biological action is dependent on
the length of the CAG repeat of the androgen receptor gene (49).

Androgen mediated expression of ACE2 and TMPRSS2 may
explain the gender difference in COVID-19 disease severity and
mortality (50). Furthermore, the frequency of genetic variations
in the AR differs by ethnicity, which may suggest a possible
explanation for the wide differences in COVID-19 severity and
mortality rates between countries and between different ethnic
backgrounds in the same country (51, 52).

Various experimental data in mammalian animal models, as
well as in numerous, unrelated clinical manifestations, in diverse
in-vivo as well as human clinical settings, support the interplay
between SARS-CoV-2 and sex hormones, specifically
testosterone and AR, most likely via the cell host TMPRSSE2.

In animal models, ACE and ACE2 activity in cardiac cells
were significantly higher in male compared to female rats,
whereas orchiectomy decreased the activity of these enzymes
and ovariectomy increased ACE2 but did not change ACE
activity (53). In addition, androgen administration to a lung
adenocarcinoma cell line up regulated the TMPRSS2 transcript
more than two-fold, accompanied by an androgen dependent
loading of the AR protein onto the TMPRSS2 enhancer (54).
Furthermore, TMPRSS2 inhibition or knock down has been
shown to reduce SARS-CoV infection in vitro (33).

Just recently, in-vitro studies employing human embryonic
stem cell-derived cardiac cells and lung organoids have
substantiated that testosterone regulates SARS-CoV-2
development, intensifying its severity in men. Furthermore, the
pharmacological dampening of testosterone activity by inhibitors
of 5 alpha reductases can reduce ACE2 levels in the target cells,
leading to the decay of SARS CoV-2 infectivity (55).

In the clinical setting, recent preliminary studies suggest a
high incidence of androgenic (androgenetic) alopecia among
male and female patients hospitalized due to severe COVID-19
(56, 57). Androgenic alopecia, often referred to as male pattern
(scalp) hair loss, is the most common form of hair loss among
men and is associated with AR polymorphism (58). In one small-
scale study, clinically significant androgenic alopecia was shown
to complicate 71% of males with COVID-19 as compared to
31-57% in literature controls (57).
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The androgen-dependency of TMPRSS2 activity is normally
expressed at its highest level in the prostate epithelium, as
evidenced by several fold abundance compared to all other
body tissues (59, 60). While the physiological role of TMPRSS2
is still under investigation, it is significantly up regulated in men
with a prostatic disease, including those with prostate cancers
(37). Elevated free testosterone was recently shown in a large
scale study to be associated with COVID-19 complications in
this subgroup of men (55).

Men with metastatic prostatic cancer are usually treated with
androgen-deprivation therapies to control the disease. It is
noteworthy that these therapies substantially decrease the
levels of TMPRSS2. While cancer patients have an increased
risk of SARS-CoV-2 compared to non-cancer patients, it has
been recently shown by two independent preliminary studies
that prostate cancer patients receiving androgen-deprivation
therapies are partially protected from SARS-CoV-2 infections
(61, 62), supporting further the deleterious role of androgens in
the pathogenesis of COVID-19. The active controversy
surrounding this topic in contemporary literature calls for
well-designed targeted studies to substantiate the potential
protective effects of androgen-deprivation therapy.

A more recent prospective longitudinal study of hospitalized
males with COVID-19 suggested that longer AR CAG repeats are
associated with a more severe form of the disease, supporting the
active role of testosterone in the pathogenesis of the complicated
disease (63).

Furthermore, there is evidence that AR has an impact on furin
and other members of the convertase proprotein family in
prostate cancer, which may support an alternative role for
testosterone in the pathogenesis of COVID-19 (64, 65). This
two-pronged position of testosterone to employ either TMPRSS2
or furin to intensify the virulence of SARS-CoV-2 warrants
investigation in targeted studies.

Further to the AR genetic disparities among various ethnic
populations, other natural candidate genetic polymorphisms
related to ACE2, TMPRSS2, or FURIN genes, as well as other
host invasion genes such as DPP4 or PCSK3, which have been
shown to differ among different population ancestries, may also
provide a supplementary explanation for COVID-19 pandemic
spread and progression (66–68). It is possible that the presence of
different ACE2, TMPRSS2, FURIN, DPP4, and PCSK3 gene
variants, the main machinery for orchestrating SARS-CoV-2
cellular host access, may modulate viral infectivity among
humans, making some people less or more vulnerable than others.

Taken together, epidemiological data emerging from the
COVID-19 pandemic, backed by animal studies and further by
preliminary clinical studies in diverse clinical settings, support
the notion that high (male) testosterone levels acting via the AR
modulate TMPRSS2 function positively to further prime SARS-
CoV-2 S proteins and eventually increase COVID-19 infectivity
and severity. Additionally, as in various ethnic backgrounds, AR
mutations or other gene polymorphisms along the pathway of
SARS-Co-2 pathogenesis may further lead to COVID-19
expansion and deterioration. This concept ought to be further
explored in properly performed targeted studies.
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LOW TESTOSTERONE IMPACT ON
COVID-19 SEVERITY—THE
ACE2 CONNECTION
Serum testosterone levels decline with aging among men (69, 70)
and the presence of comorbidities such as obesity, diabetes
mellitus, cardiovascular disease, and chronic obstructive
pulmonary disease, may further accentuate testosterone
decrease among these men (71–74). Functional hypogonadism,
which was previously referred to as “late-onset” hypogonadism,
is a condition in which the endogenous secretion of testosterone
is either insufficient or inadequate to maintain serum
testosterone levels within the normal range, and may manifest
as a variety of signs and symptoms. In addition to reduced sexual
function, age-related hypogonadal men may have impaired
energy, muscle mass and performance, cognitive function,
bone mass with increased fracture risk, and anemia (74).

Age-related hypogonadism in men is due to a combination of
primary hypogonadism (testicular insufficiency) and secondary
hypogonadism (hypothalamic-pituitary insufficiency). While the
first is the result of a reduced number of Leydig cells in the testis
and less responsiveness of these cells to LH stimulation, the latter
is the result of decreased GnRH production by the hypothalamus
causing a decrease in LH secretion (75, 76). In these cases, serum
T levels are low (below 10.5 nmol/L), however in some cases
hypogonadism may be compensated, apparent by normal serum
T level and high LH level.

Functional hypogonadism in adult men is often
underdiagnosed and therefore undertreated. This has been
explained as related symptoms are easily attributed to aging or
other medical causes or ignored by patients and physicians. More
than 60% of men over age 65 have free testosterone levels below
the normal values of men aged 30 to 35. The community
prevalence estimates of potentially functional hypogonadism in
middle-aged and older men vary from 2.1% to 12.3%, with wide
geographic and racial variation (74, 77). However, in men with
comorbidities the prevalence may be much higher, reaching a
rate of 22 to 69% in men with chronic obstructive pulmonary
disease (71).

There are remarkable sex differences between the
physiological mechanisms regulating arterial pressure, renal
and vascular functions in humans (78–80). Accumulating
evidence suggests that several components of the RAAS are
regulated by sex hormones, as well as influenced by hormone
replacement therapies (80). This is attributed to the differential
balance in the pressor and the counterpart depressor arms of the
RAAS in related organs. Mounting evidence suggests that sex
hormones, androgens and estrogens, and modulation of the
ACE2 expression may also take place in the lungs (81, 82). The
ACE2 gene is located on the X chromosome, with females
generally having higher ACE2 activity than males (83), yet
ACE2 expression levels in the lungs as well as in the
myocardium have recently been demonstrated to be higher in
males (53, 82). Furthermore, while ACE2 gene expression
decreases with age, it has been shown to have a negative
correlation with COVID-19 severity and mortality (84). ACE2
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is the receptor entry of SARS-CoV-2 infection and progression,
but then again is a guardian against lung injury. It is, therefore,
reasonable to speculate that in men with functional
hypogonadism, low testosterone levels may aggravate COVID-
19 infection and exacerbate morbidity and mortality.

RAAS components, and specifically ACE2, have also been
shown to be involved in normal testosterone production,
steroidogenesis, and spermatogenesis in mammalian animal
models as well as in humans (85). Recently, ACE2 expression
patterns were found to predominate spermatogonia, Leydig, and
Sertoli cells in the adult human testis (86), offering evidence
that the reproductive system in men is a potential target of
COVID-19. There is some preliminary evidence to show that
acute SARS-CoV-2 infection has the potential to infect
the testes causing orchitis, and leading to a reduced
ratio of serum testosterone to LH levels (87–89). This
may potentially enhance the susceptibility of men with
functional or borderline hypogonadism to COVID-19 infection
and deterioration.

Moreover, testosterone is implicated in physiological
processes in adult males other than reproduction and sexuality.
Among these functions, testosterone has anti-inflammatory
and immune-modulatory protective effects, achieved by
regulating the differentiation of T lymphocytes (90–92).
Androgens seem to be essential to mounting an anti-viral
response and combating infection in males. Accumulating
evidence suggests that in cases with severe SARS-CoV-2
infection, there is an acute disruption of the immune response.
Specifically, secondary cytokine storm syndrome has been shown
to complicate severe COVID-19 cases, leading to multiple-organ
failure and mortality (93).

Furthermore, testosterone seems to have a modulatory
influence on vascular integrity in aging men. Although most of
the literature on sex differences has focused on the effects of
estrogen deficiency associated with menopause and the protective
effect of hormone replacement therapy, little attention has been
paid to testosterone and its contribution to vascular aging.
Accumulating data suggest that testosterone deficiency in aging
men is related to endothelial dysfunction, arterial stiffness, and
thrombocyte malfunction, predisposing men with COVID-19 to
increased risk of venous and arterial thrombo-embolic
phenomenon causing mortality (94, 95).

Indeed, two recent preliminary, unrelated cohort
studies targeted patients with severe COVID-19, admitted to
intensive care units, with a high rate of comorbidities. Both
studies independently showed that low testosterone and
dihydrotestosterone levels were correlated with COVID-19
severity and mortality (96, 97). Furthermore, low testosterone
levels were found to correlate with high levels of inflammatory
cytokines (96).

Taken together, low testosterone levels, a pathognomonic
biomarker of aging males with functional hypogonadism, seems
to be a substantial factor for poor prognosis and mortality in
SARS-CoV-2 infected men. This may be substantially aggravated
in men with co-morbidities admitted to intensive care units.
Further studies are needed to substantiate this notion.
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DISCUSSION

This mini review illustrates that COVID-19, an amply complex
disease generated by the novel mutated SARS-CoV-2, has paved
the way to explore numerous mechanisms of health and disease
in the human body. Sex hormones, specifically testosterone seem
to be a key factor in the development and spread of the disease. It
seems that testosterone may be considered a double-edged sword
in the pathogenesis of COVID-19 morbidity and mortality. In
turn, the edges may correspond to countervailing connectors and
pathways: TMPRSS2 promoting the contribution of testosterone
excess and ACE-2 promoting the role of age-related testosterone
deficiency (Figure 1). Epidemiological data, animal models and
in-vitro cell experiments, and clinical studies support our
conclusion. Unfolding the mechanisms and pathways of
COVID-19 development and spread related to testosterone
may open new horizons for disease containment, treatment,
and eradication. This paper paves the way for several future
directions of clinical, translational, and basic science
investigations. Table 1 summarizes the outstanding and
unresolved questions that warrant examination in future
targeted studies.
Frontiers in Endocrinology | www.frontiersin.org 5
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FIGURE 1 | The port of entry of the novel mutant virus Severe Acute Respiratory Syndrome (SARS)-CoV-2 to target cells is via the angiotensin-converting
enzyme 2 (ACE2), a key element of the renin-angiotensin-aldosterone system (RAAS). ACE2 is widely expressed in the human body and is largely responsible for
the generation of angiotensin 1-7 from angiotensin II. The angiotensin 1-7-Mas receptor axis provokes beneficial balancing and salutary actions to counterpart
the adverse branch of renin-angiotensin I-angiotensin II-AT1R axis in the RAAS, in vital organs such as the lung, heart, and kidney. The viral envelope bears
transmembrane spike (S) glycoproteins applied to ACE2 attachment. Following ACE2 binding, cleavage of the viral spike protein (S) by proteases including
transmembrane protease serine 2 (MPRSS2) and furin is considered as an essential step to effectuate host cell membrane fusion and virus infection. The priming
process by TMPRSS2 seems to be vital for the entry of SARS-CoV-2 into human host cells. TMPRSS2 transcription is exclusively regulated by the androgen
receptor (AR). The AR has a widespread expression in many tissues with a diverse range of biological actions, including the cardiovascular, reproductive,
musculoskeletal, immune, neural, and haemopoietic systems. Male level testosterone seems to play a vital role in COVID-19 pathogenesis and severity, via the
TMPRSS2 connection. While functional hypogonadism, a prevalent occurrence in aging men that is more widespread in men with comorbidities, also has an
adversative role, via the ACE2 connection.
TABLE 1 | Unresolved questions relating to the “double-edged” role of
testosterone in COVID-19.

What is the relation between serum testosterone levels and biomarkers of severe
COVID-19 such as: lymphocyte count, CRP, D-dimers, ferritin and IL-6
(98–100)?
What is the relation between testosterone levels, androgen receptor mutations/
polymorphisms and TMPRSSE2 function in priming SARS-CoV-2 spike proteins,
and in turn COVID-19 morbidity and mortality?
What is the relation between testosterone levels in men with age-related
functional hypogonadism, COVID-19 and ACE2 expression, and in turn to
disease severity and mortality, in men with co-morbidities or patients admitted to
intensive care units?
Can precision guidance be used to consider whether testosterone replacement
therapy or, conversely, testosterone deprivation drugs, in the appropriate
settings, for management of patients with COVID-19?
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