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Abstract: We have investigated the effects of temperature, diameter and metal catalyst type on the
growth of inner nanotubes inside metallocene-filled single-walled carbon nanotubes (SWCNTs). The
effects on the yield of different chiralities of inner nanotubes were scrutinized by multifrequency
Raman spectroscopy. The investigated diameters range from ~0.7 to 1.3 nm and comprise 36 distinct
chiralities. For all three investigated metals (Ni, Co, Fe), there is a linear correlation of growth
temperature with nanotube diameter. The common slope for these metals is found to be 40.5 ◦C/Å.
The temperature difference between the largest and the smallest diameter tubes amounts to ~230 ◦C
for all three precursors. The growth temperatures are offset by 34 ◦C from Ni to Co and another
28 ◦C from Co to Fe. The quantified correlations of temperature, diameter and metal catalyst type
provide the basis for engineering the diameter-specific growth of nanotubes.

Keywords: single-walled carbon nanotube; growth; metallocene; growth kinetics; Raman spectroscopy

1. Introduction

Single-walled carbon nanotubes (SWCNTs) possess unique chemical and physical
properties, which made them an object of investigations of many researchers [1]. The
synthesis methods of nanotubes in high yield and purity were developed. However,
modern methods of synthesis allow obtaining mixtures of nanotubes with inhomogeneous
properties due to the interconnectivity of synthesis parameters. Thus, a well-defined
system for synthesis with controlled parameters is required.

In 2005, the filling of SWCNTs with metallocene molecules was firstly demonstrated [2,3].
Later on, ferrocene [4–6], nickelocene [7], cobaltocene [8] and cerocene [9] were encapsulated
inside SWCNTs. In 2008, experiments with heating of ferrocene inside SWCNTs led to the
formation of double-walled carbon nanotubes (DWCNTs) [4]. It was revealed that metal
carbide or pure metal particles formed as a result of the decomposition of metallocene served
as a catalyst of the inner tube growth. There is significant experience and advancement in the
understanding of similarly complex nanostructured C-based compounds and the chemistry
of growth using the guidance of theoretical approaches [10–15].

Metallocene-filled SWCNTs serve as a catalyst source, carbon feedstock and container,
providing a shielded environment for the nanotube growth at the same time [4]. The diam-
eter of the inner tubes can be controlled by the choice of the pristine SWCNT material. The
growth properties of inner tubes inside the host SWCNTs were studied [16–19]. Qualitative
dependences of the growth temperatures of inner tubes on their diameter were reported.
However, a systematic investigation and quantitative study of the correlation between the
growth temperature, inner tube diameter and metal catalyst type is still lacking.

In this work, we close this gap by performing a systematic study of the temperature-
dependent growth of 36 inner tubes with the diameters in a broad range from ~0.7 to
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1.3 nm inside nickelocene- (NiCp2), cobaltocene- (CoCp2) and ferrocene (FeCp2)-filled
SWCNTs (Figure 1). The influence of the growth temperature and type of metal catalyst on
the diameter-specific growth of inner tubes is quantified. The growth temperature is found
to decrease linearly with decreasing the inner tube diameter. The temperature difference
between the largest and the smallest diameter tubes equals ~230 ◦C for all three precursors.
The growth temperatures of the inner tubes inside the CoCp2-filled SWCNTs are higher by
34 ± 6 ◦C, as compared to the NiCp2-filled SWCNTs, and the growth temperatures of the
inner tubes inside the FeCp2-filled SWCNTs are higher by another 28 ± 5 ◦C.
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2. Materials and Methods

Nickelocene and cobaltocene were observed to decompose at temperatures higher
than 60–70 ◦C. However, they were easily sublimated in a vacuum at temperatures as
low as 50 ◦C, without a noticeable decomposition. Therefore, the following technique
was used for the encapsulation of nickelocene and cobaltocene inside the nanotubes. The
SWCNTs were annealed in air at 500 ◦C for 1 h to open the nanotube ends. The pre-opened
SWCNT film and metallocene powder ((C5H5)2Ni or (C5H5)2Co, 99%, Strem Chemicals
Inc., Bischheim, France) were placed into a glass tube (Pyrex, Chateauroux, France). This
procedure was performed in a glove box in an atmosphere of argon, because metallocenes
are easily oxidized in air. Then, the tube was connected to a turbopump (Pfeiffer vacuum)
that provided a vacuum better than 10−6 mbar and evacuated for 20 min. After that, the
SWCNTs and metallocene powder were sealed into an ampoule. The ampoule was heated
at 50 ◦C for 5 days. After the filling experiment was finished, the ampoule was opened in a
glove box.

Ferrocene was observed to be stable at high temperatures and in air. Therefore, another
filling procedure was applied for its encapsulation into the SWCNTs. It led to a higher
filling degree of the nanotubes with ferrocene than the above-described procedure. The
pre-opened SWCNT film and ferrocene powder (98%, Aldrich, Darmstadt, Germany) were
placed into a Pyrex-glass tube that was then connected to the turbopump, evacuated for
20 min and sealed into an ampoule. The ampoule was heated up to 350 ◦C, kept at this
temperature for 42 h and then cooled down with the furnace to room temperature. After
that, the ampoule was opened. The filled nanotube samples are labeled MCp2@SWCNT,
where M = Ni, Co and Fe.

The annealing of the metallocene-filled nanotube samples was performed using a tube
furnace (Carbolite, Neuhausen, Germany) connected to a turbopump (Pfeiffer vacuum,
Vienna, Austria), providing a vacuum better than 10−6 mbar. The furnace was heated up to
annealing temperature, which ranged between 400 and 1200 ◦C, kept at this temperature
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for 2 h and then switched off. The annealed samples were kept in a glove box under
argon atmosphere.

The nanotube films obtained after annealing were studied by multifrequency Raman
spectroscopy using the Horiba Jobin Yvon LabRAM HR800 spectrometer (Tulln, Austria)
adapted for multifrequency measurements, as described in [20]. The system is equipped
with an internal He/Ne laser operating at a wavelength of 633 nm (energy of 1.96 eV)
and an external tunable Ar/Kr mixed gas laser (Coherent Innova 70c, Dieburg, Germany)
operated at wavelengths of 458, 488, 514, 531, 568 and 647 nm (energies of 2.71, 2.54, 2.41,
2.34, 2.18 and 1.92 eV, respectively). For the measurements, the samples were attached to a
sticky aluminum foil. The spectra were recorded in the range from 50 up to 3000 cm−1. A
constant incident laser power of 0.5 mW, a 1000 µm pinhole, a 100 µm slit and a 600 mm−1

grating were used. The measurement of the complete spectral range was performed in a
multiwindow regime. Every window was measured during 5 s, 12 times. One measurement
lasted for about 7 min. Additionally, samples were studied using a Brucker RFS 100/S FT
spectrometer (Nd:YAG laser) (Billerica, MA, USA) with a wavelength of 1064 nm (1.17 eV).
A constant incident laser power ranging between 100 and 150 mW was used. Every
spectrum was acquired in the range from –1400 to 3500 cm−1 with 4000 scans. The spectral
resolution was 1 cm−1. The measurement time was about 6–8 h. The measurements were
performed at room temperature in air.

The radial breathing mode (RBM) bands of the Raman spectra were fitted using
PeakFit v4.12. For the comparison of the complete range spectra acquired at different laser
wavelengths, they were normalized to the area intensity of the G-band (between 1350 and
1700 cm−1), in order to exclude effects of differences in focusing.

3. Results
3.1. SEM and TEM Studies

The morphology of the pristine SWCNTs was investigated by microscopic techniques.
Figure 2 shows the scanning (SEM) [21] and transmission electron microscopy (TEM) data
of the pristine SWCNTs [22]. The data show that the SWCNTs represent homogenous
material and have a high purity.
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Figure 2. The SEM (a) (reprinted from [21], under the terms of the Creative Commons CC BY license)
and TEM (b) images of the pristine SWCNTs (reprinted with permission from Springer, Applied
Physics A, Kharlamova et al., Growth dynamics of inner tubes inside cobaltocene-filled single-walled
carbon nanotubes) [22]. Copyright 2016).
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3.2. Multifrequency Raman Spectroscopy Studies on Inner Tube Growth

Multifrequency Raman spectroscopy was used to analyze the diameter distribution of
inner tubes obtained from annealing NiCp2-, CoCp2- and FeCp2-filled SWCNTs. The use
of multiple wavelengths allows combining the data from different resonance windows in
the Kataura plot [23]. The peak positions of the RBM-band (ωRBM) scales with the inverse
nanotube diameter (dt) were obtained as:

ωRBM =
227
dt

√
1 + Cd2

t , (1)

where C = 0.05786 nm−2 [24]. The RBM frequencies mark all nanotube diameters, present in
a macroscopic sample. We reported the Raman spectroscopy data for the pristine SWCNTs
in our previous paper [25]. In RBM of SWCNTs, the peaks at frequencies between 120 and
210 cm−1 are observed, which correspond to diameters between ~1.2 and 2.1 nm [24]. The
strongest RBM peaks are at all excitation wavelengths located between 140 and 150 cm−1,
which is in agreement with a mean diameter of SWCNTs of ~1.7 nm. In accordance with
the Kataura plot, the RBM peaks observed with laser wavelengths from 458 to 647 nm
can be assigned to electronic transitions between the 3rd and 4th van Hove singularities
in semiconducting SWCNTs, whereas the RBM as measured at 1064 nm is in resonance
with the 2nd van Hove singularities in semiconducting SWCNTs [23]. This assignment
is further backed up by the G-line showing the archetypical narrow Lorentzian profile of
bulk semiconducting SWCNTs [26–28].

Figure 3 demonstrates the RBM- and G-band regions of multifrequency Raman spectra
of NiCp2-filled SWCNTs annealed at 900 ◦C for 2 h. The spectra of DWCNTs obtained from
SWCNTs filled with NiCp2, CoCp2 and FeCp2 are very similar. They show additional peaks
of inner tubes between 170 and 330 cm−1, which correspond to diameters between ~0.7
and 1.3 nm, respectively [24]. In contrast to the pristine SWCNTs, there are also metallic
inner tubes in resonance. The small-diameter inner tubes also give rise to an additional
10 cm−1 downshifted component in the G-line.
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3.3. Evaluation of Growth Temperatures of Inner Tubes

To evaluate growth temperatures of inner tubes, metallocene-filled SWCNTs were
heated at temperatures between 385 and 1000 ◦C for 2 h. The NiCp2-filled SWCNTs were
annealed at temperatures between 385 and 1000 ◦C, and CoCp2- and FeCp2-filled SWCNTs
were annealed at temperatures between 500 and 1000 ◦C. In these temperature ranges, the
growth of inner tubes occurred. The minimal temperature was chosen as the temperature
at which the growth of inner tubes starts. The maximal temperature was chosen as the
temperature at which the growth of inner tubes is completed.

The Raman spectra of the annealed samples were investigated. The changes in
the Raman spectra were used to quantify the relative yield of different diameter inner
nanotubes for NiCp2-, CoCp2- and FeCp2-filling. Figure 4 shows selected temperature
series for the different metallocenes at different wavelengths. As the very same inner
nanotubes meet the resonance conditions at a given wavelength irrespective of the used
metallocenes, the different metallocenes only differ in relative intensities of RBM peaks
for their different diameter-dependent yield of inner nanotubes. The RBM peaks of inner
nanotubes are identified according to the Kataura plot [23] and labeled in Figure 4. They
show an analogous dependence on annealing temperature. There is an onset temperature
where the RBM starts appearing, and then it increases until a saturation temperature. The
highest temperature of 1000 ◦C guarantees completed saturation in all cases. The saturated
inner tube RBM intensities match those of the outer nanotubes, and testify to a uniform
high-yield filling for all three different metallocenes. The growing RBM peaks of inner
nanotubes are concomitant with an additional signature in the G-band, which is attributed
to the downshifted components of the inner nanotubes. The data in Figure 4 also suggest
that there is a strong influence of inner tube diameter as well as a dependence on the metal
or metallocene type on the onset and saturation temperature of the inner tube growth.

For instance, with Ni in Figure 4a after heating at 385 ◦C, the RBM peaks of the (7,6),
(10,2), (6,5) and (7,3) tubes are observed. The peaks of the (16,2), (17,0) and (12,7) tubes
with the largest diameters only appear after annealing at 600 ◦C. The saturated intensity
of the peaks of the (6,5) and (7,3) tubes is reached at 450 ◦C, the (7,6) and (10,2) tubes—at
600 ◦C and the (16,2), (17,0) and (12,7) tubes—at 900 ◦C. With Co in Figure 4b, the joint
RBM of the (7,7), (8,5), (9,3) and (10,1) tubes is large after heating at 500 ◦C. Its intensity
saturates at 700 ◦C. The (13,6), (14,4), (15,2) and (16,0) tubes with greater diameters start
to be observed at a temperature of 600 ◦C, and their intensities saturate at 900 ◦C. With
Fe in Figure 4c, the RBM peak of the smallest diameter (11,1) tube only appeared in the
spectrum after annealing at 550 ◦C, and saturated at 600 ◦C. The peaks of the (12,3) and
(13,1) tubes have noticeable intensity after annealing at 600 ◦C and saturate at 800 ◦C.

Figure 5 presents the selected dependences of the intensity of the inner tube RBM
peak normalized to the outer tube peak intensity for the most intense RBM peaks visi-
ble in Figure 4. These are the (7,6) and (7,3) tubes obtained from NiCp2-filled SWCNTs
(Figure 4a or Figure 5a), the (16,0) and (9,3) tubes obtained from CoCp2-filled SWCNTs
(Figure 4b or Figure 5b) and the (13,1) and (11,1) tubes obtained from FeCp2-filled SWCNTs
(Figure 4c or Figure 5c). In all cases, there is an onset temperature after which the RBM
is visible and a saturation temperature after which the intensity is constant. In all three
panels, these temperatures are notably lower for the smaller diameter inner nanotubes.
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Figure 4. The RBM- and G-bands of Raman spectra of (a) the empty SWCNTs, the nanotubes filled
with nickelocene and the filled SWCNTs heated from 385 to 1000 ◦C for 2 h acquired with the 1064 nm
laser (Eex = 1.17 eV), (b) the empty SWCNTs, the nanotubes filled with cobaltocene and the filled
SWCNTs heated from 500 to 1000 ◦C for 2 h acquired with the 531 nm laser (Eex = 2.34 eV) (reprinted
with permission from Springer, Applied Physics A, Kharlamova et al., Growth dynamics of inner
tubes inside cobaltocene-filled single-walled carbon nanotubes) [22]. Copyright 2016) and (c) the
empty SWCNTs, the nanotubes filled with ferrocene and the filled SWCNTs heated from 500 to
1000 ◦C for 2 h acquired with the 633 nm laser (Eex = 1.96 eV). The chiral indexes of inner tubes
are indicated.
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Figure 5. The normalized intensities ratio, Iinner tube/Iouter tube, plotted against annealing temperature
for (a) the (7,6) and (7,3) tubes formed inside the heated nickelocene-filled SWCNTs, (b) the (16,0) and
(9,3) tubes formed inside the heated cobaltocene-filled SWCNTs and (c) the (13,1) and (11,1) tubes
formed inside the heated ferrocene-filled SWCNTs. T(I1/2) is marked by dashed vertical lines.

The temperature, T(I1/2), at which the intensity of the inner tube RBM peak reaches
half of its maximum after 2 h of annealing time was determined, as denoted by dashed
vertical lines in Figure 5. The T(I1/2) temperature equals 490 and 405 ◦C for the (7,6) and
(7,3) inner tubes, 730 and 540 ◦C for the (16,0) and (9,3) tubes and 635 and 565 ◦C for
the (13,1) and (11,1) tubes, respectively. The obtained plots in Figure 5 show a diameter-
dependence of T(I1/2): the growth temperature becomes larger with increasing the tube
diameter. Moreover, the T(I1/2) temperatures reveal a dependence on the metal type in
the metallocene precursor. For the (7,6), (9,3) and (11,1) inner tubes with similar diameters
that are grown from the NiCp2-, CoCp2- and FeCp2-filled SWCNTs respectively, the T(I1/2)
growth temperature increases gradually. This points to an increase of T(I1/2) temperatures
of inner tubes in line with Ni-Co-Fe.

3.4. Dependence of Growth Temperatures of Inner Tubes on Their Diameter and Metal Type

To investigate the full diameter- and metal type-dependence of the growth temperature
of inner tubes, the T(I1/2) temperatures were evaluated for the inner tubes observed in the
Raman spectra of the annealed NiCp2-, CoCp2- and FeCp2-filled SWCNTs acquired at all 8
laser wavelengths (Figure 3). Table 1 summarizes the detected inner tubes in the order of
increasing diameter and also T(I1/2) growth temperatures. For the tubes with the diameter
ranging from 0.703 to 1.264 nm, the T(I1/2) temperature varies between 405 ◦C for Ni and
770 ◦C for Fe. Figure 6 shows the plot of the T(I1/2) growth temperature versus the tube
diameter for the tubes formed inside the NiCp2-, CoCp2- and FeCp2-filled SWCNTs. It
demonstrates the linear increase of the growth temperature with increasing tube diameter.
The slopes are 40.7 ± 3.2, 40.5 ± 3.1 and 40.4 ± 2.2 ◦C/Å for Ni, Co and Fe, respectively.
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The linear fitting of the data reveals that the growth temperature of the inner tubes inside
the CoCp2-filled SWCNTs is higher by 34 ± 6 ◦C as compared to the NiCp2-filled SWCNTs,
and that the growth temperature inside the FeCp2-filled SWCNTs is higher by another
28 ± 5 ◦C. The temperature difference between the precursors is constant within the
considered diameter range of the inner tubes.

Table 1. The diameters (dt), chiral indexes (n, m), RBM peak positions, excitation laser wavelengths
(λex) and evaluated T(I1/2) growth temperatures of the inner tubes observed in the Raman spectra of
the annealed NiCp2-, CoCp2- and FeCp2-filled SWCNTs.

dt, nm (n,m) RBM, cm−1 λex, nm

T(I1/2), ◦C

Precursor

NiCp2 CoCp2 FeCp2

0.703 (7,3) 325 1064 405 500 500

0.778 (8,3) 295 647 515 500 555

0.823 (7,5) 279 647 510 515 550

0.834 (8,4) 279 458 440 500 565

0.853 (9,3) 267 514 480 530 567

0.853 (9,3) 265 531 473 540 577

0.853 (9,3) 269 568 520 560 550

0.878 (10,2) 264 1064 530 520 560

0.887 (7,6) 260 1064 490 520 554

0.895 (8,5) 258 514 500 564 570

0.895 (8,5) 255 531 490 530 570

0.909 (11,1) 253 458 530 548 600

0.909 (11,1) 254 633 520 535 565

0.909 (11,1) 256 647 550 570 565

0.928 (10,3) 251 647 540 530 565

0.954 (7,7) 245 514 515 590 590

0.954 (7,7) 247 531 538 576 580

0.983 (10,4) 235 568 540 580 600

1.023 (13,0) 230 488 594 650 650

1.028 (9,6) 226 568 550 580 640

1.031 (12,2) 225 488 564 660 660

1.058 (11,4) 221 458 560 572 625

1.064 (13,1) 219 633 600 595 635

1.064 (13,1) 219 647 605 620 640

1.081 (12,3) 214 633 540 600 640

1.081 (12,3) 216 647 560 600 645

1.089 (8,8) 215 568 610 600 650

1.100 (10,6) 212 458 595 605 640

1.142 (14,1) 207 514 620 667 675

1.157 (9,8) 202 458 675 677 650
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Table 1. Cont.

dt, nm (n,m) RBM, cm−1 λex, nm

T(I1/2), ◦C

Precursor

NiCp2 CoCp2 FeCp2

1.157 (13,3) 202 514 630 644 685

1.187 (14,2) 196 647 605 620 670

1.188 (12,5) 200 488 616 697 700

1.247 (12,6) 190 647 600 670 690

1.256 (16,0) 186 531 673 730 770

1.264 (15,2) 184 531 693 720 760
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Figure 6. T(I1/2) plotted against the tube diameter for the tubes grown inside the annealed NiCp2-,
CoCp2- and FeCp2-filled SWCNTs, observed in the Raman spectra acquired at laser wavelengths
between 458 and 1064 nm. The linear fits of the experimental data (filled circles) are shown as
solid lines.

4. Discussion

The annealing of metallocene-filled SWCNTs leads to the decomposition of molecules
with the formation of metal carbides and pure metals [7,21,29,30]. The encapsulated
metal carbides and metals serve as catalysts for the inner tube growth. Thus, the growth
mechanism implies the stages of (i) decomposition of metallocene and (ii) growth of inner
nanotubes on the metal carbide and metal particles. In [21,29,30], it was revealed that
the growth mechanism of inner tubes includes two successive stages of the growth on
carburized and purely metallic catalytic particles. Each stage is characterized with different
growth rates and activation energies.

The obtained data reveal that the growth rates of the largest diameter tubes (dt~1.3 nm)
are the same as the ones of the smallest diameter tubes (dt~0.7 nm) formed from the same
metallocene precursor if the growth temperature is increased by ~230 ◦C. This is caused
by increased catalytic activity of smaller diameter metallic particles [31,32]. Similar trends
were previously observed for ferrocene [4,12], nickelocene [13] and Pt (II) acetylacetonate-
filled SWCNTs [33,34], and for the CVD growth of carbon filaments and nanotubes [35–40].

The revealed offset of the growth temperature between nickelocene, cobaltocene and
ferrocene demonstrates that the growth rates of the same inner tubes with the cobaltocene
precursor are the same as the ones with the nickelocene precursor if the growth temperature
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is increased by 34 ± 6 ◦C, and are also the same on Fe if the temperature is raised by another
28 ± 5 ◦C. This temperature equivalence is in agreement with the reported diffusion rates
of carbon in metals [31,41]. If the growth temperature is sufficiently high, the catalytic
activity of smaller and bigger catalyst particles is high enough. The growth is then limited
by the rate at which carbon can be supplied to the catalyst particles. Unlike the catalytic
activity, the feed rate does not depend on the diameter.

We would reason that the growth rate is determined by the growth rate-limiting
process. This is at lower temperatures the catalytic activity and at higher temperatures
the diffusion rate of carbon. The rates should scale inversely with the T(I1/2) growth time.
Therefore, in the regime where the catalytic activity is the limiting process, the growth rate
scales inversely with the radius.

It should be noted that significantly larger growth temperatures were reported for ce-
rocene [9] and Pt (II) acetylacetonate [33,34] precursors. Decreasing the growth temperature
of the inner tube opens the possibility to synthesize nanotubes under ambient conditions.
The revealed correlations also show that the growth rates are equivalent for 1.6 Å larger
diameter nanotubes when switching from Fe to Ni. The obtained linear dependences
provide the proper scaling for equivalent changes in diameter, temperature and metal type
on the growth rates of nanotubes. If one of the three parameters is changed, the required
compensations in either of the other two are known.

The obtained nanostructures have unique electronic properties [5,7,9,18,19]. The fill-
ing of SWCNTs with metallocene molecules opens the way of n-doping of the nanotubes,
and the further annealing of the filled SWCNTs allows modifying the electronic prop-
erties of SWCNTs in a tailored manner. Combining the controlled growth kinetics of
inner SWCNTs [21,29,30] and tailored electronic properties of these nanostructures [42,43]
allows applying these systems in various fields, such as nanoelectronics, thermoelectric
power generation, catalysis, sensors, electrochemical energy storage, spintronics, magnetic
recording and biomedicine [44–47].

5. Conclusions

To summarize, a systematic study of the temperature-dependent growth of 36 inner
tubes with the diameters in a broad range from ~0.7 to 1.3 nm inside the nickelocene-,
cobaltocene- and ferrocene-filled SWCNTs was conducted. The growth temperatures,
T(I1/2), at which the intensity of the inner tube RBM peak in the Raman spectra reaches
half of its maximum were evaluated. The influence of the growth temperature and type of
metal catalyst on the diameter-specific growth of inner tubes was quantified. The growth
temperature was found to decrease linearly with decreasing the inner tube diameter. This
means that the smallest nanotubes grow the fastest. The temperature difference between
the largest and the smallest diameter tubes amounted to ~230 ◦C for all three precursors.
The growth temperatures increase in line with nickelocene-cobaltocene-ferrocene. The
growth temperatures of the inner tubes inside the CoCp2-filled SWCNTs were higher by 34
± 6 ◦C, as compared to the NiCp2-filled SWCNTs, and the growth temperatures of the inner
tubes inside the FeCp2-filled SWCNTs were higher by another 28 ± 5 ◦C. Therefore, for
controlling the diameter of inner tubes, one should choose an appropriate precursor and,
more importantly, the growth temperature. These findings provide the basis for tailoring
the diameter-specific growth of nanotubes.
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