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Abstract: Recent advancements in agricultural metagenomics allow for characterizing microbial
indicators of soil health brought on by changes in management decisions, which ultimately affect the
soil environment. Field-scale studies investigating the microbial taxa from agricultural experiments
are sparse, with none investigating the long-term effect of crop rotation and tillage on microbial
indicator species. Therefore, our goal was to determine the effect of rotations (continuous corn,
CCC; continuous soybean, SSS; and each phase of a corn-soybean rotation, Cs and Sc) and tillage
(no-till, NT; and chisel tillage, T) on the soil microbial community composition following 20 years of
management. We found that crop rotation and tillage influence the soil environment by altering key
soil properties, such as pH and soil organic matter (SOM). Monoculture corn lowered pH compared
to SSS (5.9 vs. 6.9, respectively) but increased SOM (5.4% vs. 4.6%, respectively). Bacterial indicator
microbes were categorized into two groups: SOM dependent and acidophile vs. N adverse and
neutrophile. Fungi preferred the CCC rotation, characterized by low pH. Archaeal indicators were
mainly ammonia oxidizers with species occupying niches at contrasting pHs. Numerous indicator
microbes are involved with N cycling due to the fertilizer-rich environment, prone to aquatic or
gaseous losses.

Keywords: bacteria; fungi; archaea; metagenomics; microbial N cycle; nitrification; maize; soybean;
monocultures; no tillage

1. Introduction

Agricultural management practices influence soil microbial communities, creating
niche environments that favor certain microbes [1,2]. Management practices can include
crop rotation, tillage, N fertilization, cover cropping, etc. By selecting management practices
or combining them, the soil environment is altered, as are essential soil processes. These
can include residue decomposition, nutrient and water cycling, aeration and gaseous
interactions, development of soil aggregates, soil organic matter (SOM) dynamics, and
biodiversity measures [3,4]. Crop rotation is a common management practice with benefits
that include pest and disease control and yield improvement and stabilization [5–7]. Tillage
is another tool used to improve yields by creating a more favorable environment for cash
crop growth. In systems of high organic matter, tillage ensures a clean seedbed for early
growth by reducing compaction, improving aeration, increasing soil temperature, and
removing weed competition [5,8,9]. Lastly, N fertilization is a common practice used to
enhance yields, and that influx of previously scarce N reshapes potential N dynamics
controlled by soil microbial communities [10].

Given the benefits of crop rotation, tillage, and N fertilization on crop yields, their
implementation is widespread, which affects the soil microbial community. Crop rotation
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and fertilization alter the quantity and quality of crop residues, root exudates, and subse-
quent rhizodeposits [11–13]. Results from a meta-analysis by Ouyang et al. [14] showed
that crop rotation and soil pH influenced N cycling by changing the ammonia-oxidizing
bacteria (AOB) and archaea (AOA) community dynamics, as well as denitrifiers. Crop
rotation increased AOB levels compared to monocultures; AOA was unaffected. However,
neutrophilic soil conditions led to an increase in both AOA and AOB. Furthermore, N
fertilization increased the abundance of AOA, AOB, and denitrifiers [14]. In a remarkably
long-term study on the Morrow Plots in Urbana, IL, treatments of crop rotation and N
fertilization have been in place since 1876; shifts in microbial functions related to substrate
utilization were affected by fertilizer treatments more than crop rotation given the chronic
nutrient limitations and changes in soil chemistry [15]. Smith et al. [16] reported that
crop type and tillage altered species composition, but not quantity and diversity metrics
from Indiana corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotations. Compared to
crop rotation, tillage had a larger effect on nutrient levels, which was a better predictor
for microbial community composition [16]. The effects of tillage on the soil microbial
community include mechanically disrupting growth and distribution, destroying soil ag-
gregates, reducing soil moisture, increasing soil temperature, and degrading soil organic
matter (SOM) [17–19]. In a global meta-analysis looking at the effects of tillage, Zuber
and Villamil [20] observed that NT systems have greater microbial biomass and enzymatic
activities. Furthermore, de Graaff et al. [21], also using a meta-analytic approach, showed
that tillage decreased bacterial biodiversity, however, it did not affect fungi.

Previously when technology was a limiting factor, using broad inference measure-
ments was the best available technique for explaining how the soil microbiome responds
to management factors. However, new metagenomic approaches better characterize the
microbial community composition and function and its relationship with soil properties
and agronomics [22–24]. Diversity and richness metrics represent the variability within
a single sample (α-diversity) and among communities (β-diversity). Using quantitative
polymerase chain reaction (qPCR), functional microbial genes, such as nirK, which is in-
volved in denitrification, are analyzed for treatment effects [10,25]. Lastly, using primers
for each major taxonomic group (bacteria, fungi, and archaea, PCR amplification produces
a vast pool of amplicons. From that pool of hundreds to thousands of individual amplicons,
high throughput sequencing with Illumina yields a deep inventory of amplicon sequence
variants (ASVs), from where indicator microbes can be selected and characterized [22,23].
Indicator microbes usually refer to an ASV that explains variability in a dataset [23]. Studies
on indicator microbes have shown that organic matter inputs and pH alter the cycling of
N and C, resulting in significant changes in soil biological properties [2,15,26,27]. Given
the complexity of using metagenomics to identify indicator microbes, field studies are
scarce, especially from a long-term setting. A few long-term studies (15–130 years) have
determined indicator microbes from typical cropping systems [2,15,27], though none have
analyzed crop rotation and tillage simultaneously. As these are the most common tools
used by growers to improve yields, a thorough investigation of these indicator microbes
is necessary.

We hypothesized that our treatments of continuous corn and soybean would show
contrasting effects on microbial taxa, with rotated corn-soybean having intermediate results,
not different from either monoculture. We also hypothesized that AOB and fungi would
have elevated abundances in the continuous corn treatment, with AOA increasing in
the continuous soybean treatment. Therefore, the objective of this investigation was to
identify microbial taxa that were responsive to crop rotation and tillage from a long-term,
stable trial (20+ years). The results will add valuable primary information on how the soil
microorganisms shift in response to common agricultural management practices.
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2. Materials and Methods
2.1. Experimental Site Description and Management Practices

The experiment was conducted at the Northwestern Illinois Agricultural Research
and Demonstration Center (40◦55′50” N, 90◦43′38” W), near Monmouth, Illinois. The
study was established in 1996, and a complete description of the site can be found in
Behnke et al. (2018; 2020). Briefly, soils were comprised of highly fertile silty clay loam
and silt loam soil series (Muscatune 43%, Sable 40%, and Osco 17%) [28]. The study was
designed in a split-plot arrangement of 4 rotation levels and 2 tillage levels in a randomized
complete block design with 4 replications (blocks). The main plots (22 m long by 12 m
wide) were crop rotation treatments, which consisted of continuous corn (CCC), corn phase
of the corn-soybean rotation (Cs), soybean phase of the corn-soybean rotation (Sc), and
continuous soybean (SSS). Subplot (22 m long by 6 m wide) tillage options were either
no-till (NT) or chisel tillage (T). Tillage occurred in the fall following harvest using a disk-
ripper to 35 cm in depth, and in the spring, a soil finisher was used to prepare the seedbeds.
No-till plots received zero tillage. Spring N fertilizer was applied at or before planting as
injected incorporated urea ammonium nitrate (UAN) at a rate of 246 kg N ha−1 for CCC
and 202 kg N ha−1 for Cs; soybeans received no fertilizer. Fertilizer and pest management
followed the Illinois Agronomy Handbook [29]. Key field event date ranges are provided
in Table S1.

2.2. Soil Sampling and Procedures

Soil samples were taken postharvest in October of 2015 and 2016 using an Eijkelkamp
grass plot sampler (Eijkelkamp Soil and Water, Morrisville, NC, USA) to a depth of 10 cm.
A total of 3 subsamples were taken for each plot; each subsample consisted of around
10 random plugs totaling ~500 g of soil per subsample. A complete, multivariate exam-
ination of soil properties was conducted in Behnke, Zabaloy, Riggins, Rodriguez-Zas,
Huang and Villamil [25], and a table summarizing that information was provided in the
supplementary information Table S2. Soil samples were immediately preserved with ice
then frozen to -20 ◦C after returning to the lab facilities. Using 0.25 g of soil per com-
posited subsample, soil DNA was extracted using the PowerSoil® DNA isolation kits
(MoBio Inc., Carlsbad, CA, USA), following the included instructions. The extracted DNA
was then measured for quantity and quality using a Nanodrop 100 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and stored at −20 ◦C. Amplification of
the Bacterial 16S rRNA gene (V4 region) used a primer set of 515F (GTGYCAGCMGC-
CGCGGTAA) and 806R (GGACTACVSGGGTWTCTAAT) [26], archaeal 16S used 349F
(GTGCASCAGKCGMGAAW) and 806R (GGACTACVSGGGTATCTAAT) [30], and fun-
gal ITS (internal transcribed spacer) region used 3F (GCATCGATGAAGAACGCAGC)
and 4R (TCCTCCGCTTATTGATATGC) [31]. The primers were designed as a 50-PCR-
specific + gene region + 30-PCR-specific + 10 nt barcode, and the Fluidigm platform used
2 primer sets concurrently in the creation of the final DNA amplicon. A Qubit Fluorom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) quantified the resulting amplicon
libraries, which were then computed using a Bioanalyzer (Agilent, Santa Clara, CA, USA)
to evaluate the profile of fragment lengths. The barcoded libraries were combined in
equimolar concentrations and diluted to 10 nM. The diluted libraries were sequenced at
the Roy Carver Biotechnology Center Functional Genomics lab at the University of Illinois
at Urbana-Champaign (Urbana, IL, USA) using paired-end sequencing on the Illumina
HiSeq (Illumina, San Diego, CA, USA), resulting in 250 nt long reads.

2.3. Bioinformatics Analysis

Using QIIME2 [32,33], the sequences were processed and checked for quality. Next,
the demultiplexed sequences were filtered using a Q score threshold of 30 [34], which
resulted in the retention of bacterial sequences between base-pair positions 6 to 231, fungal
sequences 6 to 222, and archaeal sequences 6 to 221. Then, chimeric and low-quality se-
quences were removed by the denoising option (chimera-method consensus) in the plugin
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DADA2 [35]. The product of those steps was ASVs, which were then aligned with MAFFT
(v7) [36] to generate the phylogenetic tree using FastTree [37] for β-diversity measure-
ments. In Qiime 2.0, the option feature-classifier classify-sklearn was used to classify the
ASVs with reference sequences in the SILVA ribosomal RNA gene database (silva-132-
99-515-806-nb-classifier_2019_4) (Quast et al., 2013) and Fungi_97_classifier_2019_4. The
rarefaction curves plateaued at sampling depths of 35,100 bacterial sequences per sample,
10,000 fungal sequences per sample, and 1000 archaeal sequences per sample (Figure S1).
Using these depths, QIIME2 produced the number of observed ASVs, Pielou’s Evenness
Index, and Shannon’s Diversity Index (H’) for each sample (shown in Table 1). Similarly,
QIIME2 calculated β-diversity measurements for each taxa using weighted UniFrac dis-
tances (Tables 3–4). The rarefaction curves (Figure S1) were produced using SigmaPlot
(v. 12.5 Systat Software, Inc., San Jose, CA, USA).

Table 1. Mean values and standard errors of the mean (SEM) for the α-diversity parameters of observed amplicon sequence
variants (ASVs), Pielou Evenness Index (Pielou), and Shannon’s Diversity Index (H’) for bacteria, fungi, and archaea taxa,
following 20 years of crop rotation and tillage treatments. For each taxon group and within a given column, treatment mean
values followed by the same lowercase letter were not statistically different (α = 0.05).

ASVs Pielou H’

Taxa Treatment Mean SEM p-Value Mean SEM p-Value Mean SEM p-Value

Bacteria

CCC † 1297.08

62.29 0.42

0.97

0.00 0.99

10.00

0.07 0.30
Cs 1377.79 0.97 10.12
Sc 1384.50 0.97 10.14

SSS 1445.19 0.97 10.20
NT ‡ 1380.71

44.05 0.88
0.97

0.00 0.53
10.12

0.05 0.83T 1371.57 0.97 10.11

Fungi

CCC 30.56 a

2.09 0.01

0.82

0.01 0.33

3.97 a

0.12 0.03
Cs 29.50 ab 0.80 3.85 ab
Sc 25.17 ab 0.80 3.63 ab

SSS 23.90 b 0.79 3.54 b
NT 27.81

1.73 0.52
0.79

0.01 0.18
3.73

0.09 0.78T 26.75 0.81 3.77

Archaea

CCC 64.34

6.22 0.80

0.93

0.00 0.51

5.54

0.14 0.83
Cs 65.64 0.94 5.55
Sc 69.79 0.94 5.65

SSS 70.87 0.94 5.68
NT 68.81

4.86 0.68
0.94

0.00 0.85
5.63

5.63 0.69T 66.51 0.94 5.58
† CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous
soybean. ‡ NT, no-till; T, chisel tillage.

Table 2. Community structure (β-diversity) measures for bacteria following 20 years of crop rotation and tillage treatments,
and their interaction, based on pairwise permanova computation of weighted unifrac distances. The pseudo-F column
represents the comparison between UniFrac distances for a given treatment combination (listed in the Treatments Compared
column). The p-value and q-value columns indicate the probability of type I and type II errors associated with the treatment
comparisons, respectively.

Treatment Treatments Compared Sample Size Pseudo-F p-Value q-Value

Rotation †

CCC-Cs 96 3.97 0.0010 0.0012
CCC-SSS 96 15.14 0.0010 0.0012
CCC-Sc 96 5.35 0.0010 0.0012
Cs-SSS 96 6.10 0.0010 0.0012
Cs-Sc 96 1.30 0.1600 0.1600
SSS-Sc 96 5.15 0.0010 0.0012
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Table 2. Cont.

Treatment Treatments Compared Sample Size Pseudo-F p-Value q-Value

Tillage ‡ NT-T 192 5.45 0.0010 0.0010

Rotation × Tillage •

CCCNT-CCCT 48 3.11 0.0030 0.0047
CCCNT-CsNT 48 2.85 0.0040 0.0053
CCCNT-CsT 48 5.54 0.0010 0.0020

CCCNT-SSSNT 48 8.31 0.0010 0.0020
CCCNT-SSST 48 11.37 0.0010 0.0020
CCCNT-ScNT 48 3.12 0.0050 0.0064
CCCNT-ScT 48 7.01 0.0010 0.0020
CCCT-CsNT 48 1.94 0.0200 0.0224
CCCT-CsT 48 2.71 0.0020 0.0035

CCCT-SSSNT 48 7.57 0.0010 0.0020
CCCT-SSST 48 9.49 0.0010 0.0020
CCCT-ScNT 48 2.93 0.0010 0.0020
CCCT-ScT 48 3.64 0.0010 0.0020
CsNT-CsT 48 1.76 0.0310 0.0334

CsNT-SSSNT 48 3.49 0.0020 0.0035
CsNT-SSST 48 5.89 0.0010 0.0020
CsNT-ScNT 48 0.85 0.6340 0.6340
CsNT-ScT 48 2.02 0.0110 0.0128

CsT-SSSNT 48 3.37 0.0010 0.0020
CsT-SSST 48 3.57 0.0010 0.0020
CsT-ScNT 48 2.68 0.0040 0.0053
CsT-ScT 48 1.30 0.1400 0.1452

SSSNT-SSST 48 2.07 0.0080 0.0097
SSSNT-ScNT 48 3.04 0.0030 0.0047
SSSNT-ScT 48 2.67 0.0010 0.0020
SSST-ScNT 48 6.17 0.0010 0.0020
SSST-ScT 48 3.20 0.0010 0.0020
ScNT-ScT 48 2.43 0.0040 0.0053

† CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous
soybean. ‡ NT, no-till; T, chisel tillage. • CCCNT, continuous corn, and no-till; CCCT, continuous corn, and chisel tillage; CsNT, corn
phase of the corn-soybean rotation and no-till; CsT, corn phase of the corn-soybean rotation and chisel tillage; ScNT, soybean phase of
the corn-soybean rotation and no-till; ScT, soybean phase of the corn-soybean rotation and chisel tillage; SSSNT, continuous soybean and
no-till; SSST, continuous soybean and chisel tillage.

Table 3. Community structure (β-diversity) measures for fungi following 20 years of crop rotation and tillage treatments,
and their interaction, based on pairwise permanova computation of weighted unifrac distances. The pseudo-F column
represents the comparison between UniFrac distances for a given treatment combination (listed in the Treatments Compared
column). The p-value and q-value columns indicate the probability of type I and type II errors associated with the treatment
comparisons, respectively.

Treatment Treatments Compared Sample Size Pseudo-F p-Value q-Value

Rotation †

CCC-Cs 94 1.83 0.0270 0.0324
CCC-SSS 95 3.68 0.0010 0.0060
CCC-Sc 95 2.12 0.0150 0.0225
Cs-SSS 95 2.21 0.0070 0.0200
Cs-Sc 95 1.95 0.0100 0.0200
SSS-Sc 96 1.35 0.1250 0.1250

Tillage ‡ NT-T 190 1.63 0.0450 0.0450
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Table 3. Cont.

Treatment Treatments Compared Sample Size Pseudo-F p-Value q-Value

Rotation × Tillage •

CCCNT-CCCT 47 1.25 0.1870 0.2277
CCCNT-CsNT 48 1.26 0.1630 0.2075
CCCNT-CsT 47 1.87 0.0300 0.0700

CCCNT-SSSNT 48 2.61 0.0020 0.0280
CCCNT-SSST 48 2.13 0.0280 0.0700
CCCNT-ScNT 48 1.57 0.0780 0.1456
CCCNT-ScT 48 1.85 0.0290 0.0700
CCCT-CsNT 47 1.32 0.1310 0.1747
CCCT-CsT 46 1.35 0.1210 0.1747

CCCT-SSSNT 47 3.22 0.0010 0.0280
CCCT-SSST 47 2.20 0.0120 0.0700
CCCT-ScNT 47 1.60 0.0610 0.1220
CCCT-ScT 47 1.70 0.0270 0.0700
CsNT-CsT 47 0.88 0.5910 0.6129

CsNT-SSSNT 48 1.69 0.0250 0.0700
CsNT-SSST 48 1.41 0.1120 0.1742
CsNT-ScNT 48 1.11 0.2710 0.3035
CsNT-ScT 48 1.75 0.0210 0.0700

CsT-SSSNT 47 1.89 0.0140 0.0700
CsT-SSST 47 1.76 0.0390 0.0840
CsT-ScNT 47 1.42 0.0950 0.1663
CsT-ScT 47 1.82 0.0300 0.0700

SSSNT-SSST 48 1.40 0.1260 0.1747
SSSNT-ScNT 48 0.95 0.5040 0.5428
SSSNT-ScT 48 2.34 0.0070 0.0653
SSST-ScNT 48 0.78 0.7060 0.7060
SSST-ScT 48 1.48 0.1050 0.1729
ScNT-ScT 48 1.18 0.2230 0.2602

†CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous
soybean. ‡NT, no-till; T, chisel tillage. •CCCNT, continuous corn, and no-till; CCCT, continuous corn, and chisel tillage; CsNT, corn
phase of the corn-soybean rotation and no-till; CsT, corn phase of the corn-soybean rotation and chisel tillage; ScNT, soybean phase of
the corn-soybean rotation and no-till; ScT, soybean phase of the corn-soybean rotation and chisel tillage; SSSNT, continuous soybean and
no-till; SSST, continuous soybean and chisel tillage.

Table 4. Community structure (β-diversity) measures for archaea following 20 years of crop rotation and tillage treatments,
and their interaction, based on pairwise permanova computation of weighted unifrac distances. The pseudo-F column
represents the comparison between UniFrac distances for a given treatment combination (listed in the Treatments Compared
column). The p-value and q-value columns indicate the probability of type I and type II errors associated with the treatment
comparisons, respectively.

Treatment Treatments Compared Sample Size Pseudo-F p-Value q-Value

Rotation †

CCC-Cs 85 2.49 0.0620 0.1240
CCC-SSS 89 7.08 0.0010 0.0060
CCC-Sc 89 0.97 0.3270 0.3270
Cs-SSS 88 1.56 0.1610 0.2415
Cs-Sc 88 1.25 0.2320 0.2784
SSS-Sc 92 5.24 0.0040 0.0120

Tillage ‡ NT-T 177 2.17 0.0920 0.0920
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Table 4. Cont.

Treatment Treatments Compared Sample Size Pseudo-F p-Value q-Value

Rotation × Tillage •

CCCNT-CCCT 43 1.20 0.2790 0.4595
CCCNT-CsNT 41 1.02 0.3590 0.5026
CCCNT-CsT 43 3.15 0.0310 0.1085

CCCNT-SSSNT 44 3.49 0.0220 0.1085
CCCNT-SSST 44 4.71 0.0030 0.0840
CCCNT-ScNT 43 0.65 0.5930 0.6642
CCCNT-ScT 45 1.73 0.1300 0.2595
CCCT-CsNT 42 0.85 0.4010 0.5347
CCCT-CsT 44 2.73 0.0520 0.1456

CCCT-SSSNT 45 3.51 0.0270 0.1085
CCCT-SSST 45 4.50 0.0130 0.1085
CCCT-ScNT 44 0.80 0.4480 0.5702
CCCT-ScT 46 1.03 0.3140 0.4884
CsNT-CsT 42 1.71 0.1270 0.2595

CsNT-SSSNT 43 1.83 0.1050 0.2450
CsNT-SSST 43 2.78 0.0480 0.1456
CsNT-ScNT 42 0.59 0.6570 0.7075
CsNT-ScT 44 0.53 0.7680 0.7680

CsT-SSSNT 45 0.55 0.7190 0.7456
CsT-SSST 45 0.69 0.5480 0.6393
CsT-ScNT 44 3.01 0.0310 0.1085
CsT-ScT 46 1.19 0.2640 0.4595

SSSNT-SSST 46 0.76 0.5050 0.6148
SSSNT-ScNT 45 3.26 0.0230 0.1085
SSSNT-ScT 47 1.76 0.1390 0.2595
SSST-ScNT 45 4.95 0.0130 0.1085
SSST-ScT 47 2.45 0.0610 0.1553
ScNT-ScT 46 1.02 0.3450 0.5026

† CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous
soybean. ‡ NT, no-till; T, chisel tillage. • CCCNT, continuous corn, and no-till; CCCT, continuous corn, and chisel tillage; CsNT, corn
phase of the corn-soybean rotation and no-till; CsT, corn phase of the corn-soybean rotation and chisel tillage; ScNT, soybean phase of
the corn-soybean rotation and no-till; ScT, soybean phase of the corn-soybean rotation and chisel tillage; SSSNT, continuous soybean and
no-till; SSST, continuous soybean and chisel tillage.

2.4. Statistical Analysis

In order to identify the responsive microbes and estimate treatment effects, the relative
abundances (RAs, %) of each ASV were examined. [As described in Kim, Zabaloy, Riggins,
Rodríguez-Zas, and Villamil [23]] Using the JMP® predictor screening platform based on
bootstrap forest partitioning [38,39] on the original dataset, a condensed set of responsive
microbes was produced. The responsive dataset consisted of 35 out of 4098 bacterial
ASVs, 37 out of 390 fungal ASVs, and 11 out of 28 archaeal ASVs. These responsive
microbes contributed to at least 1% of the variability in the model algorithms (Tables S3–S5).
Then, the responsive microbe ASVs for each taxon were analyzed by principal component
analysis (PCA) to further remove redundancy and avoid multicollinearity issues. Next, the
RAs of these ASVs were summarized into a set of uncorrelated, orthogonal

Bacterial RAs for the phyla level showed that Proteobacteria (30%) was the most abun-
dant, followed by Acidobacteria (20%), Actinobacteria (17%), Chloroflexi (10%), Plancto-
mycetes (10%), Bacteroidetes (7%), Rokubacteria (3%), and Verrucomicrobia (3%) variables
called principal components (PCs) utilizing the FACTOR procedure in SAS (v 9.4 SAS
Institute, Cary, NC). The PCs with eigenvalues ≥1 that explained >5% of the variability
in the dataset were then used as independent variables for further analysis. The ASVs
with PC loading values > |0.5| were considered significant and classified as responsive
microbes [40]. Using the GLIMMIX procedure in SAS, linear mixed models were fit to
each responsive variable, including the α-diversity measures (Table 1) and PC scores of
top contributing ASVs. Crop rotation and tillage were considered fixed effects, whereas
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blocks and years were considered random terms in the analyses of variance. Using SAS,
least-square means of the response variables were separated by treatment levels and in-
teractions, using the pdiff option and setting the probability of a type I error at α = 0.05.
SigmaPlot was used to visualize the RA responses for each significant effect between the
PC scores and treatments. The figures presented in the results characterized the combined
PCA results and associated means separations for indicator taxa ASVs based on their RAs
(the complete list of indicator microbes within each PC by taxa is shown in Tables S3–S5).
The calculations displayed in those figures were the mean PC score for a given treatment
multiplied by the PC loading score for the listed ASVs; error bars represented the standard
error of the mean for each PC score by treatment multiplied by the absolute value of each
ASV loading. Calculations for β-diversity, which used weighted UniFrac distance, were
conducted by QIIME2 using pairwise PERMANOVA (permutational multivariate analysis
of variance) for comparing differences between treatment levels by pseudo-F test statistics
and their p- and q-values, which represented the expected false positive (p) and negative
rates (q) in multiple hypothesis testing [41,42].

3. Results
3.1. Overall Characterization of Soil Indicator Microbes

The bacterial kingdom had 47,888,681 16S V4 region sequences clustered into 4098 ASVs.
The fungal kingdom had 5,253,422 ITS region sequences clustered into 390 ASVs. The ar-
chaeal kingdom had 2,380,099 archaeal 16S rRNA region sequences clustered into 28 ASVs.
The α-diversity measurements (ASV counts, Pielou, and H’) for bacteria and archaea re-
vealed no statistical differences for the main effects of crop rotation and tillage (Table 1).
However, fungi showed CCC having statistically greater ASV counts and H’ measure-
ments (p = 0.01 and 0.03, respectively) compared to SSS, with the rotated corn and soybean
treatments being not different from either monoculture.

The analysis for β-diversity in the bacterial kingdom structure differed significantly
(p < 0.01) for 26 out of the 28 rotation by tillage interactions, the exceptions being CsNT-
ScNT and CsT-ScT (Table 4). The β-diversity in the fungal kingdom structure differed
significantly for 13 out of the 28 treatment interactions, most of which were comparisons
between corn and soybean phases (Table 3). The β-diversity measurements for the archaeal
domain structure differed significantly for 9 out of the 28 treatment interactions, with 8 of
the 9 comparisons driven by the monocultures (Table 4).

(Table S2). The fungal community was dominated completely by the phylum As-
comycota (100%), of which seven out of the eight indicator species came from the class
Sordariomycetes (Table S3). The indicator species for the archaeal community were nearly
all from the phylum Thaumarchaeota (73%), followed by Euryarchaeota (18%) and Nanoar-
chaeaeota (9%) (Table S5).

3.2. ASVs Responses to Crop Rotation and Tillage Treatments
3.2.1. Bacteria

The PCA on the 16S V4 bacterial domain produced five PCs (PC1-PC5; Table 5 and
Table S3), explaining 65% of the variability in the 35 selected top-contributing ASVs.
Within each PC, bacterial indicator microbes were flagged when significant correlations
(loadings ≥1 |0.5|) were detected. The taxonomic classification of these ASVs provided
by the SILVA database is listed in Table S3.
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Table 5. Analysis of variance (ANOVA) results for the effects of crop rotation, tillage, and their interaction (Rot × Till) on each group of principal components (PCs) calculated for bacteria,
fungi, and archaea taxa datasets. The datasets for each taxa were comprised of indicator ASVs. The probability values (p-Value) for each treatment effect and degrees of freedom (df) are
displayed in the top rows. The treatment mean values and their standard errors (SEM) are presented below. For each taxon group and within a given column, treatment mean values
followed by the same lowercase letter were not statistically different (α = 0.05).

Bacteria Fungi Archaea
PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

Treatments df p-Value p-Value p-Value

Rotation 3 0.00 0.01 0.18 0.29 0.19 0.02 0.42 0.47 0.83 0.61 0.01 0.20 0.98 0.95 0.39
Tillage 1 0.00 0.01 0.02 0.00 0.00 0.79 0.37 0.00 0.11 0.03 0.16 0.26 0.05 0.00 0.09

Rot × Till 3 0.31 0.01 0.01 0.68 0.06 0.09 0.79 0.04 0.70 0.66 0.15 0.39 0.79 0.21 0.55
Treatment means

CCC † −1.13 a 0.51 0.29 −0.23 −0.01 1.21 a −0.12 0.07 0.24 0.13 −0.73 c 0.09 0.02 −0.05 −0.52
Cs −0.14 b −1.69 −0.03 0.00 −0.61 −0.06 b 0.64 0.20 −0.29 0.07 0.10 ab 0.32 0.03 −0.08 0.30
Sc 0.17 b −0.55 0.12 −0.29 0.52 −0.11 b −0.39 −0.09 −0.02 −0.31 −0.04 b −0.41 −0.12 0.06 0.11

SSS 1.09 c 0.21 −0.38 0.52 0.10 −1.04 c −0.13 −0.18 0.07 0.11 0.67 a 0.00 0.07 0.07 0.11
SEM 0.29 0.33 0.52 0.68 0.37 0.18 0.41 0.33 0.42 0.42 0.40 0.34 0.38 0.29 0.36
NT ‡ −0.25 a −0.29 −0.25 −0.19 a 0.43 a −0.02 0.10 −0.57 0.19 −0.30 a −0.11 −0.14 −0.28 a −0.35 a −0.19

T 0.25 b 0.29 0.25 0.19 b −0.43 b 0.02 −0.10 0.57 −0.19 0.30 b 0.11 0.14 0.28 b 0.35 b 0.19
SEM 0.25 0.30 0.50 0.63 0.30 0.13 0.25 0.30 0.25 0.38 0.36 0.30 0.27 0.24 0.23

CCC-NT • −1.34 0.72 ab −0.59 b −0.42 0.85 0.97 0.04 −0.81 d 0.41 −0.29 −0.96 −0.03 −0.17 −0.81 −0.50
Cs-NT −0.30 −0.27 cde −0.02 b −0.28 −0.31 0.02 0.86 −0.52 cd −0.31 −0.16 0.16 0.52 −0.39 −0.18 −0.11
Sc-NT −0.23 −0.92 e 0.07 b −0.36 0.93 −0.27 −0.28 −0.61 cd 0.36 −0.37 −0.39 −0.78 −0.51 −0.20 −0.10

SSS-NT 0.87 −0.69 de −0.48 b 0.28 0.27 −0.79 −0.21 −0.34 cd 0.29 −0.37 0.74 −0.25 −0.05 −0.23 −0.05
CCC-T −0.91 0.31 abc 1.16 a −0.04 −0.86 1.45 −0.29 0.96 a 0.06 0.56 −0.50 0.22 0.21 0.71 −0.55
Cs-T 0.03 −0.07 bcd −0.04 b 0.28 −0.91 −0.13 0.43 0.91 a −0.27 0.30 0.04 0.13 0.44 0.01 0.72
Sc-T 0.57 −0.19 cde 0.17 b −0.22 0.11 0.04 −0.50 0.43 ab −0.40 −0.25 0.31 −0.05 0.27 0.31 0.32

SSS-T 1.31 1.12 a −0.28 b 0.75 −0.08 −1.28 −0.04 −0.02 bc −0.15 0.59 0.60 0.24 0.19 0.37 0.28
SEM 0.30 0.39 0.55 0.69 0.41 0.23 0.47 0.37 0.48 0.50 0.43 0.41 0.46 0.37 0.41

† CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous soybean. ‡ NT, no-till; T, chisel tillage. • CCC-NT, continuous corn, and
no-till; CCC-T, continuous corn, and chisel tillage; Cs-NT, corn phase of the corn-soybean rotation and no-till; Cs-T, corn phase of the corn-soybean rotation and chisel tillage; Sc-NT, soybean phase of the
corn-soybean rotation and no-till; Sc-T, soybean phase of the corn-soybean rotation and chisel tillage; SSS-NT, continuous soybean and no-till; SSS-T, continuous soybean and chisel tillage.
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PC1 explained 36% of the variability, which contained significant loadings from
23 ASVs by the most explanatory taxonomic rank (listed in parenthesis: P, phylum; C, class;
O, order; F, family; G, genus; S, species) (Table S2). Positive loadings for PC1 were de-
tected from Paludibaculum (G), Pyrinomonadaceae (F), Holophagae (C), Acidobacteria (P),
Actinomarinales (O), Actinomycetales (O), Actinobacterium (O), Anaerolineae (C), Dehalo-
coccoidia (C), Planctomycetes (P), Phycisphaerae (C), Nordella (G), Betaproteobacteriales
(O), and Rokubacteriales (O). Negative loadings from PC1 were from Acidobacteriaceae
(Subgroup 1) (F), Candidatus Solibacter (S), Microbacteriaceae (F), Ktedonobacterales (O),
Tepidisphaerales (O), Micropepsaceae (F), Chujaibacter (G), Rhodanobacter (G), and Pe-
dosphaerales (O). PC2 explained 9% of the variability and saw only two negative loadings
from Chitinophagales (O) and Nitrosomonadaceae (F). PC3 explained 8% of the variability
and had positive loadings from Sphingobacteriales (O) and Gammaproteobacteria (C) and
one negative loading from Gaiella (G). PC4 explained 6% of the variability and contained
one positive loading from Archangiaceae (F). PC5 explained 6% of the variability and
contained one negative loading from Luteimonas (G).

The results from the bacterial ANOVA (Table 5) detected significant main effects
for crop rotation and tillage (p = 0.0001) from PC1 (Figure 1) and just tillage effects for
PC4 (p = 0.0041) and PC5 (p = 0.0001) (Figure 2). In PC1, the means separation procedure
showed that treatment mean PC scores from SSS were significantly greater than the other
three treatments and rotated corn and soybean being greater than CCC. In PC4, the means
for tillage were found to be greater than no-till. PC2 (p = 0.006) and PC3 (p = 0.0142) both
saw a significant interaction between crop rotation and tillage (Figure 2). The interaction in
PC2 showed an intricate interaction with SSST having the greatest mean but not different
from CCCNT and CCCT; the rotated treatments were not different and were generally the
lowest. The interaction for PC3, however, was more pronounced, with CCCT having the
largest mean and all of the combinations being significantly lower but not different from
each other (Figure 2).

3.2.2. Fungi

The PCA on the ITS fungal kingdom produced 5 PCs (PC1-PC5; Table 5 and Table S4),
explaining a total of 34% of the variability in the 37 selected top-contributing fungal ASVs.
As with bacteria, within each PC, fungal indicator species were flagged when significant
correlations (loadings ≥ |0.5|) were found and identified to the nearest classification as
provided by the SILVA database; fungal classification specifics are listed in Table S4.

PC1 explained 8% of the variability and contained one significant positive loading from
the ASV Fusarium sporotrichioides (S). PC2 explained 7% of the variability and contained
positive loadings from Mycosphaerellaceae (F), Gibellulopsis piscis (S), and Plectosphaerella
(G). PC3 also explained 7% of the variability and contained positive loadings from Co-
niochaetaceae (F), Schizothecium (G), and Schizothecium carpinicola (S). PC4 explained 6% of
the variability and contained a positive loading from Clonostachys rosea (S). PC5 explained
6% of the variability, however, no significant correlations (loadings ≥ |0.5|) were selected.

The fungal ANOVA results (Table 5) found a significant crop rotation effect (p = 0.0163)
for PC1 and a tillage effect for PC5 (p = 0.0348) (Figure 3). The means separation procedure
for PC1 showed that CCC was the largest, the rotated treatments in the middle, and SSS
having the lowest mean. The mean for NT was significantly lower than the mean for
till in PC5, however, no indicator species was selected and thus will not be discussed
further. A significant interaction between crop rotation and tillage (p = 0.0416) was detected
for PC3. The interaction for PC3 was likely driven by a highly significant response of
tillage, showing no-till being lower than till. This is confirmed by the greatest mean values
occurring in CCCT, CsT, and ScT; the SSST treatment was not different from the NT pairs
except for the CCCNT, which was the lowest overall (Figure 3). PC2 and PC4 contained no
significant ANOVA findings and, therefore, will not be discussed further.
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Figure 1. Mean bacterial principal component scores (PC) following 20 years of rotation and tillage treatments. Top panels 
show the bacterial mean PC score for both crop rotation and tillage main effects for PC1 based on the analysis of variance 
(ANOVA); error bars represent standard errors of the mean PC scores. Bottom panels show relative abundances (RAs) for 
each bacterial indicator ASVs by crop rotation and tillage effects. The main effects for PC1 are shown as CCC, continuous 
corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous soybean; 
NT, no-till; T, chisel tillage. For each taxon, the response of each ASV was calculated as the mean PC score multiplied by 
the PC loading score of a given ASV. The y-axes show the name of the ASV’s most explanatory taxonomic rank in paren-
theses (P, phylum; C, class; O, order; F, family; G, genus; S, species). The “*” after an ASV means it is uncultured. 

Figure 1. Mean bacterial principal component scores (PC) following 20 years of rotation and tillage treatments. Top panels
show the bacterial mean PC score for both crop rotation and tillage main effects for PC1 based on the analysis of variance
(ANOVA); error bars represent standard errors of the mean PC scores. Bottom panels show relative abundances (RAs) for
each bacterial indicator ASVs by crop rotation and tillage effects. The main effects for PC1 are shown as CCC, continuous
corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean rotation; SSS, continuous soybean;
NT, no-till; T, chisel tillage. For each taxon, the response of each ASV was calculated as the mean PC score multiplied by the
PC loading score of a given ASV. The y-axes show the name of the ASV’s most explanatory taxonomic rank in parentheses
(P, phylum; C, class; O, order; F, family; G, genus; S, species). The “*” after an ASV means it is uncultured.
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Figure 2. Mean bacterial principal component scores (PC) following 20 years of rotation and tillage treatments. Right 
panels show the bacterial mean PC score for the crop rotation x tillage interaction for PC2 and PC3 and a tillage effect for 
PC4 and PC5 based on the analysis of variance (ANOVA); error bars represent standard errors of the mean PC scores. Left 
panels show relative abundances (RAs) for each bacterial indicator ASVs by crop rotation × tillage and tillage. The crop 
rotation × tillage interaction for PC2 and PC3 is shown as CCC-NT, continuous corn, and no-till; CCC-T, continuous corn, 
and chisel tillage; Cs-NT, corn phase of the corn-soybean rotation and no-till; Cs-T, corn phase of the corn-soybean rotation 
and chisel tillage; Sc-NT, soybean phase of the corn-soybean rotation and no-till; Sc-T, soybean phase of the corn-soybean 
rotation and chisel tillage; SSS-NT, continuous soybean and no-till; SSS-T, continuous soybean and chisel tillage. The till-
age main effect for PC4 and PC5 is shown as NT, no-till; T, chisel tillage. For each taxon, the response of each ASV was 
calculated as the mean PC score multiplied by the PC loading score of a given ASV. The y-axes show the name of the 
ASV’s most explanatory taxonomic rank in parentheses (P, phylum; C, class; O, order; F, family; G, genus; S, species). The 
“*” after an ASV means it is uncultured. 
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Figure 2. Mean bacterial principal component scores (PC) following 20 years of rotation and tillage treatments. Right panels
show the bacterial mean PC score for the crop rotation × tillage interaction for PC2 and PC3 and a tillage effect for PC4
and PC5 based on the analysis of variance (ANOVA); error bars represent standard errors of the mean PC scores. Left
panels show relative abundances (RAs) for each bacterial indicator ASVs by crop rotation × tillage and tillage. The crop
rotation × tillage interaction for PC2 and PC3 is shown as CCC-NT, continuous corn, and no-till; CCC-T, continuous corn,
and chisel tillage; Cs-NT, corn phase of the corn-soybean rotation and no-till; Cs-T, corn phase of the corn-soybean rotation
and chisel tillage; Sc-NT, soybean phase of the corn-soybean rotation and no-till; Sc-T, soybean phase of the corn-soybean
rotation and chisel tillage; SSS-NT, continuous soybean and no-till; SSS-T, continuous soybean and chisel tillage. The tillage
main effect for PC4 and PC5 is shown as NT, no-till; T, chisel tillage. For each taxon, the response of each ASV was calculated
as the mean PC score multiplied by the PC loading score of a given ASV. The y-axes show the name of the ASV’s most
explanatory taxonomic rank in parentheses (P, phylum; C, class; O, order; F, family; G, genus; S, species). The “*” after an
ASV means it is uncultured.

3.2.3. Archaea

The PCA on the 16S rRNA archaeal domain produced 5 PCs (PC1-PC5; Table 5 and
Table S5), explaining a total of 69% of the variability in the 11 selected top-contributing
archaeal ASVs. As with bacteria and fungi, archaeal indicator microbes were flagged when
significant correlations (loadings ≥ 1 |0.5|) were discovered and identified by the SILVA
database to the nearest classification; archaeal classification specifics are listed in Table S5.

PC1 explained 20% of the variability and contained positive loadings from Candidatus
Nitrocosmicus (S), Nitrososphaeraceae (F) (ammonia oxidizer), Nitrososphaeraceae (F);
negative loadings came from Nitrososphaeraceae (F) and Candidatus Nitrosotalea (S). PC2
explained 15% of the variability and contained negative loadings from two different
Nitrososphaeraceae (F) families. PC3 explained 12% of the variability and contained
one positive loading from Woesearchaeia (C). PC4 explained 11% of the variability and
also contained one positive loading from Thermoplasmata (C). PC5 explained 10% of the
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variability and contained opposing loadings, one positive from Thermoplasmata (C) and
one negative from Candidatus Nitrososphaera (S).

The results from the ANOVA on the archaeal community found a crop rotation effect
(p = 0.008) for PC1 (Figure 4). The means separation procedure showed that SSS was the
largest but not different from Cs, which was not different from Sc; the CCC rotation was
the lowest (Figure 4). Significant tillage main effects were detected for PC3 (p = 0.045) and
PC4 (p = 0.0032) with tillage being greater than no-till in both cases (Figure 4). PC2 and
PC5 had no significant ANOVA findings and, therefore, will not be discussed further.
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Figure 3. Mean fungal principal component scores (PC) following 20 years of rotation and tillage treatments. Right panels
show the fungal mean PC score for the main effect of crop rotation for PC1 and the crop rotation× tillage interaction for PC3
based on the analysis of variance (ANOVA); error bars represent standard errors of the mean PC scores. Left panels show
relative abundances (RAs) for each fungal indicator ASVs by crop rotation and crop rotation × tillage. The crop rotation
main effects for PC1 are shown as CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of
the corn-soybean rotation; SSS, continuous soybean. The crop rotation × tillage interaction for PC3 is shown as CCC-NT,
continuous corn and no-till; CCC-T, continuous corn, and chisel tillage; Cs-NT, corn phase of the corn-soybean rotation and
no-till; Cs-T, corn phase of the corn-soybean rotation and chisel tillage; Sc-NT, soybean phase of the corn-soybean rotation
and no-till; Sc-T, soybean phase of the corn-soybean rotation and chisel tillage; SSS-NT, continuous soybean and no-till;
SSS-T, continuous soybean and chisel tillage. For each taxon, the response of each ASV was calculated as the mean PC score
multiplied by the PC loading score of a given ASV. The y-axes show the name of the ASV’s most explanatory taxonomic
rank in parentheses (P, phylum; C, class; O, order; F, family; G, genus; S, species).
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panels show the archaeal mean PC score for the main effects of crop rotation for PC1 and tillage for PC3 and PC4 based on
the analysis of variance (ANOVA); error bars represent standard errors of the mean PC scores. Left panels show relative
abundances (RAs) for each archaeal indicator ASVs by crop rotation and tillage. The crop rotation main effects for PC1
are shown as CCC, continuous corn; Cs, corn phase of the corn-soybean rotation; Sc, soybean phase of the corn-soybean
rotation; SSS, continuous soybean. The tillage effects for PC3 and PC4 are shown as NT, no-till; T, chisel tillage. For each
taxon, the response of each ASV was calculated as the mean PC score multiplied by the PC loading score of a given ASV.
The y-axes show the name of the ASV’s most explanatory taxonomic rank in parentheses (P, phylum; C, class; O, order; F,
family; G, genus; S, species). The “*” after an ASV means it is uncultured. AOA denotes ammonia-oxidizing archaea.

4. Discussion

Overall, the results from this study indicate that crop rotation and tillage affect soil
microbial guilds significantly. The monocultures of corn and soybean had contrasting
effects on microbial taxa, with the rotated crops showing intermediate effects. No-till
and tillage also had contrasting effects, and like crop rotation, could be used to explain
microbial indicators. Other studies also showed that CCC and SSS have contrasting effects
on the soil indicator microbes, and the CS rotation having similar effects on both mono-
cultures [1,2]. Crop rotation affects the quantity and quality of plant residues, which are
the food source for microbes, resulting in functional changes performed by soil microbes;
likewise, monocultures or crops requiring extensive pesticides affect microbial diversity
and richness [1]. Chamberlain, Bolton, Cox, Suen, Conley, and Ané [2], too, found that
crop residues were likely the driving factor in the community shifts between CCC and SSS,
indicating that the quality of organic matter should be considered. Soman, Li, Wander, and
Kent [15] observed that long-term crop rotation shifted microbial taxa into distinct commu-
nities based on the rotation. However, since the Morrow Plots are an extreme example of
nutrient deficiencies, plots receiving manure or inorganic fertilizer generate more residues,
leading to greater SOM and enhanced microbial diversity. Similarly, NT is likely to increase
bacterial diversity compared to tilled systems by increasing SOM [21]; NT also enhances
microbial biomass and enzymatic activity by creating a favorable microclimate [20]. Soil
pH is also an important factor that affects community structure, which can be altered by
fertilization [43,44]. Therefore, cropping systems, rotation or tillage, that significantly alter
SOM and pH could be used to classify indicator microbes.
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The bacterial indicator microbes were categorized from seven different phyla and
grouped by their responses to the treatments presented in this study. The CCC rotation
is characterized as having high SOM due to large amounts of biomass returned annually,
low soil pH due to N fertilization, elevated levels of nirK denitrification, and significantly
greater levels of ammonia-oxidizing bacteria [25]. Thus in terms of N cycling, the CCC
rotation was the most intense. The low soil pH was likely caused by the increased fertilizer
rates compared to rotated corn (246 kg N ha−1 vs. 202 kg N ha−1) and receiving fertilizer
yearly. Chamberlain, Bolton, Cox, Suen, Conley, and Ané [2] detected that soil pH and
SOM explained the most variation, and like in our study, found that soil pH was lowest
in the spring for CCC and SOM was the greatest from the CCC year-round. Ashworth,
DeBruyn, Allen, Radosevich and Owens [1] also found that CCC had greater levels of C
and N compared to a CS or SSS rotation and concluded that the inclusion of soybean into a
crop rotation depletes soil organic C, which is a favored food source for microbes. Corn in
general leaves behind about three times more residue than soybean following harvest [45]
and has a higher C:N ratio, making the residues take longer to decompose [46]. In our
study, the NT treatment responded similarly to CCC (Figure 1). Expectedly, the RAs of
indicator microbes showed similar responses to both crop rotation and tillage, where those
increased with CCC also increased with NT. Given the use of SOM and pH to accurately
identify treatment effects, we have grouped our bacterial indicator microbes in two groups:
CCC and NT vs. SSS and T.

Thus, we have identified 12 bacterial ASVs with increased RAs from CCC and NT,
or high SOM and low pH associated microbes, including Rhodanobacter (G), Chujaibacter
(G), Microbacteriaceae (F), Chitinophagales (O), Nitrosomonadaceae (F), Acidobacteriaceae
(F), C. solibacter (S), Pedosphaeraceae (F), Micropepsaceae (F), Tepidisphaerales (O), Kte-
donobacterales (O), and Gaiella (G) (Table S3). Rhodanobacter (G) and Chujaibacter (G) are
both members of Rhodanobacteraceae (F) and have been found to be the second most
unaffected by agricultural use [first being the Nitrosospira (G)] and negatively correlated to
soil pH [24]. Rhodanbacter (G) was found to amplify the nirK denitrification gene [47,48].
Green, Prakash, Gihring, Akob, Jasrotia, Jardine, Watson, Brown, Palumbo, and Kostka [48]
found that Rhodanobacter (G) isolates accumulated nitrous oxide (N2O) during denitrifica-
tion under their growing conditions; however, nosZ gene amplification was not observed.
The relationship between increased nirK and accumulation of N2O likely translates into
increased N2O emissions. This supposition was supported by Behnke, Zuber, Pittelkow,
Nafziger, and Villamil [5], who showed that the CCC-T rotation by tillage combination,
also taken from this study during 2012–2015, emits the most N2O compared to the other
rotation by tillage combinations tested. Microbacteriaceae (F) are known to thrive under
conditions of urea amendments and decreased pH, which is explained by elevated RAs
from the CCC rotation (Figure 1) and observed in Staley et al. [49] using microcosms of
soil from corn and soybean trials comparing tillage and N rate. Chitinophagales (O) is
responsible for degrading organic matter [50] and is also associated with urea amendments
and low pH [49]. Urea applications also increased the RAs for Nitrosomonadaceae (F) [49].
The low soil pH likely increased the RAs for Acidobacteriaceae (F) (Figure 1), which were
enhanced in the CCC rotation. Other studies have observed increases in Acidobacteriaceae
(F) as soil pH decreases [51–53]. Wang, et al. [54] found that C. solibacter (S) was strongly
associated with low pH and contaminated sites suggesting that it might hold an ecological
niche in such systems. Ward et al. [55] found that Acidobacteria (P) play a significant
role in terrestrial C cycling, which would increase under chisel tillage. The CCC rotation,
which also contains the largest levels of organic matter and crop residues [25], increased
RAs from C. solibacter (S), which has been linked to increased levels of rice straw residue
returned to the system and identified as a key species in the understanding of ecological
processes from fertilized agroecosystems [56]. Pedosphaeraceae (F) have little information
available but have been found in the soil and are thought to be associated with organic
matter decomposition as they showed a positive correlation with Solibacteraceae (F) [57].
Micropepsaceae (F) information is scarce but has been found in acidic soils and is involved



Microorganisms 2021, 9, 1244 16 of 24

with carbon cycling [58]. Tepidisphaerales (O) has little information available except for an
association with conventional farming [59], and WD2101(F) is polysaccharide degraders
found in raised bogs and eutrophic fens [60]. Similarly, Ktedonobacterales (O) is relatively
unknown but have been found to inhabit forests, gardens, and sand in low numbers, as well
as extreme environments, such as volcanoes and geothermal areas [61]. However, Neupane,
Bulbul, Wang, Lehman, Nafziger, and Marzano [27] detected elevated Ktedonobacterales
(O) levels from a CCC rotation, although little supporting information regarding their
biological significance was found. The increased RAs from the CCC rotation and chisel
tillage show that these resilient microbes are adapted to the harsh and acidic conditions
in this treatment. Little is known about Gaiella (G), aside from having a suspected rela-
tionship with plants and C cycling traits similar to related species [62,63]. In general, the
bacterial ASVs associated with CCC and NT, likely favor nutrient-rich environments and
are copiotrophic.

Conversely, the SSS rotation is characterized as having low SOM due to high C:N
ratio biomass and much less, in terms of amounts, compared to corn, closer to neutral
soil pH due to no N fertilization, decreased levels of nirK denitrification, and significantly
lower levels of ammonia-oxidizing bacteria [25] (Table S2). The chisel tillage treatment also
has reduced levels of SOM due to quicker decomposition rates as tillage helps to increase
residue surface area; likewise, chisel tillage incorporates fertilizer urea (in our case), leading
to less surface soil acidification, as is the opposite in the NT treatment [25] (Table S2).

The 18 bacteria with increased RAs from SSS and T are grouped into what we are
calling neutral pH and reduced fertilizer N associated microbes, including ASVs belonging
to Rokubacteriales (O), Phycisphaerae (C), Planctomycetes (P), Actinobacterium (O), Acti-
nomycetales (O), Luteimonas (G), Holophagae (C), Acidobacteria (P), Pyrinomonadaceae
(F), Paludibaculum (G), Sphingobacteriales (O), Archangiaceae (F), Betaproteobacteriales (O),
Nordella (G), Dehalococcoidia (C), Anaerolineae (C), Actinomarinales (O), and Gammapro-
teobacteria (C). Rokubacteriales (O) RAs were increased in the SSS rotation (decreased in
the CCC rotation) in our study, which is in line with another study showing decreased RAs
from corn samples compared to woodland samples, likely due to contrasting nutrient levels
dictating microbial guild specializations, even within the same phyla [64]. Only one study
reported Phycisphaerae (C) results but found that increased RAs were associated with the
lower SOM and N level treatment [65]. Planctomycetes (P), specifically OM190 (C), was
found to be a dominant microbe in a system with wheat (Triticum aestivum L.) and corn
straw returned, no fertilizer added; the organic C in this system was found to be signifi-
cantly lower than the biomass + fertilizer treatments, however, soil pH was not different
for any of the treatments but was near neutral (6.7–6.8) [66]. Actinobacterium (O) and Acti-
nomycetales (O) are closely related and belong to MB-A2-108 (C) within Actinobacteria (P);
these microbes are capable of degrading a wide range of organic material and are known to
thrive in nutrient scarce environments [67]. Shange et al. [68] found that Actinomycetales
(O) showed the largest RAs from soils with the lowest SOM values; Actinomycetales (O) is
also an important member of the N cycling community [69]. Luteimonas (G) growth occurs
from pH 5–9, with optimal growth at pH 7.0 [70]. Simmons, et al. [71] found Luteimonas
(G) RAs were increased in unfertilized soil compared to soil amended with green waste
compost. While Xiao et al. [72] found that Luteimonas (G) was positively correlated with
soybean and alfalfa (Medicago sativa L.) biomass. Relatively little information exists for the
Holophagae (C) Subgroup 7 (O), except that RAs were found to be positively correlated
with a legume treatment compared to grass [73], with pH [74], and negatively correlated to
SOM [75]. Acidobacteria (P) and many of their subgroup RAs were negatively correlated
to nutrient levels and associated with C degradation [76]. Navarrete et al. [77] found that
Subgroup 25 (C) was only found in soybean rhizospheric soil, not in their forest comparison
site. Subgroup 25 (C) was also positively correlated to pH [78]. Pyrinomonadaceae (F)
and Paludibaculum (G) both prefer only mildly acidic soils [79,80], which explains the RA
increases under the SSS rotation. Likewise, Pyrinomonadaceae (F) prefers complex pro-
teinaceous substrates [79], and Paludibaculum (G) is unable to utilize nitrate and urea [80]
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as would be the case in the SSS rotation. Multiple studies have found that Sphingobacte-
riales (O) RAs are negatively correlated to N fertilization [81–83]. Little information was
available regarding Archangiaceae (F), but one study found that they are involved with the
C cycle [84]. However, Myxococcales (O), the order for Archangiaceae (F), was found to
be positively correlated with pH from agricultural lands, and RAs significantly increased
from those under organic production [85]. Zhou et al. [86] also found a positive correlation
between soil pH and Myxococcales (O) from forest and greenhouse soil. Furthermore,
the authors discovered that bacterial community composition was a key factor in deter-
mining Myxococcales (O) RAs since they are predatory bacteria. Betaproteobacteriales
(O) TRA3-20 (F) has no information available and could be misclassified. However, some
members of the Gammaproteobacteria (C) are more abundant at neutral pH compared to
acidic conditions [87]. Nordella (G), too, has little information available other than being
more abundant at neutral to high soil pH [88]. Dehalococcoidia (C) are typically found
in anaerobic conditions, but all grew best in neutral pH conditions with little growth in
acidic conditions [89] and are known to be involved in C cycling [90]. Like Dehalococ-
coidia (C), Anaerolineae (C) is in the same phylum Chloroflexi and was also found to
be associated with anaerobic conditions [91]. Yao et al. [92] found Anaerolineae (C) RAs
declined as fertilizer N was introduced, though pH values were all above 8. Near neutral
pH requirements were also observed by Yamada et al. [93] and Kandasamy, Weerasuriya,
White, Patterson, and Lazarovits [88]. Cai et al. [94] recently discovered that Anaerolineae
(C) were involved in the denitrification step of the N cycle from wastewater treatment
sludge, though more research is needed to confirm such findings in an agricultural setting.
In a German barley study comparing low and high N rates and mouldboard plow tillage
compared to conservation tillage, Actinomarinales (O) RAs were increased under the low N
setting using a mouldboard plow [95]. Much of the published research for Actinomarinales
(O) has taken place in aquatic environments, and they likely play a significant role in
the global C cycle [96]. Gammaproteobacteria (C) R7C24 (O) was likely misclassified as
there is no information available except for a finding in a diabetes medical trial [97]. Ulti-
mately, the bacterial ASVs associated with SSS and tilled systems likely favor nutrient-poor
environments and are oligotrophic.

All indicator microbes for the fungal kingdom belonged to Sordariomycetes (C). F.
sporotrichioides (S) was the dominant fungi identified through our PCA, explaining 8% of the
variability by this single species. F. sporotrichioides (S) is a common, ineffectual agricultural
and grassland pathogen [98], commonly isolated from corn and other cereal crops [99]. F.
sporotrichioides (S) RAs have been reported to be negatively associated with soil pH [100], as
is the case in this study showing greater RAs from the CCC rotation, which has significantly
lower pH compared to the other rotations [25]. Behnke, Zabaloy, Riggins, Rodriguez-Zas,
Huang and Villamil [25] also found that fungal ITS gene copy numbers were increased in
the CCC rotation compared to SSS. Predictably, the CCC rotation observed significantly
greater ASVs and H’ compared to SSS (Table 1). Tillage is also an important management
factor that affects fungal RAs; Coniochaetales (O) Coniochaetaceae (F) and both ASVs
from Schizothecium (G) are elevated from the tillage treatment as tillage is the driver of the
significant interaction for PC3 (Figure 3). Larger Coniochaetales (O) RAs were observed
in chisel-tilled wheat plots compared to NT [101] and also from the full tillage treatment
from spring barley (Hordeum vulgare L.)–winter wheat–maize crop rotation [102]. Similarly,
Schizothecium (G) RAs were increased in a standard tillage treatment compared to NT from
a tomato (Solanum lycopersicum L.)-cotton (Gossypium arboretum L.) rotation [103] and also
from a complex wheat–rapeseed (Brassica napus L.)–faba (Vicia faba L.) crop rotation [104].
Wang et al. [105] found that Schizothecium (G) RAs decreased in maize NT treatments.
Sun et al. [106] studied three tillage treatments (moldboard plow, rotary tillage, and NT)
and reported that fungal richness was significantly smaller in tilled systems compared
to NT or reduced tillage. The increase of RAs in PC3 driven by tillage could indicate
an adaption of these indicator fungi to disturbance, though more information would be
needed to confirm.
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The indicator microbes for archaea were taken from three classes of indicator microbes
and grouped according to their responses to the treatments in the study. C. Nitrosotalea
(S) and an uncultured Nitrososphaeraceae (F) RAs were greater in the CCC rotation. C.
Nitrosotalea (S) is an ammonia oxidizer found in acidic agricultural soil [107–110], which is
the case in our study as the CCC rotation has the lowest pH. Lehtovirta-Morley, et al. [111]
and Papadopoulou, Bachtsevani, Lampronikou, Adamou, Katsaouni, Vasileiadis, Thion,
Menkissoglu-Spiroudi, Nicol, and Karpouzas [110] both confirmed that C. Nitrocosmicus (S)
occupy contrasting ecological niches compared to C. Nitrosotalea (S) and C. Nitrocosmicus is
present in larger RAs at neutral pH. The unspecified AOA Nitrososphaeraceae (F) showing
elevated RAs from the SSS rotation matches Behnke, Zabaloy, Riggins, Rodriguez-Zas,
Huang, and Villamil [25]. The authors found increased AOA gene copy numbers in the SSS
rotation, however, since the archaea are mostly uncultured, that cannot be fully confirmed.
Yu, Lawrence, Sooksa-nguan, Smith, Tenesaca, Howe, and Hall [56] found that typically Ni-
trososphaeraceae (F) are AOA and positively associated with pH, but the pH relationship
depended on niche specialties of certain archaea. Woesearchaeia (C) and Thermoplas-
mata (C) Marine Group II are typically found in aquatic ecosystems [112–114]. However,
Wang et al. [115] found both archaea ASVs in agricultural and estuarial soils, noting that
the agricultural soils contained significantly greater abundance, richness, evenness, and
diversity than freshwater or estuarine ecosystems. There is no information regarding tillage
practices that influence the RAs for these archaea. Nevertheless, the tillage treatment had
significantly greater surface pH [25] (Table S2), so pH could play a role in determining the
RA for these two indicator archaea. Wang et al. [116] found that Woesearchaeia (C) was
very abundant and negatively associated with salinity; while not a perfect relationship,
typically the greater salinity, the lower the pH.

5. Conclusions

This study adds valuable insight as to important microbes and how they respond to
typical agricultural management. We found that bacterial indicator microbes responded
contrastingly to the two monocultures with the rotated corn and soybean showing interme-
diate effects, partially confirming our hypothesis. Tillage, too, showed contrasting effects
between chisel tillage and NT. Using those strong main effects, we grouped the indicator
bacteria into organic matter dependent and acidophile vs. N adverse and neutrophile. This
grouping agreed with our previous qPCR publication [25] and fit bacterial characterizations
well. From the indicator bacteria, we found that many were involved in the N cycle and
respond positively to conditions of increased inorganic N. Unlike bacteria, fewer fungi
and archaea were selected as indicator microbes. Fungi were poorly identified, and all
were from Sordariomycetes (C), with the top indicator species thriving in the low pH
environment of CCC, confirming our hypothesis. The significant archaeal indicators were
mainly AOA, preferring the neutral pH in the SSS rotation, though some AOA were found
to be acidophile, partially confirming our hypothesis. This study shows the need to fully
classify soil organisms to a finer level, which will help better understand the role specific
microorganisms play in soil nutrient cycling. Future work should focus on identifying the
uncultured yet significant ASVs described in this study. In addition, N cycle genetic analy-
sis of these indicator species would greatly help explain their role in the agroecosystems.
Using metagenomics and bioinformatics, we were able to select 49 indicator microbes out
of thousands of ASVs from highly productive soils, using typical agronomic management
practices from a replicated, long-term trial. These indicator taxa could potentially generate
a soil assessment narrative to identify inefficiencies in agronomic practices or indicate
possible environmental consequences.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9061244/s1. Figure. S1: Rarefaction curves for the major kingdoms of bacteria
(green; top panel), fungi (blue; middle panel), and archaea (red; bottom panel). Points show the
average number of observed ASVs for a given sampling depth (x-axis). For each taxa, rarefaction
curves plateaued at sampling depths of 35,100, 10,000, and 1000 for bacterial, fungal, and archaeal
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sequences per sample, respectively. Table S1: Summary of field practices from Monmouth, Illinois
from 1997–2016; dates are ranges that vary slightly year to year. Table S2: Principal component
analysis of soil variables (17) for 0–10 cm soil depth with eigenvalues and cumulative proportion of
the data set variability explained by the five principal components (PC) extracted with eigenvalues >1.
Component correlation scores (eigenvectors) with loadings greater than |0.5| are bolded. Probability
values for the analysis of variance (ANOVA) and degrees of freedom (df) available for the effects
of rotation|phase (Rotation), tillage (Tillage), and their interaction are shown for each extracted
PCs. Table S3: List of bacterial principal components (PC) comprised by indicator species that
contributed at least 5% of the variability in the data and with eigenvalue of at least 1. Table S4: List
of fungal principal components (PC) comprised by indicator species that contributed at least 5%
of the variability in the data and with eigenvalue of at least 1. Table S5: List of archaeal principal
components (PC) comprised by indicator species that contributed at least 5% of the variability in the
data and with eigenvalue of at least 1.
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