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To computationally investigate the recent experimental finding such that extracellular ATP release caused by 
exogeneous mechanical forces promote wound closure, we introduce a mathematical model, the Cellular Potts 
Model (CPM), which is a popular discretized model on a lattice, where the movement of a "cell" is determined by 
a Monte Carlo procedure. In the experiment, it was observed that there is mechanosensitive ATP release from the 
leading cells facing the wound gap and the subsequent extracellular Ca2+ influx. To model these phenomena, the 
Reaction-Diffusion equations for extracellular ATP and intracellular Ca2+ concentrations are adopted and 
combined with CPM, where we also add a polarity term because the cell migration is enhanced in the case of ATP 
release. From the numerical simulations using this hybrid model, we discuss effects of the collective cell migration 
due to the ATP release and the Ca2+ influx caused by the mechanical forces and the consequent promotion of wound 
closure.  
 
Key words:  collective cell migration, cellular potts Model, reaction-diffusion equations, contact inhibition, 
mechanobiology 
 
 
 
 
 
 
 
 
 
Introduction 

 
Recent studies in the field of mechanobiology [1-3] have revealed that cells recognize and respond to various external 

stimuli or external forces, and it has been found that various biological functions in vivo are triggered by this 
mechanobiological effects [4-9]. As such, mechanobiological issues are important and challenging not only for basic 
biology but also for the optimal treatment of plastic surgery which is called "mechanotherapy" [10-14]. 

Mechanical forces to cells can cause various biological functions. One interesting example of them is the promotion 
of wound closure by mechanical stimulation. Extracellular ATP release caused by external stimulation triggers 
Ca2+ influx into the cells, resulting in accelerated wound closure. We here proposed the mathematical model for 
wound closure with mechanosensitive ATP release and subsequent Ca2+ response. Numerical simulations using our 
model showed that collective cell migration caused by ATP release promotes fast wound closure. 

◀ Significance ▶ 
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In relation to wound closure and mechanobiology, Takada, Furuya and Sokabe found that the mechanical forces on cells 
are important for wound closure [15]. In their experiment, a linear wound was made in cultured vascular endothelial cells, 
and the wound closure process was examined by applying stretch stimulation. It was found that the wound closure rate 
increased with the stretch stimulation compared to no external stimulation. They also measured real-time imaging of ATP 
and Ca2+ concentrations, where the stretch stimulation releases large amounts of ATP from the cells closest to the wound 
gap. Here ATP functions as an extracellular messenger and increases intracellular Ca2+ levels. When ATP travels like a 
transient wave from the proximal wound to the posterior cell, it is followed by a transient wave of Ca2+. It was shown that 
the response of the cells to Ca2+ was indispensable for the wound closure because the Ca2+ wave disappeared and cell 
migration did not occur when the extracellular Ca2+ was removed. 

Motivated by this experimental study, we here propose a mathematical model of wound closure process that explicitly 
considers ATP release by mechanical stimulation to the cells, the accompanying change in Ca2+ concentration, and 
collective cell migration by response to Ca2+. We construct a hybrid model of the Cellular Potts Model (CPM) [16-25] 
and the Reaction-Diffusion (RD) equations [26,27], where CPM represents the dynamics of cells, such as cell migration 
and cell growth, and RD represents the changes in ATP and Ca2+ concentration. The cell migration in response to Ca2+ is 
expressed as self-propulsion driven by cell polarity, which is further added as an energy term in the CPM. Using this 
hybrid model, we try to numerically simulate the experiment on wound closure by Takada and coworkers. We here focus 
on the relationship between the ATP release and the rate of wound closure rather than explicitly considering the 
mechanical force applied to the cells, because the ATP release by mechanical stimulation occurred after a very brief 
mechanical stimulation. 

This paper is organized as follows. In Section “Materials and Methods”, we first introduce the hybrid mathematical 
model for the wound closure process. We next show the numerical results of our model in Section “Results and 
Discussion”. To compare with the experimental results such that the wound closure is promoted by ATP release due to 
the mechanical stimulation, we here examine two different scenarios with and without ATP release. We also discuss why 
the wound closure rates are different in these two cases. Finally, we conclude this paper in Section “Conclusions”. 
 
Materials and Methods 
 

We present a mathematical model for cellular dynamics in wound closure that incorporates extracellular ATP release 
and subsequent extracellular Ca2+ influx due to mechanical stimulation. Our approach is a hybrid model that couples 
cellular dynamics with spatiotemporal dynamics of chemical components both inside and outside of the cells. Specifically, 
we propose a model that combines the Cellular Potts Model with Reaction-Diffusion Equations. The Cellular Potts Model 
is used to represent cellular population dynamics, while the Reaction-Diffusion Equations capture the spatiotemporal 
dynamics of ATP and Ca2+. We provide further details below. 

It is worth noting that some previous studies have incorporated the mechanical interaction with the substrate by coupling 
the Cellular Potts Model with the Finite Element Method (FEM) [22-24]. However, our study focuses on the effects of 
ATP release on wound closure and thus does not explicitly consider mechanical stimulation. 
 
Cellular Dynamics 

Collective cell migration is one of the key processes in the wound closure process, and various mathematical models 
have been proposed [28-33]. We here employ the Cellular Potts Model (CPM) for the computational modeling of the 
cellular collective movement. CPM is defined on a lattice, representing a cell shape as a group of sites on the lattice. Each 
site has a cell index 𝜎𝜎, where the same cell shares the same cell index 𝜎𝜎. To mimic various cellular behavior such as cell 
deformation and migration, CPM repeats the "exchange" of adjacent lattice sites with a Metropolis algorithm using a kind 
of "energy" as described below. 

The move is described as an attempt to copy the cell index 𝜎𝜎(�⃗�𝑥) at a randomly selected site �⃗�𝑥 into another randomly 
selected neighboring site 𝑥𝑥′���⃗ . Whether the move is accepted or not is determined using the change in the total energy ∆𝐸𝐸 
due to the exchange. When ∆𝐸𝐸 ≤ 0, the move is always accepted, however, when ∆𝐸𝐸 > 0, the move is accepted with the 
following probability: 𝑝𝑝 ��⃗�𝑥→ 𝑥𝑥′���⃗ � = 𝑒𝑒−𝛽𝛽∆𝐸𝐸, where 𝛽𝛽 denotes the magnitude of cell fluctuation [17], in accord with the 
conventional Metropolis algorithm.  
 
Energy of Cell Population 

The energy of cell population used in the CPM calculations is modelled as follows: 
 
𝐸𝐸CPM = �𝐽𝐽

𝜏𝜏�𝜎𝜎(𝑥𝑥)�,𝜏𝜏�𝜎𝜎� 𝑥𝑥′����⃗ ��
�1 − 𝛿𝛿𝜎𝜎(𝑥𝑥),𝜎𝜎� 𝑥𝑥′����⃗ � �

𝑥𝑥, 𝑥𝑥′�����⃗

+ 𝜆𝜆𝑉𝑉��𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑡𝑡,𝑘𝑘�
2

𝑘𝑘

+ 𝜆𝜆𝑆𝑆��𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑡𝑡,𝑘𝑘�
2

𝑘𝑘

− 𝐸𝐸mig ,         (1) 
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where the first term represents the interfacial energy due to the cell adhesion, �⃗�𝑥 and 𝑥𝑥′���⃗  denote two neighboring lattice sites, 
𝜎𝜎(�⃗�𝑥) denotes a cell index at a lattice site �⃗�𝑥, and 𝜏𝜏 denotes a cell type (Note that the term “cell index” refers to an individual 
cell, while “cell type” refers to all cells that share the same characteristics). 𝐽𝐽𝜏𝜏,𝜏𝜏′ denotes the adhesion energy between cell 
type 𝜏𝜏 and 𝜏𝜏′. The second term represents cell volume constraint energy, where 𝑉𝑉𝑘𝑘 and 𝑉𝑉𝑡𝑡,𝑘𝑘 denote a calculated volume 
and a target volume of cell k, respectively, and 𝜆𝜆𝑉𝑉 is the strength of the volume constraint. The third term represents cell 
surface constraint energy, where 𝑆𝑆𝑘𝑘  and 𝑆𝑆𝑡𝑡,𝑘𝑘  denote a calculated surface area and a target surface area of cell k, 
respectively, and 𝜆𝜆𝑆𝑆 is the strength of the surface constraint (In two-dimensional system, cell surface area means the length 
of cell's perimeter). The second and third terms have the effect of maintaining the proper volume (𝑉𝑉𝑡𝑡,𝑘𝑘) and surface area 
(𝑆𝑆𝑡𝑡,𝑘𝑘) of cell k, respectively. The last term represents a cell migration energy due to cellular self-propulsion as described 
below. 
 
Cellular Self-Propulsion 

The cell migration energy 𝐸𝐸mig with the self-propulsion is given by 
 

𝐸𝐸mig = �𝑃𝑃𝑘𝑘(𝑡𝑡)
𝑝𝑝𝑘𝑘����⃗

|𝑝𝑝𝑘𝑘����⃗ | ∙ 𝑣𝑣𝑘𝑘����⃗
𝑘𝑘

 ,                                      (2) 

 
where 𝑃𝑃𝑘𝑘(𝑡𝑡) is the strength of the cell autonomous motility of cell k at time t, 𝑝𝑝𝑘𝑘����⃗  represents the cell polarity vector of cell 
k. 𝑣𝑣𝑘𝑘����⃗  represents the displacement vector of the center of cell k before and after a single site exchange, and is calculated as 
𝑣𝑣𝑘𝑘����⃗ = 𝑔𝑔𝑘𝑘,af��������⃗ − 𝑔𝑔𝑘𝑘,be���������⃗ , where 𝑔𝑔𝑘𝑘,af��������⃗  and 𝑔𝑔𝑘𝑘,be���������⃗  are the center of cell k after and before single site exchange, respectively. This 
formulation indicates that the cell polarity drives cellular self-propulsion. We assume that Ca2+ ions enhance the cellular 
self-propulsion, and thus set the cell autonomous motility 𝑃𝑃𝑘𝑘(𝑡𝑡) to depend on the intracellular Ca2+ concentration in each 
cell as 𝑃𝑃𝑘𝑘(𝑡𝑡) = 𝜃𝜃�𝐶𝐶𝑘𝑘(𝑡𝑡) − 𝐶𝐶th�𝑃𝑃 in this study. 𝜃𝜃(𝑎𝑎) is the Heaviside function (1 when 𝑎𝑎 > 0 and 0 otherwise), 𝐶𝐶𝑘𝑘(𝑡𝑡) is 
the average concentration of Ca2+ inside cell k at time t, 𝐶𝐶th is the threshold value of Ca2+ concentration, and P is the 
magnitude of cell autonomous motility. If 𝑃𝑃𝑘𝑘(𝑡𝑡) is a function that switches motility depending on the intracellular Ca2+ 
concentration, our simulation results would not qualitatively change. 

Szabó and Czirók proposed that the cell polarity vector 𝑝𝑝𝑘𝑘����⃗  decays spontaneously but reinforced by cell displacements 
[34,35]. The variation of 𝑝𝑝𝑘𝑘����⃗  (∆𝑝𝑝𝑘𝑘����⃗ ) is calculated based on the following equation at the end of each Monte Carlo step 
(MCS).  
 
∆𝑝𝑝𝑘𝑘����⃗ = −𝛾𝛾𝑝𝑝𝑘𝑘����⃗ + ∆𝑔𝑔𝑘𝑘����⃗  .                                                                                         (3) 
 

The first term indicates spontaneous decay of 𝑝𝑝𝑘𝑘����⃗  with decay rate 𝛾𝛾 . The second term indicates reinforcement of 𝑝𝑝𝑘𝑘����⃗  
resulting from cell displacements, where 𝑔𝑔𝑘𝑘����⃗  and ∆𝑔𝑔𝑘𝑘����⃗  are the center of cell k and the change in 𝑔𝑔𝑘𝑘����⃗  during a single MCS. 
 
Dynamics of Chemical Components 

The spatiotemporal changes in extracellular ATP concentration 𝐴𝐴(�⃗�𝑥, 𝑡𝑡) and intracellular Ca2+ concentration 𝐶𝐶(�⃗�𝑥, 𝑡𝑡) are 
modelled by the following Reaction-Diffusion equations (RD). 

 
𝜕𝜕𝐴𝐴(�⃗�𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝛿𝛿𝜎𝜎(𝑥𝑥),𝜎𝜎Edge𝜃𝜃(𝑡𝑡)𝜃𝜃(𝑡𝑡𝑏𝑏 − 𝑡𝑡)𝑘𝑘0 − 𝛿𝛿𝜎𝜎(𝑥𝑥),𝜎𝜎cells𝑘𝑘𝐴𝐴𝐴𝐴(�⃗�𝑥, 𝑡𝑡) + 𝐷𝐷𝐴𝐴∇2𝐴𝐴(�⃗�𝑥, 𝑡𝑡) ,                (4) 

 
𝜕𝜕𝐶𝐶(�⃗�𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝛿𝛿𝜎𝜎(𝑥𝑥),𝜎𝜎cells𝜃𝜃(𝐴𝐴(�⃗�𝑥, 𝑡𝑡) − 𝐴𝐴th)𝑘𝑘𝐶𝐶�𝐶𝐶0 − 𝐶𝐶(�⃗�𝑥, 𝑡𝑡)� .                          (5) 
 

The first and second terms on the right-hand side of Equation (4) denote ATP release and ATP consumption. ATP 
molecules release from only the leading cells 𝜎𝜎Edge that faces the wound edge at the beginning of the cell migration 
0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏) and are consumed by cells 𝜎𝜎cells with rate 𝑘𝑘𝐴𝐴 as indicated by the second term. 𝑡𝑡𝑏𝑏 is the time when the ATP 
release ends and 𝑘𝑘0 is the release rate of ATP. The last term in Eq. (4) denotes the extracellular diffusion of ATP with the 
diffusion coefficient 𝐷𝐷𝐴𝐴. Equation (5) represents the intracellular Ca2+ response in the cells 𝜎𝜎cells induced by released 
extracellular ATP molecules, where 𝐴𝐴th is the threshold value of the ATP concentration for the extracellular Ca2+ influx 
due to the Ca2+ response, 𝑘𝑘𝐶𝐶 is the influx rate of Ca2+, and 𝐶𝐶0 is the steady-state concentration of extracellular Ca2+. We 
numerically solve the above reaction-diffusion equations using the Crank-Nicolson scheme on a lattice that corresponds 
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to the CPM lattice, employing 10 diffusion steps per MCS with time step ∆𝑡𝑡 = 0.1 and spatial step size ∆𝑥𝑥 = 1.0. The 
Neumann boundary condition is applied. 
 
Cell Growth and Contact Inhibition 

We further introduce the cell growth considering the contact inhibition. Contact inhibition is the mechanism which 
normal cells stop proliferation or growth when they contact each other. 

Cell growth is modelled by increasing the target volume 𝑉𝑉𝑡𝑡,𝑘𝑘 and the target surface area 𝑆𝑆𝑡𝑡,𝑘𝑘 [36,37] in the CPM. If cell 
k remains in a state where it is not completely surrounded by other cells for a certain period of time, Tg, the value of target 
volume 𝑉𝑉𝑡𝑡,𝑘𝑘 increase by one. Here, Tg corresponds to the reciprocal of the growth rate of cell volume. Once 𝑉𝑉𝑡𝑡,𝑘𝑘 increases 
by one, an additional time interval of Tg is required until the next increase. 𝑉𝑉𝑡𝑡,𝑘𝑘 can increase up to its maximum value 𝑉𝑉max. 
On the other hand, if cell k is completely surrounded by the other cells, the value of 𝑉𝑉𝑡𝑡,𝑘𝑘 does not change, indicating that 
the cell does not get large due to the effect of the contact inhibition. To ensure that the value of 𝑉𝑉𝑡𝑡,𝑘𝑘 is increased at the 
appropriate time during CPM calculations, a timer for cell growth, 𝑡𝑡𝑔𝑔,𝑘𝑘, is set. If cell k is not completely surrounded by 
other cells and 𝑉𝑉𝑡𝑡,𝑘𝑘 is not at its maximum value 𝑉𝑉max, the value of timer 𝑡𝑡𝑔𝑔,𝑘𝑘 is increased by one each MCS. When the 
value of timer 𝑡𝑡𝑔𝑔,𝑘𝑘 reaches Tg, the value of 𝑉𝑉𝑡𝑡,𝑘𝑘 is increased by one and the value of timer 𝑡𝑡𝑔𝑔,𝑘𝑘 is reset to zero to measure 
the time until the next increase in 𝑉𝑉𝑡𝑡,𝑘𝑘. If a cell is completely surrounded by other cells or if 𝑉𝑉𝑡𝑡,𝑘𝑘 is at its maximum value, 
cell growth stops, and the value of timer 𝑡𝑡𝑔𝑔,𝑘𝑘 remains unchanged. 

Furthermore, assuming that cells tend to adopt an elongated shape during migration, we control the shape of a cell by 
adjusting the value of the target surface area, 𝑆𝑆𝑡𝑡,𝑘𝑘, based on the value of 𝑉𝑉𝑡𝑡,𝑘𝑘. To achieve an elongated shape, we assume 
a cell aspect ratio of 4:1 and compute the value of 𝑆𝑆𝑡𝑡,𝑘𝑘 from the value of 𝑉𝑉𝑡𝑡,𝑘𝑘. Assuming the shape of a cell to be a rectangle, 
with the length of the longer side denoted as 4r and the length of the shorter side denoted as r, the two-dimensional volume 
(area) V can be calculated as 𝑉𝑉 = 4𝑟𝑟2, and the two-dimensional surface area (perimeter) S can be calculated as 𝑆𝑆 = 10𝑟𝑟. 
By considering these V and S values as 𝑉𝑉𝑡𝑡,𝑘𝑘 and 𝑆𝑆𝑡𝑡,𝑘𝑘, respectively, the following relationship can be derived: 𝑆𝑆𝑡𝑡,𝑘𝑘 = 5�𝑉𝑉𝑡𝑡,𝑘𝑘. 
When the value of 𝑉𝑉𝑡𝑡,𝑘𝑘 is updated, the value of 𝑆𝑆𝑡𝑡,𝑘𝑘 is also updated based on this relationship. 

It should be noted that this model does not take into account cell division, as the time scale of the experimental results 
[15] is shorter than the time scale of cell division (cells do not divide during the simulation time). 
 
Coupling the Cellular Potts Model with the Reaction-Diffusion Equations 

We here describe the method used to couple CPM representing cell dynamics with RD representing chemical dynamics 
for computation. Since the time scale of chemical dynamics is much shorter than that of cell dynamics, we execute the 
calculation of RD ten times during a single Monte Carlo step (MCS) of the CPM. The summary of the computational 
procedure for each MCS is presented in the following pseudocode algorithm. 

 
1. Perform the following site-exchange calculations for the number of times equal to the number of lattice sites (system 

size) in the CPM. 
         a. Randomly select of two sites for site-exchange. 

b. Calculate the change in the total energy ∆E for site-exchange using the equations (1) and (2). 
c. Perform the Metropolis algorithm using the calculated ∆E. 

2. Numerically calculate the RD equations (4) and (5) ten times. 
3. Perform the following cell growth calculations for each cell. 
    FOR k = 1 to Number of Cells DO 

a. Calculate the equation (3) for updating the cell polarity vector 𝑝𝑝𝑘𝑘����⃗  
b. IF (timer for cell growth 𝑡𝑡𝑔𝑔,𝑘𝑘 ≥ period 𝑇𝑇g) THEN 
        IF (𝑉𝑉𝑡𝑡,𝑘𝑘 < 𝑉𝑉max) AND (cell k is not completely surrounded by other cells) THEN 
            𝑉𝑉𝑡𝑡,𝑘𝑘 = 𝑉𝑉𝑡𝑡,𝑘𝑘 + 1 and then 𝑆𝑆𝑡𝑡,𝑘𝑘 = 5�𝑉𝑉𝑡𝑡,𝑘𝑘  (update target volume 𝑉𝑉𝑡𝑡,𝑘𝑘 and target surface area 𝑆𝑆𝑡𝑡,𝑘𝑘) 
            𝑡𝑡𝑔𝑔,𝑘𝑘 = 0  (reset timer 𝑡𝑡𝑔𝑔,𝑘𝑘 to zero to measure the time until the next increase in 𝑉𝑉𝑡𝑡,𝑘𝑘) 
        END IF 
    ELSE (timer for cell growth 𝑡𝑡𝑔𝑔,𝑘𝑘 < period 𝑇𝑇g) THEN 
        IF (𝑉𝑉𝑡𝑡,𝑘𝑘 < 𝑉𝑉max) AND (cell k is not completely surrounded by other cells) THEN  
            𝑡𝑡𝑔𝑔,𝑘𝑘 = 𝑡𝑡𝑔𝑔,𝑘𝑘 + 1  (increment the timer for cell growth 𝑡𝑡𝑔𝑔,𝑘𝑘) 
        END IF 
    END IF 

      END DO 
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Results and Discussion 
 

We here show some numerical results using the hybrid model (CPM with polarity + RD equations for chemicals + 
contact inhibition for cells) for the wound closure process. To mimic the experimental situation [15], we set up the initial 
distribution of cells as shown in Figure 1 (a). The gap region (grey) between the upper and lower cells represents the linear 
wound. Green cells in Figure 1 (a) indicates the leading cells that face the wound edge. Only these leading cells release 
ATP molecules, as in the experiment [15], at the beginning of the simulation (cell migration) until 𝑡𝑡𝑏𝑏 = 1 (we estimate 1 
MCS as 15 sec). The initial volume of each cell is 25 (5×5) units (20×20 μm2), where we consider a square lattice with 
1×1 unit (4×4 μm2), and the initial number of the cells is 288. The total system size is 120×120 units (480×480 μm2), and 
the wound region is the half of it (480×240 μm2). This wound gap length corresponds to the experimental study [15].  

Table 1 shows the parameters of the numerical simulation (units are arbitrary). 𝐽𝐽𝐶𝐶𝐶𝐶  and 𝐽𝐽𝐶𝐶𝐶𝐶 denote the cell-cell adhesion 
energy and the cell-medium (cell free area) adhesion energy, respectively. We set the energy related parameters, such as  
𝐽𝐽𝐶𝐶𝐶𝐶 ,  𝐽𝐽𝐶𝐶𝐶𝐶 , 𝜆𝜆𝑉𝑉 , 𝜆𝜆𝑆𝑆 , P, and 𝛾𝛾, to stabilize cell shape and allow deformation, growth, and migration to occur within the 
designated simulation time frame. Additionally, the ratio between the magnitude of cell fluctuation 𝛽𝛽 and the change in 
the total energy ∆𝐸𝐸 is also crucial for cell deformation, migration, and stability of cell shape. Hence, we set 𝛽𝛽 = 0.2 in 
our simulations to enable a certain level of cell deformation and motility, while also ensuring the stability of cell shape. 
We set the values of the parameters related RD equations (4) and (5), taking into consideration that ATP and Ca2+ rapidly 
spread within a few seconds in the experiments [15]. We assumed that it takes approximately 1.5 hours (360 MCS) at the 
shortest to reach the maximum size (𝑉𝑉max) in this simulation since we have no experimental data on the time required for 
cell growth. In this simulation, we set 𝑇𝑇𝑔𝑔 = 10 as the time required for a cell to increase its size by one. As a result, the 
time required for a cell to grow from its initial size of 25 to its maximum size of 60 is 350 MCS (350 = 10×(60−25)), 
which is in consistent with our previous assumption of 360 MCS. 

To clarify the effect of the collective cell migration due to the ATP release and the subsequent Ca2+ influx resulting from 
the mechanical forces, we here numerically examine two different scenarios with and without the ATP release: The former 
is referred to as ATP model and the latter as ATP-free model. In the ATP-free model, the ATP release is inhibited by 
setting 𝑡𝑡𝑏𝑏 = 0. As a result, Ca2+ response does not occur, leading to 𝐸𝐸mig = 0 in the equation (2). Compared to our 
previous study of the wound closure [38], we add to this model the effect of contact inhibition and investigate in detail 
the effects of the ATP release. Therefore, this study is more suitable for qualitative comparison with the previous 
experimental study [15]. 
 
Wound Closure by the Collective Cell Migration 

Figure 1 (b) and (c) show the time evolution of the wound closure process in the ATP-free model and ATP model, 
respectively. These figures clearly show that the wound gap closes more quickly in the ATP model than in the ATP-free 
model. In the ATP model, the cells facing the wound gap rapidly migrate forward, and this quick migration causes rapid 
closure of the wound gap. On the other hand, in the ATP-free model, the leading cells migrate forward very slowly, and 
thus the wound gap closes very slowly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1  (a) Initial distribution of cells. F, M and B represent cells facing the wound gap, cells located in the middle of 
the cell cluster and cells located at the back of the cell cluster, respectively. (b) and (c) Time evolution of wound closure 
process in the ATP-free model and the ATP model, respectively. 
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To compare the rate of wound closure in these models, we measure the change in the surface coverage by cells over time 

(Figure 2). Although the rate of wound closure in the two cases is almost the same at the early phase (𝑡𝑡 = 0~200), the 
rate in the ATP-free model suddenly slows down after around 𝑡𝑡 = 400. On the other hand, in the ATP model, the wound 
closure rate does not slow down significantly until cells fill most of the wound gap, and the wound gap almost fill (Surface 
coverage reaches 0.90) at around 𝑡𝑡 = 1000 (4.2 hour). Therefore, the ATP release clearly shows the promotion of the 
wound closure with the parameters we chose in Table 1. 
 
ATP Diffusion and Ca2+ Response 

We next show the ATP diffusion and the subsequent Ca2+ response at the early stage in the ATP model. In the previous 
experimental study [15], the diffusion of released ATP and the subsequent Ca2+ response have been observed within a 
few seconds after mechanical stimulation. Figure 3 (a), (b) and (c) show the time evolution of the distribution of cells, 
ATP and Ca2+ at the early stage, respectively. The released ATP from the leading cells diffuses quickly and the resulting 
Ca2+ influx occurs although the width of the wound gap is almost the same (𝑡𝑡 = 10~50). And after a while, the diffused 
ATP decays (𝑡𝑡 = 100, 250). These results qualitatively correspond to the experimental results.  
 
Differences in the Wound Closure Rate 

To investigate the difference in the wound closure rate, we here show the degree of cell migration at various location 
within the cell cluster and the distribution of the cell size. 

We first calculate the average cell position (perpendicular to the wound gap) at various location within the cell cluster, 
that is, cells in the row facing the wound gap (cluster F in Figure 1 (a)), cells located in the middle row within the cell 
cluster (cluster M in Figure 1 (a)) and cells located in the back row within the cell cluster (cluster B in Figure 1 (a)), 
respectively. Figure 4 (a), (b) and (c) show the time evolution of the average cell position in each cluster in two models. 
Time evolution of the average position in cluster F is quite similar to that of the surface coverage by cells (Figure 2). It 
indicates that the cell migration of the leading cells directly reflects the wound closure rate. On the other hand, the average 
cell positions in clusters M and B in the two models show completely different behaviors. In the ATP model, cells in 
clusters M and B also migrate forward, whereas they remain almost the same positions in the ATP-free model. It shows 
that quick cell migration for cluster F due to the ATP release causes the subsequent cell migration for clusters M and B 
in the ATP model. 

In Figure 1, it may appear that each cell moves separately to close the wound gap. However, in reality, the cells move 
collectively in an aligned orientation. To quantitatively verify the collective cell migration due to the ATP release, we 
introduce the following local polar order parameter, 𝑆𝑆Ψ(𝑡𝑡) for a cell cluster Ψ[4], 

Table 1  Parameters used in the simulations (arbitrary units) 

 
Symbol     Meaning of parameter     Value Equation to be used 

 

𝛽𝛽 magnitude of cell fluctuation    0.2 Metropolis calculation 
𝐽𝐽𝐶𝐶𝐶𝐶  cell-cell adhesion energy     9.0 Eq. (1) 
𝐽𝐽𝐶𝐶𝐶𝐶 cell-medium adhesion energy    3.0 Eq. (1) 
𝜆𝜆𝑉𝑉 strength of the volume constraint    2.0 Eq. (1) 
𝜆𝜆𝑆𝑆 strength of the surface constraint    0.5 Eq. (1) 
P magnitude of cell autonomous motility    2.0 Eq. (2) 
𝐶𝐶th threshold value of [Ca2+] for cell autonomous motility  0.1 Eq. (2) 
𝛾𝛾 decay rate of cell polarity vector 𝑝𝑝𝑘𝑘����⃗     0.025 Eq. (3) 
𝑡𝑡𝑏𝑏 time when the ATP release ends    1 Eq. (4) 
𝑘𝑘0 ATP release rate from cells     10.0 Eq. (4) 
𝑘𝑘𝐴𝐴 ATP consumption rate of cells    0.01 Eq. (4) 
𝐷𝐷𝐴𝐴 diffusion coefficient of ATP    0.1 Eq. (4) 
𝐴𝐴th threshold value of ATP concentration for Ca2+ influx  0.1 Eq. (5) 
𝑘𝑘𝐶𝐶 Ca2+ influx rate      1.0 Eq. (5) 
𝐶𝐶0 steady-state concentration of extracellular Ca2+  1.0 Eq. (5) 
𝑇𝑇𝑔𝑔 time until the next increase in the value of target volume 10 Cell growth calculation 
𝑉𝑉max maximum value of target cell volume    60 Cell growth calculation 
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𝑆𝑆Ψ(𝑡𝑡) = �
1
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𝜇𝜇𝚤𝚤���⃗

|𝜇𝜇𝚤𝚤���⃗ |
𝑖𝑖∈Ψ

�  ,                                       (6) 

 
where 𝑁𝑁Ψ is the number of cells in cluster Ψ and 𝜇𝜇𝚤𝚤���⃗  is the velocity vector of i-th cell in cluster Ψ. Figure 5 shows the time 
evolution of 𝑆𝑆Ψ averaged over a moving average for 10 intervals. In cluster F, the value of 𝑆𝑆Ψ in the ATP model is greater 
than that in the ATP-free model until 𝑡𝑡 = 750 (Figure 5 (a)). It indicates that cells in cluster F in the ATP model move in 
a more aligned orientation. Therefore, the ATP release promotes the collective cell migration for cluster F. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Time evolution of the surface coverage by cells in the ATP-free model and the ATP model. 

Figure 3  Time evolution of the distribution of cells (a), ATP (b) and Ca2+ (c) at the early stage. Red (white) indicates 
that the concentration of the chemical components is high (low), and gray indicates that the concentration of them is zero 
(almost zero). ATP diffusion and the subsequent Ca2+ influx occur quickly although the wound gap is barely closed. 
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We next visualize the distribution of the cell size in each cell cluster. Figure 6 (a) and (b) is basically the same as Figure 
1 (b) and (c) but the color code is different: Differences in cell color indicate the differences in cell size. Blue color means 
the size of a cell is large (𝑉𝑉 ≃  𝑉𝑉max), and white color means the size of a cell is small (𝑉𝑉 ≤ 25). Figure 6 (a) clearly 
indicates that only the cells in cluster F grow and the size of the cells in cluster M and B (far from the wound) hardly 
changes in the ATP-free model. To investigate it quantitatively, we calculate the average cell size at various locations in 
clusters F, M and B. Although cells in cluster F in two models have almost the same size over time (Figure 7 (a)), cells at 
M and B in the ATP model grow faster than those in the ATP-free model (Figure 7 (b) and (c)). This is the reason why 
the increase in the surface coverage slows down in the ATP-free model. 

We next investigate why cells inside the cluster in the ATP-free model can hardly grow. In our numerical model, a cell 
surrounded by other cells cannot get large due to the contact inhibition. Therefore, vacant ratio of a cell, which denote 
how much space is available around the cell, is a useful for determining whether the cell can grow or not. Figure 8 (a), (b) 
and (c) show the time evolution of the average vacant ratio in clusters F, M and B, respectively. In the ATP-free model, 
cells inside the cluster (clusters M and B) are almost completely surrounded by other cells, resulting in an average vacant 
ratio that is almost zero or very small. As a result, the cells cannot grow large due to contact inhibition. It should be noted 
that the decrease in the average vacant ratio in cluster F in the ATP model after 𝑡𝑡 = 700 is due to the rapid migration and 
growth of the leading cells, which results in the loss of vacant space. 

From the above considerations, we summarize the reason for the promotion of wound closure in the ATP model as 
follows. In the ATP model, the value of 𝐸𝐸mig  in the equation (2) becomes significantly large because of the high 
intracellular Ca2+ concentration, making it easier for the front cells to move and for space to spread rapidly, thus enabling 
the rear cells to migrate and grow smoothly. In contrast, in the ATP-free model, 𝐸𝐸mig becomes 0 due to the lack of Ca2+ 
in the cells, causing the front cells to move less and thus preventing the rear cells from migrating or growing. Therefore, 
the collective cell migration induced by the ATP release and the Ca2+ influx promotes the cell growth inside the cell cluster 
and the consequent fast wound closure. 

 

Figure 4  (a), (b) and (c) correspond to time evolution of the average cell position in clusters F, M and B, respectively. 

Figure 5  (a), (b) and (b) Time evolution of the local polar order parameter in clusters F, M and B, respectively. 
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Figure 6  (a) and (b) correspond to Figure 1 (a) and (b), respectively, and blue color indicates large cells whereas white 
color does small cells. 

Figure 7  (a), (b) and (c) Time evolution of the average cell size in clusters F, M and B, respectively. 

Figure 8  (a), (b) and (c) Time evolution of the average vacant ratio in clusters F, M and B, respectively. 
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Conclusions 
 

We have introduced a hybrid model which consists of the CPM (cell dynamics) and the RD equations (dynamics for 
chemical components) for the wound closure process, and further added the cell polarity and contact inhibition. We here 
focused on the wound closure rate for the ATP-free model (without ATP release from the cells facing the wound) and the 
ATP model. The difference in the wound closure rate is caused by the rapid cell migration due to the ATP release and the 
subsequent Ca2+ influx induced by the mechanical forces, which we model as the polarity of the cell movement. The rapid 
cell migration makes space for the cells inside the cell cluster, and consequently causes rapid growth for these cells. In 
contrast, in the ATP-free model, the leading cells migrate slowly, and thus the cells inside the cluster do not have enough 
space to get large and cannot grow due to the contact inhibition. 

Our hybrid model can also be applied to the vascular network formation, where anisotropic shape of a cell is important 
to generate such a fibrous form. By incorporating the effect of cell shape and taking into account the effect of the ATP 
release induced by external forces, our hybrid model will be further extended to deal with the vascular network formation 
under mechanobiological conditions. And also, it would be essential to add the effect of mechanical interaction with cells 
and the substrate to our hybrid model for more realistic simulations. 

In this study, many model parameters were set based on assumptions due to the difficulty in correlating them with 
experimental results. A future task is to estimate the model parameters using data assimilation methods based on large 
amounts of cell imaging data, similar to those used in the field of meteorology. 
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