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Abstract: Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular
matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually
degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete
ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced
ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs)
are considered to be a potential target of fibrosis treatment because they are the main groups of
ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also
in the development of various biological processes that show the potential to treat diseases such
as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of
MMPs might impede typical functions. Here, we evaluated the links between these MMP functions
and possible detrimental effects of fibrosis treatment, and also considered possible approaches for
further applications.

Keywords: matrix metalloproteinase; extracellular matrix; fibrosis

1. Introduction

Matrix metalloproteinases (MMPs) are endopeptidases with a Zn2+ ion catalytic domain [1]; they
interact with multiple components of the extracellular matrix (ECM) and bioactive molecules such as
receptors and cytosolic phosphatase [2,3]. Novel substrates of MMPs are still being identified, such as
cytokines and growth factors [4]. The classification of MMPs is based on the substrate that they degrade,
while the naming is not specific to the catalytic activity [5,6]. For example, MMP-1, also known as
collagenase 1, can digest Col I, II, III, VII, VIII, X, and gelatin [7]. Subsequently, membrane-type
MMPs (MT-MMPs) were discovered, which have a transmembrane domain from the extracellular
to the cytosolic part of the cell [8]. There are other membrane-anchored metalloproteinases with
a disintegrin domain, which belong to two new families, referred to as the ADAMs (A Disintegrin
And Metalloproteinases) and ADAMTs (A Disintegrin And Metalloproteinases with Thrombospondin
Motifs) [9]. The inhibitory pro-domain and the zinc-binding catalytic domain are the central features
of MMPs, and domains corresponding to these are also present in ADAMs and ADAMTs, which have
a cysteine-rich domain, epidermal growth factor (EGF)-like domain, and type-1 thrombospondin
(TSP-1) domain [10]. These domains indicate that the key function of ADAMs is in the ectodomain
shedding of membrane proteins, although some ADAMs can also degrade ECM substrates. The most
intensively studied ADAM is ADAM17, which facilitates the release of the soluble form of tumor
necrosis factor-α (TNF-α) from its membrane precursor. Unlike studies of the most critical biological
functions of ADAMs on MMPs, there have been fewer studies on the use of ADAMs for ECM
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degradation. As such, this work focuses on the experimental evidence of using MMPs as targets in
studies of organ fibrosis.

Given that their catalytic activity is specific to conserved collagen-like peptides, MMPs have
often been linked to fibrosis and cancer metastasis [11]. The roles of MMPs in fibrogenesis
are linked to an imbalance between ECM secretion and MMP degradation [12,13]; in tumor
metastasis, MMPs degrade cell–cell junctions, which promotes invasiveness into adjacent tissues [14,15].
Therefore, the regulation of ECM-degrading enzymes may be a rational therapeutic target in both
fibrosis and tumor metastasis [16,17]. Although most studies have shown that disruption of the activity
or expression of MMPs reduced fibrosis, Giannandrea and Parks have listed the diverse treatment
results for fibrosis in different types of MMPs [18]. Moreover, the contradictory roles of MMPs have
been reported not only in the tumor microenvironment, but also in relation to the acquisition of
properties for cancer growth and invasion [19]. Thus, cellular physiology or tissue homeostasis might
change when targeting MMPs to treat organ fibrosis. For instance, MT1-MMP cleavage activates
MMP2, thus maintaining its activity even in the presence of tissue inhibitors of metalloproteinases
(TIMPs) and causes ECM remodeling [20]. Moreover, activated MMPs enhance EMT in epithelial cells,
resulting in transformation of the cell type [21,22].

Interestingly, the expression of MMPs was elevated in the early stage of fibrosis, even before
the accumulation of scar tissue, and they were reduced after the recovery stage [23]. It is believed
that MMPs play an important role that could be inhibited to treat fibrosis. Notably, the results
suggested a diverse therapeutic effect of MMP targeting. Here, we discuss the general and correlated
functions of MMPs that might alter the treatment of fibrosis. Moreover, MMPs are also related to
cancer, cardiovascular, and nervous system diseases. Based on the possible significance of MMPs for
treating fibrosis, but also the uncertainty about their therapeutic potential, the possible mechanisms of
action of MMPs are discussed in this review, and hypotheses are proposed about the roles of MMPs in
fibrogenesis and its therapy.

2. General Functions and Regulation of MMPs

The endopeptidase activity of MMPs is derived from their catalytic domain, which is inhibited by
the pro-domain (consisting of the conserved amino acid sequence PRCGXPD) [24]. Thus, the general
MMP is secreted in a latent form and located depending on its domain-property; as such,
the transmembrane domain-containing MT-MMPs act as membrane proteins. Some MMPs are not
secreted and instead perform different functions in the cytoplasm. For example, as a regulator
of cellular communication network factor 2 or connective tissue growth factor (CCN2/CTGF),
MMP-3 plays a role in the nucleus, which is due to its attenuated signal peptide at the N-terminus [25].
Moreover, MMP-2 has been shown to be present in the cytosol of cardiomyocytes, due to its cleavage
by troponin I, during ischemia–reperfusion injury [26,27]. However, the Human Genome Project
revealed that the real gene numbers are far fewer than those that are predicted [28], which suggests
that some protein-coding genes, including MMPs, may have more undiscovered functions.

2.1. The ECM Digestion Processes of MMPs

All MMPs catalyze the breaking of peptide bonds via their Zn2+-containing domain. Some of
them, such as MMP-2 and MMP-9, contain a fibronectin-like region for more inseparable binding to
their substrate [29,30]. The digestion process of MMP-3 was described by Pelmenschikov et al. [31,32].
Except for the catalytic domain, members of the MMP family have some motifs such as the N-terminal
signal peptide that confer the optional secretory property of MMPs [33]. The hinge region contains
a proline-rich region and cooperates with the hemopexin-like C-terminal domain that consists of
a four-bladed β-propeller structure. This interacts with TIMP-1 and inhibits the activity of pro-MMP-9
and cell migration [34,35]. Furthermore, the hinge and hemopexin-like region form a proline zipper-like
structure to unwind the triple helix of collagen [36,37] because the substrate-binding site is too narrow
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(about 5 Å) from the triple-helix-typed structure of collagen [38]. It is now clear that MMPs are very
effective in catalyzing specific substrates like collagen and gelatin.

2.2. The Regulation of MMPs Corresponding to Physiological Processes

MMPs play major roles in cell development and migration because of their ECM-degrading
activity, which is controlled by triggers such as growth factors or cytokines acting on cis-elements,
including activator protein 1 (AP-1) and polyoma enhancer activator 3 (PEA3) at the promoter
upstream [39]. For the wound-healing response, keratinocyte migration, angiogenesis, and contraction
are correlated with MMP-13; thus, MMP-13 knockout mice exhibit impaired wound-healing
response [40]. In skin diseases, epidermal growth factor (EGF)-induced MMP-1 expression in
skin fibroblasts has been shown to be related to the deregulation of matrix metabolism [41].
Furthermore, studies have revealed that matrix stiffness regulates MMP-9 and TIMP-1 to perpetuate
fibrosis in hepatic stellate cells, which play a pivotal role in fibrosis [42]. This suggests the intimate
relationship between MMPs and fibrosis.

The enzyme activity of MMPs is regulated by a “cysteine switch” to restrict the contact between
Zn2+ and H2O molecules [43]. Moreover, when the sulfide bond is broken or proteolytic cleavage occurs
at the bait region, the catalytic domain is exposed and activated [44]. A well-known model of regulation
is the binding of the catalytic domain by TIMPs [45]; the inhibitory process involves the 1:1 binding
of MMP/TIMP on cell surfaces of cutaneous keratinocytes or fibroblasts [46]. Thus, regulation of the
expression of either MMPs or TIMPs is essential for maintaining ECM balance.

2.3. The Connection of Expression Profile and Organs

The functions of MMPs depend markedly on their localization. Since different physiological
functions of various systems may need different types of MMPs, they exhibit diverse expression
ratios in different organs. Thus, we compared the RPKM (reads per kilobase per million mapped
reads) of 21 MMPs (MMP-1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 27) in
16 human tissues from 19 biosamples of Expression Atlas by Illumina bodyMap2 in NCBI GENE
(https://www.ncbi.nlm.nih.gov/gene). The RPKM represents the transcript reads in the same gene
length arranged by their total expression rate (see Figure 1). Notably, four of 16 organs (heart,
liver, lung, and kidney) are likely to suffer from fibrosis, in which 25.64% of all MMPs are expressed
(Figure 1B). Furthermore, in fibrotic organs, MMP-2, MMP-14, MMP-7, MMP-24, MMP-15, MMP-19,
and MMP-9 constitute more than 90% of total MMP expression, which are reported to be key regulators
of tissue fibrosis [47–51]. As shown in Figure 1C, MMP-2 is a pivotal MMP enzyme, except for in
the brain, liver, kidney, and white blood cell (WBC). Thus, targeting these major MMPs might be
harmful in other organs away from the fibrosis tissue. In mouse MMP mutant strains, there are subtle
differences in the phenotypes depending on the particular mutated MMP, including reduced body
size [52], obesity [53], reduced hepatic fibrosis [48], delayed mammary tumorigenesis [54], and bone
development defects [55]. Based on this, members of the MMP family show good compensation for
deficits of other members, except that MMP-14 alone (MT1-MMP) mutant mice show lethality and die
by 3–12 weeks of age [56]. Consistent with this, our data as presented in Figure 1 showed that MMP-14
was expressed in almost all listed organs, which might explain the lethality of its mutation.

https://www.ncbi.nlm.nih.gov/gene
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Figure 1. Expression of 20 types of matrix metalloproteinases (MMPs) (MMP-1, MMP-2, MMP-3, MMP-7,
MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-16, MMP-17, MMP-19,
MMP-20, MMP-21, MMP-24, MMP-25, and MMP-27) in 16 human organs (adipose, adrenal, brain,
breast, colon, heart, kidney, liver, lung, lymph node, ovary, prostate, skeletal muscle, testes, thyroid,
and white blood cells). The reads per kilobase per million mapped reads (RPKM) value compares
the gene expression with the sample sequencing depth and gene length. (A) The expression ratio of
different MMP types in human organs. (B) The distribution ratio of (B) all MMPs and (C) seven major
MMPs in 16 organs.

3. The Role of ECM Degradation in Fibrosis Treatment

Fibrosis is a disease associated with an abnormal wound-healing response in tissues such
as the skin, liver, lung, kidney, and heart. To protect the site of injury and prevent infection,
fibroblasts or circulating fibrocytes migrate and proliferate to secrete ECM as well as form scar tissue.
The fibroblasts are activated and transdifferentiate into myofibroblasts, resulting in excessive ECM
secretion. In a normal state, these myofibroblasts undergo apoptosis once the injured tissue is repaired.
However, if the regulation of myofibroblast apoptosis and ECM degradation is impaired, tissue fibrosis
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and damage can occur. However, the key mechanisms behind this, such as the inflammatory response,
elevated cytokines, and changes in the microenvironment, are still unclear.

Given that MMPs are known to function in the degradation of ECM, it was considered that
they may have potential for treating fibrosis. Specific components of the ECM, such as collagens
(I, III, V, and VII), fibronectin, elastin, and proteoglycans, are present at increased levels during
fibrogenesis [57]. Therefore, MMPs are upregulated in the early and late stages of fibrosis in response
to ECM accumulation and correlate with the fibrotic process [58].

3.1. Rationale for MMPs in Digesting Fibers

For digesting excessive ECM and replacing fibrosing foci with normal tissue, numerous lines of
evidence have revealed that MMPs such as MMP-2 and MMP-9 increase their expression to achieve
wound healing in the recovery stage [59,60], at a stage generally called re-epithelialization [61].
Some researchers have considered that fibrosis might originate from the failure of re-epithelialization,
with MMPs and their functions potentially playing important roles in the Drosophila basement
membrane remodeling [62]. Particularly, expression of the MMP-1 gene is known to be remarkably
increased in fibroblasts in hepatic fibrosis, but not in those with liver cirrhosis [63]. It has been noticed
that MMP-7 activity is measured from the serum of children with cystic fibrosis [64]. Moreover, up to
a 7–12-fold increase in MMP-2 gene expression was found in in CCl4-induced liver fibrosis rats, whereas
the 65 kDa active form of MMP-2 was enhanced 13–28-fold in comparison to that in the control group,
as revealed by a zonography assay [65]. These results proved that MMPs are directly and indirectly
correlated to fibrosis, but the actual roles that they play in fibrogenesis remain unknown.

3.2. Therapeutic Potential of MMP Inhibition but Not Activation

To determine whether MMPs play key roles, the specific knockout of genes is beneficial. As a result
of such a knockout, the relationships of MMPs with fibrotic diseases in the lung, skin, and kidney
have started to be revealed [66–68]. For instance, unilateral ureteral obstruction (UUO)-induced
kidney fibrosis in MMP-9 KO mice showed significantly lesser interstitial fibrosis than in wild type
mice [69]. Moreover, in the 2000s, researchers started to identify the correlation of MMP/TIMP ratio
and tissue remodeling [70,71], and also evaluated the therapeutic potential of each type of MMP [72].
However, almost all MMPs have highly overlapping substrates and shared functions, as described
above, so the knockout of one specific MMP gene may not successfully result in loss of function. In this
context, the use of tetracycline-like antibiotics, which inhibit MMPs, were previously approved for
treating infection [73]. Compared with healthy human samples, in a patient with idiopathic pulmonary
fibrosis (IPF), MMP-3, MMP-9, and TIMP-1 showed decreased levels in bronchoalveolar lavage fluid
(BALF), but the forced vital capacity and six-minute walking distance showed no differences [74].
Although more studies have been performed in the liver and lung than in the kidney or other organs,
it was concluded that the results are often diverse for each MMP type and also differ from the animal
model in the systemic analysis by Giannandrea and Parks in 2014 [18]. For example, MMP-12 has both
anti- and pro-fibrotic effects in pulmonary fibrosis [75,76], and also does not affect the genetic loss of
MMP-9 in rodent models [77]. Rather than diminishing fibrotic scarring, MMPs were also surprisingly
shown to enhance fibrogenesis more often than improve it [78]. Surprisingly, MMPs display pro-fibrotic
activity in most cases, so the use of MMP inhibitors might have potential for treating fibrosis.

In the literature, findings from studies on activation or knockout animals have indicated the
importance of MMPs in the development of fibrosis [78]. However, the anti-fibrotic effects of MMPs in
the lungs vary from those in organs including the liver, heart, and kidney [18]. In Table 1, we present
the MMP inhibitors that have been shown to be effective in fibrosis animal models, including those
with lung, liver, and myocardial fibrosis. In general, broad-spectrum MMP inhibitors are effective in all
three organs. According to fewer reports on selective inhibitors, their development by pharmaceutical
companies might only have been reported in patents. Moreover, some studies are not shown in Table 1
since they only involved using cell models for mechanistic analyses or for treatments having potential
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only at the acute injury phase [79,80]. Nevertheless, the drugs shown to have potential by animal
studies still need to be tested in preclinical studies before being applied to patients.

Table 1. Experimental evidence of effective MMP inhibitors against fibrosis in animal models including
of lung, liver, and myocardial fibrosis.

Compound Name Description Effects CAS Number Refs

Batimastat A broad-spectrum
MMP inhibitor

Inhibit pulmonary
fibrosis 130370-60-4 [81]

CL 82198
hydrochloride

A selective
inhibitor of

MMP-13
Blocks liver fibrosis 307002-71-7 [82]

CP 471474 An MMP inhibitor Inhibit collagen in
myocardial fibrosis 210755-45-6 [83]

Doxycycline
Hyclate

An antimicrobial
tetracycline that

acts as an inhibitor
of MMP-1, MMP-8

and MMP-9

Attenuated
pulmonary/myocardial

fibrosis
24390-14-5

[84,85]
[74]Reduced

parameters in IPF
patients

GM 6001

A cell permeable
MMP and
fibroblast

collagenase
inhibitor

Reduced
pulmonary

inflammation and
fibrosis

142880-36-2 [86]

Marimastat

A broad-spectrum
MMP inhibitor and

selective TACE
inhibitor

Aggravates liver
fibrosis 154039-60-8 [87,88]

PD166793

A potent MMP-2,
MMP-3, and

MMP-13 inhibitor

Retardation of
age-associated
arterial fibrosis 199850-67-4

[89]
[90]

Reduced
myocardial fibrosis

Thiorphan (DL)

An enkephalinase
and

metalloproteinase
inhibitor

Reduced
myocardial fibrosis 76721-89-6 [80]

4. More Functions of MMPs

Although substantial studies have revealed the functions and physiological roles of almost all
MMPs, it appears that many proteins that interact with MMPs have yet to be discovered. A major
clinical use of MMPs is to prevent cancer metastasis. However, studies have also utilized MMPs as
targets in different body systems, including the immune, cardiovascular, and central nervous systems.
Therefore, the unexpected results for fibrosis treatment may be because these additional targets also
interact in fibrogenesis, such as in immunity and cell growth, and transduce messages [91,92].

4.1. Promotion of Cancer Invasiveness

The process of tumor cell spread from the primary site into other normal tissue, referred to as
metastasis, occurs in invasive cancer via movement through the bloodstream. The surrounding tissue
border and the vessel walls have to split, and typically MMPs secreted on the cell surface break the
basal membrane, allowing escape into the blood flow [93,94]. Further studies showed that when
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the space and nutrient support is no longer sufficient for tumor growth, MMPs indirectly promote
invasiveness [95].

4.2. Macrophage Degradation of the Basal Membrane

Macrophages play important roles in the immune system via their ability to perform phagocytosis
and amoeboid movement toward wound tissue that has become infected. The activation of macrophages
leads them to secrete MMPs, which is required for degradation of the ECM of the basement membrane,
followed by migration into injured tissues [96,97] and the engulfment of pathogens. Macrophages from
MMP-12 deficient mice exhibit abrogated migration ability [98]. In experimental studies, it was shown
that the MMP-2 and MMP-9 inhibitors ARP100 and AG-L-66085 significantly reduced migration
via different mechanisms: ARP100 inhibited MMP-2 and subsequent transforming growth factor β1
(TGF-β1) secretion, whereas AG-L-66085 diminished the angiogenesis response by reducing vascular
epithelial growth factor (VEGF) in a retinoblastoma model [99]. A clinical trial for recurrent glioblastoma
is going to test the combination of monoclonal antibody of MMP-9 combined with bevacizumab
(NCT03631836); however, the concept of blocking MMP-9 is related to tumor vascularization but not to
its ECM-degrading role [100].

4.3. MMPs Treat Stroke or Cardiovascular Diseases

MMPs also have the potential to treat diseases such as stroke, cardiovascular diseases,
and arthritis [25,101–103]. In leukocytes, MMP-2 expression is positively correlated with the formation
of sclerotic plaques, but the mechanism behind this are still unknown [104]. The above diseases are not
related to degradation of the ECM, but functional components could be involved, such as NF-κB and
hypoxia-inducible factor 1α (HIF-1α) [105,106]. An increasing number of additional catalytic targets of
MMPs in various tissue types have also been found recently [107].

4.4. Central Nervous System (CNS) and the Microenvironment

Obstruction of the breakdown of extracellular constituents can cause CNS disease such as multiple
sclerosis (MS); several types of MMPs are reported to be involved in MS [108]. In a Theiler’s murine
encephalomyelitis (TME)-induced MS disease model, MMP-12 was shown to play a pivotal role in
the development of astrogliosis and demyelination [109]. These processes are similar to fibrosis,
including a collagenous region and focal proliferation in brain tissue. MMP-12 was also shown to
reduce activated microglia and reactive macrophages, influencing the M1/M2 balance in virus-infected
mice [110]. The therapeutic mechanisms include the macrophage-mediated proteolysis and matrix
invasion and the basement membrane penetration potential of macrophages [111].

Recently, it is reported that MMPs regulate the microenvironment via the shedding of the
exosome [112]. The exosome is a small releasing vesicle (30–100 nm in diameter), the trafficking
of which enables communication with other cells and the movement of cargo such as proteins,
cytokines, and miRNAs [113]. It is closely related to the physiological and regulatory mechanisms of
the exosome; thus, MMP shedding for appropriate release plays a role in mediating their functions. As
such, adipocyte-derived exosomes of the liver were shown to induce TGF-β signaling in hepatocytes,
leading to the initiation of fibrosis [114]. Moreover, exosomes containing MT1-MMP activated
pro-MMP-2 and caused the subsequent degradation of type 1 collagen and gelatin in the fibroblast-like
cell line COS-1 [115]. Furthermore, the enzymatic activity of MMP-2 is involved in exosome trafficking
from fibroblasts to endothelial cells and facilitates the breakdown of ECM in an MMP-14-dependent
manner [116].

5. Possible Participating Role of MMPs in Fibrosis

In terms of the possible mechanisms of MMP involvement in fibrosis, the first candidate is
the inflammatory response after injury [117,118], which was utilized as one of the clinical drugs
for treating lung and liver fibrosis [119,120]. Anti-inflammatory therapy has been proven to have
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potential in animal models; however, in a clinical trial, treatment with steroids such as prednisolone
in patients with pulmonary fibrosis resulted in unfavorable outcomes and increased hospitalization
events [121]. Some researchers have been shifting their focus away from immunology and fibrosis,
but the pathological relationship remains [122]. Notably, the correlation between fibrosis and MMPs in
macrophages and neutrophils [123], such as MMP-1, MMP3, MMP-7, MMP-9, MMP-13, and MMP-19,
was shown to be increased in BALF. These infiltrated macrophages and neutrophils refer to the
inflammatory response and are essential in pulmonary fibrosis [50,71,124–127].

5.1. Immunomodulation or Inflammatory Regulation

Additionally, MMP-10 is known to be related to the transition from the M1 to M2 type of
alveolar macrophages and regulates the immune tolerance to TLR-7 induced inflammation [128].
Besides the inflammatory effect, the following wound healing response usually includes peripheral
epithelium activation through the EMT in renal tubular epithelial, hepatic stellate, and alveolar
epithelial cells [129–132]; these cells transdifferentiate into fibroblast-like or myofibroblast cells and
secrete collagen fibers, leading to fibrosis [133,134]. Accordingly, MMPs contribute to EMT-related
cancer metastasis in breast and gastric cancers [21,135], although we mentioned their anti-cancer
potential in the previous section. In the final stage of wound healing, the recruited myofibroblasts
undergo apoptosis and allow tissue regeneration, whereas in fibrosis, the myofibroblasts are resistant
to apoptosis and proliferate to form fibrotic foci [136].

The pro-apoptotic role of MMP-7 is due to the cleavage of CD95 in apoptosis-resistant tumor
cells [137]. Moreover, MMP-10 promotes tumor progression by stimulating HIF-1α and MMP-2 in
cervical tumors [138]. Notably, MMP is needed and would be increased in tissues in cases of fibrosis;
however, the ECM does not decrease in these circumstances. Therefore, MMPs are strongly suspected
to interact with pro-fibrotic factors, such as molecules involved in inflammation, EMT, and apoptosis
resistance (e.g., TGF-β1, IL-1β, and TNF-α) [139,140].

5.2. ECM and Vasculature in Angiogenesis

Vessel walls have an ECM-containing, three-layered structure, including the tunica
intima, tunica media, and tunica adventitia, and provide mechanical strength and elasticity.
Neoplastic proliferation requires angiogenesis in malignant or benign tumors; the existence of MMPs
and VEGF facilitates tumor growth [141]. Moreover, neutrophilic MMP-9 acts as a pro-angiogenic
proteinase, as revealed using a developing chicken embryo model [142]. Studies in the adventitia
layer revealed that MMP-2 activation and fibroblast proliferation both induce a phenotypic switch in a
hypoxic state, converting fibroblasts into myofibroblasts, which often form a fibrotic focus [143].

6. Conclusions

Since the complete mechanisms of fibrosis remain a mystery, the origin and each stage are a complex
and mutual effect. To decrease the excessive ECM in fibrotic tissue, the activated MMPs interact
with the molecules involved inflammation, EMT, and apoptosis [144]. Unfortunately, the complete
functions and substrates of MMPs have not yet been revealed [145,146], although some of them are
secondary messengers, such as the cleavage of the AMP-activated protein kinase-α (AMPK-α) by
MMP-9 in Toll-like receptor 4 (TLR4) signaling [105]. Although studies have suggested that simple
inhibition of the expression of an MMP is insufficient to treat fibrosis, we aim to clarify the roles of
MMPs in fibrosis in more detail to increase the potential for using them in a clinical context in the future.
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Abbreviations

Abbreviation Definition
ECM extracellular matrix
MMPs matrix metalloproteinases
MT-MMPs membrane-type MMPs
ADAMs a disintegrin and metalloproteinases
ADAMTs a disintegrin and metalloproteinases with thrombospondin motifs
EGF epidermal growth factor
TSP-1 type-1 thrombospondin
TNF-α tumor necrosis factor-α
TIMPs tissue inhibitors of metalloproteinases
TIMPs unilateral ureteral obstruction
VEGF vascular epithelial growth factor
TLR4 Toll-like receptor 4
AMPK-α AMP-activated protein kinase α

CCN2/CTGF cellular communication network factor 2 or connective tissue growth factor
AP-1 activator protein 1
PEA3 polyoma enhancer activator 3
EGF epidermal growth factor
WBC white blood cell
TGF -β1 transforming growth factor β1
HIF-1α hypoxia-inducible factor 1α
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