
Received: July 2, 2024. Revised: September 9, 2024. Accepted: October 30, 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2024, 25(6), bbae573

https://doi.org/10.1093/bib/bbae573

Problem Solving Protocol

A multi-task prediction method based on neighborhood
structure embedding and signed graph representation
learning to infer the relationship between circRNA,
miRNA, and cancer
Lan Huang*, Xin-Fei Wang , Yan Wang *, Ren-Chu Guan , Nan Sheng, Xu-Ping Xie, Lei Wang, Zi-qi Zhao

Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, No.
2699, Qianjin Street, Changchun 130012, China

*Corresponding authors. Lan Huang, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science
and Technology, Jilin University, Changchun 130012, China. E-mail: huanglan@jlu.edu.cn: @lanhuang; Yan Wang, Key Laboratory of Symbol Computation and
Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
E-mail: wy6868@jlu.edu.cn: @yanwang

Abstract

Motivation: Research shows that competing endogenous RNA is widely involved in gene regulation in cells, and identifying the
association between circular RNA (circRNA), microRNA (miRNA), and cancer can provide new hope for disease diagnosis, treatment,
and prognosis. However, affected by reductionism, previous studies regarded the prediction of circRNA-miRNA interaction, circRNA-
cancer association, and miRNA-cancer association as separate studies. Currently, few models are capable of simultaneously predicting
these three associations.
Results: Inspired by holism, we propose a multi-task prediction method based on neighborhood structure embedding and signed graph
representation learning, CMCSG, to infer the relationship between circRNA, miRNA, and cancer. Our method aims to extract feature
descriptors of all molecules from the circRNA-miRNA-cancer regulatory network using known types of association information to
predict unknown types of molecular associations. Specifically, we first constructed the circRNA-miRNA-cancer association network
(CMCN), which is constructed based on the experimentally verified biomedical entity regulatory network; next, we combine topological
structure embedding methods to extract feature representations in CMCN from local and global perspectives, and use denoising
autoencoder for enhancement; then, combined with balance theory and state theory, molecular features are extracted from the point
of social relations through the propagation and aggregation of signed graph attention network; finally, the GBDT classifier is used to
predict the association of molecules. The results show that CMCSG can effectively predict the relationship between circRNA, miRNA,
and cancer. Additionally, the case studies also demonstrate that CMCSG is capable of accurately identifying biomarkers across various
types of cancer. The data and source code can be found at https://github.com/1axin/CMCSG.

Keywords: competing endogenous RNA; miRNA-disease association; circRNA-disease association; miRNA-circRNA interaction; molec-
ular associations network

Introduction
A variety of complex human diseases, especially cancer, are
related to abnormal transcriptional and post-transcriptional gene
expression. Large-scale transcriptome analysis of human cells
shows that not all genomes are transcribed into proteins, and
some of them are involved in gene regulation as non-coding RNA
(ncRNA) [1]. In the past decade, a large number of studies have
shown that ncRNA can control the expression of mRNA through
target genes, leading to tumor production, proliferation, and
metastasis [2, 3]. This discovery provides a new opportunity for
the interpretation of tumor biology and the treatment of complex
diseases.

As a small ncRNA (<200 nucleotides), microRNA (miRNA) is a
typical representative of ncRNA that regulates gene expression

[4]. Through miRNA response elements (MREs), miRNA can target
mRNA; and a variety of endogenous RNA can also target miRNA
through MRE [5]. This competitive binding enables endogenous
RNA to regulate each other’s expression, which is called the
competing endogenous RNAs (ceRNAs) hypothesis [6]. The ceRNA
hypothesis was first confirmed in Arabidopsis thaliana [7]. With
the development of research, ceRNA has been proven to play
an important role in diseases such as cancer [8, 9]. Since the
dysregulation of miRNA in cancer was first reported in 2002 [10],
miRNA has been studied rapidly as a marker for the diagnosis
and treatment of cancer. In 2013, the miRNA mimic for cancer
treatment entered the clinical stage for the first time [11]. In addi-
tion, the detection of miRNA in biological fluids has become an
important means of monitoring cancer [12]. According to ceRNA
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theory, endogenous RNA with MRE can be used as ceRNA, includ-
ing protein-coding transcripts, circular RNA (circRNA), and long
non-coding RNA (lncRNA). At present, more than 7000 human
circRNA have been identified by high-throughput technology [13].
Because of its unique ring structure and high exonuclease resis-
tance, circRNA has great potential as ceRNA. Although the mech-
anism of circRNA is not perfect, it may still have high functionality
in cancer.

To economically and efficiently identify potential circRNA
biomarkers for diseases and to gain a deeper understanding of the
disease mechanisms, computational prediction models related
to circRNA have gained significant attention and development.
Initially, models for predicting miRNA-disease associations were
prioritized. Researchers have proposed numerous advanced
prediction models to advance this field [14–16], such as Long
et al. introduced a tri-channel neural network to predict potential
miRNA-disease associations [17]. Wang et al. proposed SAEMDA,
based on a stacked autoencoder, to predict potential miRNA
biomarkers for diseases [18]. Li et al. developed the HHOMR
model, based on hybrid high-order moment residuals, for
effective prediction of unknown miRNA-disease associations
[19]. Zhao et al. fused high-order and low-order structural
information and proposed the MotifMDA model based on a
hierarchical attention network, which effectively predicted new
miRNA-disease associations [20]. In the realm of circRNA-
disease association prediction, Wang et al. combined dataset
integration strategies and attention mechanisms to propose the
AMDECDA model for predicting potential circRNA biomarkers
for diseases [21]. Lan et al. conducted a benchmark evaluation
of computational methods for circRNA-disease association
prediction [22]. Wang et al. constructed the GSLCDA model using
an unsupervised deep graph structure learning method to predict
potential circRNA biomarkers for diseases [23]. In predicting
pathogenic circRNA biomarkers that competitively bind with
miRNAs, Wang et al. used a multi-structural feature extraction
framework to predict unknown circRNA-miRNA interactions [24].
Furthermore, Wang et al. introduced KS-CMI, which applies CMI
predictions to real-world cases [25]. CMI prediction has also been
extended to multi-source data fusion [26, 27] and knowledge
graph domains [28]. Additionally, the construction and feature
extraction methods of heterogeneous networks for various types
of molecules have garnered widespread attention. For instance,
Zhao et al. built a heterogeneous information network based on
nine types of associations among five types of molecules and
employed the HINLMI model, which incorporates neighborhood-
level structural representations, to extract molecular features and
predict associations between lncRNA and miRNA [29]. Similarly,
Sheng et al. constructed a three-layer heterogeneous network for
lncRNA-miRNA-disease and proposed the GCLMTP model, based
on graph contrastive learning, to predict associations between
lncRNA, miRNA, and disease [30].

The circRNA-miRNA-mediated model is a classic framework
for gene regulatory expression, providing new research perspec-
tives on cancer onset and treatment. Large-scale graph-based
feature extraction methods can effectively construct graph-
level models of biomolecules to support advanced downstream
tasks and identify potential disease biomarkers. However, due to
limitations in graph representation learning methods, existing
approaches often modularize the complete biological network
into isolated research units for computational modeling, focusing
on single-type molecular association behaviors. Nonetheless,
a cell, as a complete entity, is undoubtedly influenced by all
components of the biological network system. Consequently,

current studies are typically constrained to learning node-specific
local and global topological structures and neighbor behavior
association in the graph. Additionally, single-association modeling
methods may face the risk of label leakage because using the
same type of training data might lead the model to learn node
features with label assumptions. Moreover, existing research often
concentrates solely on training and predicting positive samples,
which may result in the propagation of false-negative samples.
Given the biological integrity of the ceRNA hypothesis, modeling
complete biological regulatory behavior as a network aid in learn-
ing more comprehensive regulatory representations of molecules
and discovering unknown associations within the network.

To address the aforementioned issues, we propose a method
capable of modeling the circRNA-miRNA-cancer regulatory net-
work (CMCN) and predicting associations between any two enti-
ties, termed CMCSG. Specifically, CMCSG constructs a ternary het-
erogeneous network based on the circRNA-miRNA-disease reg-
ulatory process. It then utilizes local and global neighborhood
structure embedding modules to extract molecular topological
features from the network. Subsequently, a signed graph repre-
sentation learning approach, based on balance theory and status
theory, is employed to construct chain-like social relationships for
positive and negative samples, thereby propagating node struc-
tural features. Finally, these features are fed into a high-level pre-
dictor to infer relationships between circRNA, miRNA, and cancer.

Materials and methods
Dataset
The data used in this experiment are downloaded and prepro-
cessed from the circR2Cancer database [31] (http://www.biobdlab.
cn:8000/). All ceRNA data have experimental support, including
the complete circRNA-miRNA-cancer regulatory association of 72
cancers, 731 pairs of miRNA and cancer associations, 648 circRNA-
cancer associations, and 753 circRNA-miRNA associations. The
data details are shown in Table 1. We uploaded the data to GitHub
(https://github.com/1axin/CMCSG) under the name CMCSG. In
addition, we introduce an independent dataset CMI-9905 (collated
by Wang et al. [26]) in the functional verification to verify the
effectiveness of the embedding method based on neighborhood
structure.

CMCSG method
Figure 1 outlines our proposed multi-task prediction method. The
method consists of three main parts. Firstly, the ternary het-
erogeneous association network CMCN between circRNA-miRNA-
cancer is constructed according to the known data to embed the
structural information between nodes. Secondly, for different pre-
diction tasks, combined with the local and global neighborhood
structure embedding module to extract the topology embedded
representation of nodes from the CMCN, and denoising autoen-
coder (DAE) is used to enhance the features. Then, the signed
graph attention network is used to propagate and aggregate the
node information in the network, and the association representa-
tion of the node in the heterogeneous graph is obtained. Finally,
the advanced predictor is used to predict the target association
type (sub-network).

Construction of the ternary heterogeneous network of
circRNA-miRNA-cancer
In this study, we used the regulatory associations of 72 can-
cers to construct a heterogeneous network CMCN. CMCN con-
tains three kinds of associations among three kinds of molecules,
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Table 1. The information of the CMCN.

dataset pairs circRNA miRNA disease Average degree

CMA 753 515 477 non 1.5273
CCA 648 515 non 72 2.2003
MCA 731 non 477 72 2.6437

Figure 1. The flow chart of CMCSG.

including miRNA-cancer association, circRNA-miRNA interaction,
and circRNA-cancer association. Combined with the relation-
ship between biological entities, the molecules form a complete
closed-loop triangular relationship structure. By embedding the
network composed of two known associations, we can predict

any unknown third association. Specifically, CMCN is defined as
an undirected graph, which is expressed as G = <V, E>, where
V = {VmiRNA∪ VcircRNA∪ Vcancer} represents the set of nodes and Eij

represents the association between node Vi and node Vj. We use
the adjacency matrix X to represent the association information
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Figure 2. Different graphlets of K molecules (minimum 2 and maximum 4).

stored in graph G. The matrix X is defined as:

X =

⎧⎪⎨
⎪⎩

XMCA ∈ RNm×Nca

XCCA ∈ RNci×Nca

XCMI ∈ RNci×Nm

(1)

Where Nm, Nca, and Nci represent the number of miRNA, cancer,
and circRNA respectively. If there is an association between node
Vi and node Vj, Xij is set to 1, otherwise 0.

Neighborhood structure embedding module based on local
and global
The extraction of molecular attributes based on local
topology

In the CMCSG method, we combine the definition of neighbor
structure in the network to embed the node topology, which is
implemented using the Role2vec [32] algorithm.

For an undirected graph G = <V, E > consisting of N nodes and
E edges, the goal of role2vec is to divide different nodes into
different ‘graphlets’, and map the topology information to a rep-
resentation of a new feature space.

Graphlets are collections of subgraph structures within a graph
that capture the complex relationships between nodes and their
neighborhoods. CMCSG employs graphlet structures to represent
the local structural features of nodes in the CMCN. Compared to
focusing solely on individual edges or node neighbors, CMCSG can
capture richer local patterns and topological structures, thereby
providing a more accurate depiction of the roles of nodes and their
relative positions within the network.

To obtain an effective target representation, we divide the
associations of K nodes (minimum 2, maximum 4) into different
graphlets, and define the role attributes of the nodes according to
the graphlets, as shown in Fig. 2.

According to the structure definition in Fig. 2, we first extract
all the structural information in graph G. Then we use the func-
tion Y to map the structure of node ni to node type.

Y ≈ F
(
UVT)

(2)

Where F is a non-linear function.
Next, an attributed random walk is adapted to traverse graph

G to learn the feature representation of the nodes. The attributed
random walk summarizes the node structure types into different
graphlets and uses them as node numbers, and then puts the
obtained representation as a corpus into doc2vec in skip-gram for
training to obtain the final embedded representation.

The extraction of molecular attributes based on the global
topology

To compensate for the global topology of unrelated molecules,
CMCSG introduces the struc2vec [33] algorithm to capture the
structural similarity information between unrelated molecules
through a biased random walk in the constructed multi-layer
weighted graph.

In the undirected graph G < V, E > constructed from the data
set, the direct nearest neighbor set of vertex U and the vertex set
with distance d are represented by Rd(U), R1(U) respectively, and
S(s) represents the order degree of the vertex set. The structural
distance fd(u,v) of the node set whose distance from the vertex U
is less than d can be defined as:

fd (u, v) = fd−1 (u, v)+g (s (Rd(u)) , s (Rd(v))) , d ≥ 0, |Rd(u)| , |Rd(u)| > 0
(3)

Where g () is used to measure the distance between ordered degree
sequences.

Next, based on Dynamic Time Warping (DTW), the function
used to measure the distance between sequences of different
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lengths containing duplicate elements is defined as W().

W
(
a, b

) = max
(
a, b

)

min
(
a, b

) − 1 (4)

After the distance is defined, we construct a hierarchical weighted
graph based on the ordered degree sequence distance between
vertices for random walk node traversal. In weighted graphs at
different levels, the edge weight is defined as T

T (ud, ud+1) = log (Γd(u) + e) , d = 0, . . . , d∗ − 1 (5)

where �d(u) is the number of edge weights greater than the
average edge weight in the edge connected to vertex U at
layer q.

Γq(u) =
∑

v∈V1
(
wq (u, v) > wq

)
(6)

wk is the average of all boundary rights in layer q.
In the constructed graph g, we use a biased random walk to

sample vertex sequences. In layer q, the walking probability from
vertex U to V is P.

pq (u, v) = e−fq(u,v)

Zq(u)
(7)

Zq(u) is the normalization factor for Apex u in the q layer.

Zq(u) =
∑

v∈V,v�=ue−fq(u,v) (8)

With P, the vertices sampled each time are more likely to point
similarly to the current vertex structure, independent of their
positions in the graph.

Finally, by walking in Graph g, we get the global topological
structure feature representation of each node.

The feature enhancement based on the noise reduction
method

The information extraction in large-scale graphs has the charac-
teristics of high independence, difficult fusion, and long dimen-
sions. CMCSG introduces the Denoising Autoencoder [34] to learn
the low-dimensional hidden features from the features obtained.
Specifically, CMCSG obtains corrupted features by adding noise
to the original feature and then forces the neural network to
learn a low-dimensional representation of pure features from the
corroded features. This strategy ensures that the learned features
are not just low-dimensional replicas of the original features
while removing uncertain effects in the original features. In detail,
CMCSG first adds Gaussian noise to corrupt the original features
t, then reconstructs the corroded features T and the original
features t through the sigmoid function respectively. The sigmoid
function can be calculated as follows:

J = fsiomoid(t) = 1(
1 + e−t

) (9)

j = fsiomoid(T) = 1(
1 + e−T

) (10)

Next, the neural network is forced to learn the original represen-
tation of the feature from the corroded feature (the deep neural
network is trained to minimize the average reconstruction error)
to obtain a low-dimensional replacement of the original feature.
The average reconstruction error is defined as:

λ∗, β∗ = argmin
λβ

1
n

n∑
m=1

L
(
J(m), j(m)

)
(11)

Where n is the number of train data, λ∗, β∗ is the optimal values
of λ, β.

Where L is the reconstruction error.
In this experiment, we finally use DAE to extract 20-

dimensional molecular functional feature descriptors.

Feature extraction based on signed graph representation
learning
In this study, the information of the CMCN is stored in the adja-
cency matrix of 1064 × 1064, which means that 1,132,096 pairs
of associations can be generated. However, only 4264 pairs of
associations are known, therefore, most of the existing data can-
not meet the requirements of a large number of relationships
between nodes, which makes it difficult to capture valuable infor-
mation in the graph. Recent research shows that negative links
have the same or even higher value than positive links in social
networks [35], and the association between positive and negative
links can be effectively connected through the balanced path
based on the balance theory, thereby effectively improving the
learning effect of sample features in the sparse data In this
study, we combine signed graph attention network (SiGAT) [36]
for heterogeneous graph representation learning. The balanced
path based on balance theory can effectively utilize positive and
negative samples to construct chained social relationships, which
not only leverages the learning value of negative samples but
also extends multi-order molecular associations. The definition of
molecular association structures based on status theory enables
the evaluation and learning of molecular contributions under
different neighborhood structures, thereby obtaining molecular
features with high association values.

First, CMCSG defines different social relationships (friends or
foes) for molecules according to the positive and negative associ-
ations between them.

U = U+ ∪ U− (12)

U+ ∩ U− = ∅ (13)

Furthermore, we introduce balance theory to extend the posi-
tive and negative associations between molecules. Specifically,
if molecule A is associated with molecule B and molecule B is
associated with molecule C, then molecule A is associated with
molecule C (i.e. the friend of a friend is still a friend). Conversely,
if molecule A is associated with molecule B and molecule B is not
associated with molecule C, then molecule A is not associated
with molecule C (i.e. the friend of an enemy is still an enemy).
From the perspective of molecular associations, if RNA A can
target RNA B and RNA B can target RNA C, then RNA A and RNA
C may exhibit functional or structural similarities. Conversely,
if RNA A can target RNA B but RNA B cannot target RNA C,
RNA A and RNA C may have significant functional or structural
differences.

⎧⎪⎪⎨
⎪⎪⎩

A
+→ C if A

+→ BandB
+→ C

A→C if A
+→ BandB→C

A→C if A→BandB
+→ C

(14)

Combined with the balanced path, CMCSG allows the recursive
definition of molecular roles:

R > 1
Iu (L + 1) = {

xu|xk ∈ Iu(L)andxu ∈ U+
k

} ∪ {
xu|xk ∈ Ju(L)andxu ∈ U−

k

}
Ju (L + 1) = {

xu|xk ∈ Ju(L)andxu ∈ U+
k

} ∪ {
xu|xk ∈ Iu(L)andxu ∈ U−

k

}
(15)
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Figure 3. The definition of the balanced path to the molecular association.

Where I and J are the sets of positive and negative associations
respectively. The definition of the balanced path to the molecular
association is shown in Fig. 3.

Furthermore, molecules with both positive and negative links
not only exhibit the transitivity of associations as described by
balance theory [37] but also highlight different levels of impor-
tance of molecules within the network based on various asso-
ciation structures. Therefore, we introduce status theory [38] to
provide a detailed description of node contributions within higher-
order community structures. This characteristic can be expressed
as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A > C if A
+→ B, B

+→ C and A
+→ C

A > C if A
+→ B, B→C and A

+→ C
... ... ...

C > A if A
+→ B, B→C and A→C

C > A if A→B, B→C and A→C

(16)

Specifically, CMCSG integrates status theory to describe a
node’s status, or contribution, within community structures.
When molecule A positively associates with target molecule B,
molecule A demonstrates a higher contribution value compared
to molecule B. Conversely, when molecule A negatively associates
with target molecule B, molecule A exhibits a lower contribution
value relative to molecule B. With the relationship transitivity
mechanism of balance theory, status theory is also applicable
in ternary relationships; e.g. if molecule A positively associates
with target molecule B and molecule B positively associates
with target molecule C, then the contribution of molecule A is
significantly higher than that of molecule C. By summarizing
ternary association relationships under both positive and
negative samples, we have constructed various association
structure motifs [39], as illustrated in Fig. 4.

As shown in Fig. 4, after combining undirected relationships,
four directed relationships, and two social theories, 38 motifs rep-
resenting molecular biological processes are finally constructed
to represent the social relations of molecules. To maximize the
position of each molecule in the motifs, we adopt a targeted cycle
strategy, i.e. the molecules in each motif cycle all the roles.

Based on traditional GAT, SiGAT obtains different neighbor-
hoods from different motifs. Specifically, for each node y, we
construct different local neighborhoods according to the different
motifs and then use the parameters Wmi and ami to construct
a GAT-AGGREGATOR to obtain the message Xmi. For each motif,
the formula of GAT-AGGREGATOR with parameters Wmi and a to

extracting feature Xmi can be calculated as:

α
mi
yn =

exp
(
Leaky Re LU

(
aT

mi

[
Wmi X(y)

∥∥∥Wmi X(n)
]))

∑
k∈Nmi

(u) exp
(
Leaky Re LU

(
aT

mi

[
Wmi X(y)

∥∥∥Wmi X(k)
])) (17)

Xmi (y) =
∑

v∈Nmi
(y)

α
mi
yv Wmi X(n) (18)

Finally, the features of molecules in each neighborhood are con-
nected to a two-layer neural network to obtain the final social
relation embedding representation Z. The loss function L can be
calculated as:

L(Z) = −
∑

U+∈N(y)+
log

(
S

(
ZT

y ZU+
))

− C
∑

U−∈N(y)−
log

(
S

(
−ZT

y ZU−
))

(19)

Among L, S() is the sigmoid function, N(n)+/− is the set of positive
and negative neighbors of node n, and C is the balance parameter.

Results
Evaluation criteria
In this study, we used five-fold cross-validation (five-fold CV) to
evaluate the performance of CMCSG in unknown type association
predictions. Specifically, we construct two types of associations
in CMCN for feature extraction to predict the third unknown
association. Five-fold CV divides the data into five equal subsets
for five model training and prediction, each using a non-repetitive
subset as the test set and the remaining subset as the training
set until all subsets are verified as test sets, the average of the
five experiments is calculated as the final result. In addition, we
introduce accuracy (Acc.), precision (Prec.), F1-score, area under
the ROC curve (AUC), and area under the P-R curve (AUPR) to
comprehensively evaluate the performance of the model. These
evaluation indicators are calculated as follows:

Acc. = TP + TN
TP + TN + FP + FN

(20)

Pr ec. = TP
TP + FP

(21)

F1 − score = 2prec × recall
prec + recall

(22)

Among them, TP (true positive) and FP (false positive) represent
the positive samples of correct and wrong prediction of the
model, TN (true negative) and FN (false negative) represent the
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Figure 4. 38 motifs based on the status theory.

negative samples of correct and wrong prediction of the model,
respectively.

Performance evaluation
To verify the ability of the CMCSG to predict the association
between circRNA, miRNA, and cancer, we conducted indepen-
dent prediction tasks for the miRNA-cancer association (MCA),
circRNA-cancer association (CCA), and circRNA-miRNA interac-
tion (CMI) in CMCN, and the result of the five-fold CV is recorded
in Table 2. In addition, we draw the ROC and PR curve of three
associated prediction tasks, as shown in Fig. 5.

As shown in Table 2, the average Acc, Prec, F1, AUC, and AUPR
of the CMCSG in MCA prediction is 0.7387, 0.7391, 0.7386, 0.8200,
and 0.8073, respectively; in CCA prediction, the average Acc, Prec,
F1, AUC, and AUPR is 0.7415, 0.7417, 0.7414, 0.7956 and 0.7800,
respectively; In CMI prediction, the average Acc, Prec, F1, AUC,
and AUPR is 0.6407, 0.6411, 0.6405, 0.6921, and 0.6618, respectively.
The results of the five-fold CV show that CMCSG can effectively
predict the association of MCA, CCA, and CMI, and two of the
three sets of associations have more than 75% AUC. The results
show that CMCSG is a powerful method to predict the association
between circRNA, miRNA, and cancer.

The validation of the local and global
neighborhood structure embedding method
CMCSG combines the local and global neighborhood structure
embedding method to extract the topological feature repre-
sentation of each node in the network. The purpose of this
method is to retain the structure information of the nodes
in the graph from the point of topology, to obtain the low-
dimensional embedded representation of the nodes. Therefore,
the nodes with similar structures in the network should have

similar feature representations. This property shows that the
nodes with similar structures have a closer distance in the feature
space, and vice versa. In this part, we combine the independent
data set CMI-9905 and subgraph G to verify the effectiveness of
the neighborhood structure embedding method. Specifically, we
first construct a first-order subgraph G based on the CMI-9905
data set, which contains 12 association information between
four kinds of circRNA and 12 kinds of miRNA. Then, we use
the neighborhood structure embedding method to extract the
features of 16 molecules in the CMI-9905 data set and subgraph
G, and use DAE to compress the features into three dimensions.
Finally, the node features are visualized in 3D space to observe
whether the nodes with similar structures have similar spatial
distances.

The validation based on local topology
In this part, we construct a first-order subgraph G based on CMI-
9905 data sets to verify the effectiveness of the neighborhood
structure embedding method in molecular local topology fea-
ture extraction, the subgraph G is shown in Fig. 6. We use the
neighborhood structure embedding method to extract the node
features in the subgraph G, and then use DAE to compress the
features into three dimensions and project them to the 3D space.
The experimental results are shown in Fig. 7. (It is worth noting
that 3-dimensional features are not the best feature enhancement
strategy, which has been verified in comparative experiments, but
it is still of reference value for effective visualization.)

In Fig. 7, nodes with different colors correspond to molecules
with different degrees. Role2vec algorithm and struc2vec algo-
rithm can effectively extract node features with degree 1, but for
molecules with higher degrees, the effect is poor, and the neigh-
borhood structure embedding method can effectively extract the
topological features of all nodes.
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Table 2. The prediction result of the five-fold CV for three kinds of association.

MCA Acc Prec. F1-score AUC AUPR

1 0.7338 0.7338 0.7338 0.8065 0.7955
2 0.7338 0.7342 0.7337 0.8412 0.8383
3 0.7740 0.7740 0.7740 0.8507 0.8353
4 0.6952 0.6963 0.6948 0.7838 0.7728
5 0.7568 0.7572 0.7568 0.8178 0.7947
Mean 0.7387 0.7391 0.7386 0.8200 0.8073
std ±0.0265 ±0.0261 ±0.0266 ±0.0240 ±0.0254
CCA Acc Prec. F1-score AUC AUPR
1 0.7192 0.7192 0.7192 0.8021 0.8174
2 0.7761 0.7763 0.7760 0.8230 0.7789
3 0.7452 0.7454 0.7451 0.7959 0.7921
4 0.7375 0.7380 0.7374 0.7781 0.7416
5 0.7297 0.7298 0.7297 0.7793 0.7701
Mean 0.7415 0.7417 0.7414 0.7956 0.7800
std ±0.0193 ±0.0193 ±0.0192 ±0.0165 ±0.0249
CMI Acc Prec. F1-score AUC AUPR
1 0.6391 0.6391 0.639 0.6901 0.6611
2 0.6478 0.6488 0.6474 0.6896 0.6636
3 0.6179 0.6179 0.6179 0.6721 0.6557
4 0.6412 0.6419 0.6409 0.7004 0.6702
5 0.6578 0.6582 0.6577 0.7085 0.6586
Mean 0.6407 0.6411 0.6405 0.6921 0.6618
std ±0.0131 ±0.0133 ±0.0130 ±0.0122 ±0.0049

The validation based on the global topology
In this part, we verify the effectiveness of the neighborhood struc-
ture embedding method in global topological feature extraction
based on the CMI-9905 data set. We use the neighborhood struc-
ture embedding method to extract node features in the CMI-9905
dataset, and then use DAE to compress the features into three
dimensions and project them into 3D space. The experimental
results are shown in Fig. 8.

In Fig. 8, the role2vec algorithm cannot effectively extract the
structural features of molecules, while the struc2vec algorithm
can effectively extract molecular structural features, but the
effect is relatively discrete. The proposed method achieves
the best feature extraction effect. In fact, while role2vec can
effectively capture the local topological structure of nodes, it
is limited when applied to larger graphs. On the other hand,
although struc2vec can capture structural similarities between
distant nodes in large-scale graphs, it fails to capture the local
topology of nearby nodes. By combining both approaches, CMCSG
balances local and global topological features of molecules, thus
achieving optimal performance.

The validation of feature extraction based on
signed graph representation learning
The CMCSG method can be divided into two modules, one is a fea-
ture extraction module based on local and global neighborhood
structure embedding (CMC-T), and the other is a heterogeneous
graph node feature representation module (CMC-S) that combines
balance theory and state theory. In the previous section, we
verified the effectiveness of CMC-T through the visualization
of molecular features. In this part, we verify the effectiveness of
CMC-S in the proposed method through ablation experiments
based on miRNA-cancer association prediction. Specifically, we
kept the data used unchanged, and then used CMC-S for feature
extraction and prediction tasks, and determined the contribution
of CMC-S to model prediction by comparing the prediction

performance. The results of the ablation experiment are recorded
in Table 3. To facilitate comparison, we project the mean values
of the evaluation criteria in Fig. 9.

Figure 9 data indicate that the CMC-S module performs well
in MCA prediction, demonstrating its effectiveness in extracting
molecular features. However, CMC-S exhibits lower performance
across all evaluation metrics compared to CMCSG, with AUC and
AUPR values being 5% lower. This suggests that the CMC-T module
provides a valuable complement to feature extraction. Graph rep-
resentation learning demonstrates notable advantages in feature
extraction, primarily due to the CMCSG module’s integration of
balance theory and status theory for node feature extraction.
This approach effectively captures complex relationships within
the graph structure, including node connectivity patterns and
structural information. Such capability allows for a more compre-
hensive understanding of node roles within the network, leading
to the extraction of more representative features. Additionally,
graph representation learning facilitates the propagation of node
attribute features within the graph, further enhancing the under-
standing of node-related information.

Optimal dimensional selection of features for
DAE
In this work, CMCSG uses DAE to strengthen the molecular fea-
tures. The dimension size of DAE not only determines the effec-
tiveness of feature extraction but also affects its contribution
to the final feature. Therefore, it is important to choose the
appropriate extract dimensions of the DAE.

To compare the impact of the dimensions extracted by DAE
on feature extraction, we respectively extracted 16, 32, 64,
128, and 256-dimensional features of nodes based on miRNA-
cancer association prediction, and performed the prediction task.
The experimental results are recorded in Table 4. To facilitate
comparison, we project the experimental data into 3D space, as
shown in Fig. 10.
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Figure 5. The ROC and PR curves of CMCSG ((A) and (B) are the ROC and PR curves of CMCSG in MCA prediction; (C) and (D) are the ROC and PR curves
of CMCSG in CCA prediction; (E) and (F) are CMCSG ROC and PR curves in CMI prediction).

The DAE dimension comparison test results show that the 256-
dimensional feature achieved the highest AUC value, but consid-
ering the five evaluation criteria and computational efficiency,
the 128-dimensional feature achieved the best result. Therefore,
the 128-dimensional feature was used as the best DAE extraction
dimension in this study.

The selection of the best classification strategy
In this part, we select the best classification strategy for
CMCSG through comparative experiments based on association
prediction between circRNA, miRNA, and cancer. Specifically, we
keep the data and node features used for training unchanged,
and then use GBDT [40], RF (Random Forest) [41], LR (Logistic
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Figure 6. The subgraph G extracted from CMI-9905.

Figure 7. Three-dimensional visualization of neighborhood structure embedding method based on subgraph G ((A) is role2vec extraction, (B) is struc2vec
extraction, (C) is CMCSG extraction)).

Figure 8. Three-dimensional visualization of neighborhood structure embedding method based on CMI-9905 ((A) is role2vec extraction, (B) is struc2vec
extraction, (C) is CMCSG extraction)).

Regression) [42], SVM (Support Vector Machine) [43], KNN
(K-Nearest Neighbor) [44] and LINR (Linear Regression) [45]
classifiers to perform model MCA, CCA, and CMI prediction tasks
respectively. The experimental ROC and P-R curves as shown in
Fig. 11.

Figure 11 shows that the features extracted by the CMCSG
method have achieved good results on all six classifiers, which
proves the excellent performance of this method in feature
extraction. Due to the special ensemble learning mechanism,

the performance of the GBDT classifier is better than that of
other single classifiers in three types of associated prediction
tasks. Therefore, in this work, the GBDT classifier is used as the
classification strategy of the model.

Comparison with existing models
To highlight the advantages of our proposed method in circRNA,
miRNA, and cancer association prediction, we compared CMCSG
with state-of-the-art (SOTA) models. To our knowledge, no existing
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Table 3. Ablation experiment results.

CMC-S Acc Prec. F1-score AUC AUPR

1 0.7065 0.7066 0.7065 0.7879 0.7655
2 0.7338 0.7349 0.7335 0.7763 0.7409
3 0.7397 0.7399 0.7397 0.8163 0.8065
4 0.7363 0.7364 0.7363 0.7848 0.7524
5 0.6644 0.6644 0.6644 0.7069 0.6867
Mean 0.7161 0.7164 0.7160 0.7744 0.7504
std ±0.0284 ±0.0286 ±0.0284 ±0.0363 ±0.0388

Table 4. The result of the different dimensions extracted.

CMA Acc Prec. F1-score AUC AUPR

16 0.7202 0.7218 0.7198 0.7855 0.7635
32 0.7229 0.7236 0.7227 0.7866 0.7558
64 0.7442 0.7452 0.7439 0.8084 0.7875
128 0.7387 0.7391 0.7386 0.8200 0.8073
256 0.7585 0.7589 0.7584 0.8218 0.7844

Figure 9. The average of the evaluation criteria of CMCSG and CMC-S.

models specifically address circRNA, miRNA, and cancer asso-
ciation prediction. In this section, we select SOTA models from
the field of circRNA-miRNA interaction prediction and conduct
comparisons across two commonly used datasets to validate the
performance of our model.

Specifically, we compare our CMCSG model with NECMA [46],
GCNCMI [47], CMIVGSD [48], and IIMCCMA [49] models using the
CMI-753 dataset. Notably, due to the advantages of the CMCN
construction, CMCSG does not incorporate any CMI associations
in feature engineering, whereas the other models utilize similar
CMI data for feature extraction and five-fold cross-validation.
The CMI-753 dataset serves as a benchmark for prediction tasks
in the CMI domain, presenting significant challenges due to its
high sparsity and lack of RNA sequences. The SOTA models
we compared include NECMA, a matrix factorization-based CMI
prediction model; GCNCMI, which employs graph convolutional

Table 5. Comparison results between CMCSG and SOTA based
on the CMI-753 dataset.

CMI-753 AUC AUPR

NECMA 0.4989 0.0003
GCNCMI 0.5679 0.0004
CMIVGSD 0.5755 0.0007
IIMCCMA 0.6702 0.0009
CMCSG 0.6921 0.6618

networks to extract molecular features for potential CMI predic-
tion; CMIVGSD, which combines linear and nonlinear features for
predicting unknown CMIs; and IIMCCMA, which uses matrix fac-
torization and inductive matrix completion strategies to predict
CMIs. The predictive performance of the models based on the
CMI-753 dataset is derived from the work of Yao et al., and the
comparison results are summarized in Table 5.

Table 5 indicates that in the prediction task on the CMI-
753 dataset, the CMCSG model achieved the highest predictive
performance, with the AUC exceeding that of the second-best
model by more than 2%. This is due to the small data size and
lack of attribute features in the CMI-753 dataset, which makes it
challenging to extract effective molecular association informa-
tion when relying solely on CMI links. The construction of the
multi-source heterogeneous network CMCN effectively mitigated
the sparsity of the CMI network, while the integration of graph
representation learning based on social theories enabled the
incorporation of both positive and negative samples into the
modeling process. This approach also introduced chain features,
further enhancing the understanding of node behavior within the
network.

CMI-9905 is one of the most widely used benchmark datasets
for CMI prediction tasks. Using this dataset, we compare our
model with JSNDCMI [24], BCMCMI [50], BioDGW-CMI [51], Deep-
CMI [52], KS-CMI [25], BEROLECMI [53], and RBNE-CMI [54] models.
JSNDCMI employs a multi-feature fusion framework to extract
diverse structural features of nodes in the CMI network and
predict unknown CMIs. BCMCMI extracts node features based
on meta-paths for CMI prediction. DeepCMI combines rich text
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Figure 10. The prediction results of MCA under different DAE dimensions.

Table 6. Comparison results between CMCSG and SOTA based on the CMI-9905 dataset.

Methods JSNDCMI BioDGW-CMI BCMCMI DeepCMI KS-CMI BEROLECMI RBNE-CMI CMCSG

F1 0.8217 0.8322 0.8359 0.8232 0.8340 0.8392 0.8431 0.8451
Prec 0.8232 0.8346 0.8083 0.8290 0.8366 0.8427 0.8456 0.8486
ACC 0.8231 0.8325 0.8316 0.8244 0.8343 0.8395 0.8434 0.8454
AUC 0.9003 0.9026 0.9041 0.9054 0.9086 0.9104 0.9142 0.9205
AUPR 0.8999 0.8962 0.8990 0.8978 0.9144 0.9086 0.9144 0.9183

embeddings to extract network features of nodes for CMI pre-
diction. KS-CMI uses a balance theory-based signed graph con-
volutional network to extract node features and predict CMIs.
BEROLECMI extracts node features to predict CMI by defining
molecular roles. RBNE-CMI utilizes an incomplete attribute net-
work embedding framework to extract molecular embedding fea-
tures for CMI prediction. The predictive performance of the mod-
els based on the CMI-9905 dataset is derived from the work of Yu
et al., and the comparison results are summarized in Table 6.

Table 6 demonstrates that CMCSG achieved competitive
performance on the CMI-9905 dataset. Notably, the SOTA model
includes RNA sequences as attribute features in its feature
engineering process. In contrast, CMCSG, which is designed for
circRNA-miRNA-cancer prediction tasks, does not incorporate tar-
geted attribute feature extraction strategies. Despite this, CMCSG
still achieved the highest predictive performance, proving the
superiority of the proposed model. Additionally, the experimental
results suggest that the feature extraction method based on local
and global neighborhood structure embedding and signed graph
representation learning is not only advantageous in multi-source
networks but also remains a strong choice for modeling and
prediction tasks of the single association. This is because the use

of multi-structure analysis and feature extraction deepens the
model’s understanding of node interactions within the network,
thereby enhancing the value of the extracted features.

Case study
To validate the practicality of the CMCSG method in cancer
biomarker detection, we predicted bladder cancer-related miRNA
biomarkers and cancer-related circRNA-miRNA interactions
based on the CMI-753 dataset. We identified 15 miRNA biomarkers
for bladder cancer and 10 cancer-related circRNA-miRNA inter-
actions, with the results presented in Tables 7 and 8, respectively.

Table 7 shows that among the top 15 miRNA biomarkers, 12
were confirmed by the circR2Cancer database. Additionally, the
three unconfirmed miRNAs do not indicate prediction errors, but
rather represent high-probability cancer biomarkers yet to be
discovered. Table 8 reveals that out of the ten predicted promis-
ing cancer-related circRNA-miRNA interactions, eight were con-
firmed by the circR2Cancer database, while the remaining two
are potential pathogenic circRNA-miRNA associations. The case
study results indicate that CMCSG is a promising computational
model candidate for predicting potential cancer biomarkers.
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Figure 11. The ROC and PR curves of different classifiers ((A) and (B) are the ROC and PR curves of CMCSG in MCA prediction; (C) and (D) are the ROC
and PR curves of CMCSG in CCA prediction; (E) and (F) are CMCSG ROC and PR curves in CMI prediction).

Conclusion
In the past few years, ceRNA has been proven to be an important
regulator, which leads to a variety of diseases through the
mediation of miRNA. The study of the ceRNA network can provide
new opportunities for the diagnosis, treatment, and prognosis of

complex diseases. The use of calculation methods can effectively
promote the discovery of unknown associations at a low cost. The
current methods are influenced by reductionism, and most of
them independently study specific parts of biological systems
or binary associations such as miRNA-disease association,
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Table 7. Case study of miRNA marker prediction based on bladder cancer.

Num Cancer miRNA Evidence detection method

1 bladder cancer miR-17 PMID:29386015 qRT-PCR
2 bladder cancer miR-132-3p PMID:30983072 qPCR;western blots
3 bladder cancer miR-3666 PMID:30984788 qRT-PCR
4 bladder cancer miR-191-5p PMID:31802888 RT-qPCR
5 bladder cancer miR-103a-3p PMID:27484176 qPCR; Western blot etc.
6 bladder cancer miR-570-3p PMID:32072011 qRT-PCR
7 bladder cancer miR-499a-3p Unconfirmed None
8 bladder cancer miR-1305 PMID:32019579 qPCR
9 bladder cancer miR-29a-3p PMID:27363013 qRT-PCR; microarray
10 bladder cancer miR-940 Unconfirmed None
11 bladder cancer miR-142-5p PMID:31777254 qRT-PCR;microarray
12 bladder cancer miR-181a-5p PMID:30999937 qRT-PCR
13 bladder cancer miR-1184 PMID:31758655 qRT-PCR
14 bladder cancer miR-200b-3p Unconfirmed None
15 bladder cancer miR-1178-3p PMID:30458784 qRT-PCR

Table 8. Case study on the prediction of cancer-related circRNA-miRNA interactions.

Num circRNA miRNA Evidence detection method

1 BCRC-3 miR-182-5p PMID:30285878 qRT-PCR
2 circ_ANKIB1 miR-19b PMID:31667786 qRT-PCR
3 circ_ARF3 miR-1299 PMID:32240746 qRT-PCR
4 circ_ANKIB1 miR-1271 Unconfirmed None
5 circ_SPECC1 miR-526b PMID:31349968 qPCR
6 circABCC2 miR-665 PMID:31417632 qRT-PCR
7 circ-ACACA miR-1183 PMID:32236577 qPCR
8 circ-ACACA miR-370-3p Unconfirmed None
9 circASAP1 miR-326 PMID:31838741 qRT-PCR; FISH
10 circASAP1 miR-532-5p PMID:31838741 qRT-PCR; FISH

circRNA-disease association, and circRNA-miRNA interaction.
Because the specific network in the organism works as a whole,
it is more suitable to model the specific association prediction
by using the large-scale biological network. From the point of
feature extraction, most of the existing methods use a single type
of association as training and prediction data, which may lead to
incomplete molecular feature extraction or label leakage.

To solve the above problems, we put forward the CMCSG
method in this work, which solves the above problems from
two aspects. Firstly, CMCSG constructs a circRNA-miRNA-
cancer network (CMCN) based on 72 kinds of cancer regulatory
networks, which contains rich association information, makes
the proposed method capable of multi-task prediction; for the
possible problems of incomplete feature extraction and label
leakage, CMCSG uses known association information to extract all
molecular features and then predicts unknown association sub-
network inference model, which effectively avoids the existence
of this problem. In addition, we also embed the molecular
network structure with the local and global topological structure
of molecules to obtain the structural representation of nodes;
for sparse graph representation learning, we introduce the
signed graph attention network to maximize molecular links by
combining status theory and balance theory. Finally, the proposed
model achieved leading predictive performance and showed the
potential to be a powerful tool for predicting cancer marker
associations in case studies.

However, this study still has some limitations. In the hetero-
geneous graph representation of the learning module, due to the

need to sample as many as 38 kinds of motifs for each node,
it greatly increases the time complexity of CMCSG, and it is
difficult to deal with larger graphs, which increases the com-
putational overhead. With the progress of graph representation
learning methods, combining more advanced graph representa-
tion learning methods (such as deep attribute graph clustering
[55] and hypergraphs [56]) for feature learning is also an important
basis for subsequent research and development. In the follow-up
research, we will further improve this problem to obtain an excel-
lent prediction model with higher efficiency and more accurate
performance.

Key Points

• We propose an embedding method based on neigh-
borhood structure, which embeds the global and local
topologies of nodes in CMCN networks, and effectively
preserves the structural representation of nodes in the
network.

• Using signed graph attention network propagation and
aggregation node features based on balance theory and
status theory, which can make effective use of positive
and negative samples and maximize the positive and
negative links of molecules.

• The sub-network inference mode is used to extract the
features of all molecules by using binary associations
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in ternary heterogeneous networks to predict unknown
types of associations and effectively avoid label leakage.
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