
research papers

J. Appl. Cryst. (2015). 48, 85–91 doi:10.1107/S1600576714025904 85

Journal of

Applied
Crystallography

ISSN 1600-5767

Received 12 July 2014

Accepted 26 November 2014

Computing stoichiometric molecular composition
from crystal structures

Saulius Gražulis,a,b* Andrius Merkys,a Antanas Vaitkusb and Mykolas Okulič-

Kazarinasa

aVilnius University Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania, and
bVilnius University Faculty of Mathematics and Informatics, Naugarduko 24, LT-03225 Vilnius,

Lithuania. Correspondence e-mail: grazulis@ibt.lt

Crystallographic investigations deliver high-accuracy information about posi-

tions of atoms in crystal unit cells. For chemists, however, the structure of a

molecule is most often of interest. The structure must thus be reconstructed

from crystallographic files using symmetry information and chemical properties

of atoms. Most existing algorithms faithfully reconstruct separate molecules but

not the overall stoichiometry of the complex present in a crystal. Here, an

algorithm that can reconstruct stoichiometrically correct multimolecular

ensembles is described. This algorithm uses only the crystal symmetry

information for determining molecule numbers and their stoichiometric ratios.

The algorithm can be used by chemists and crystallographers as a standalone

implementation for investigating above-molecular ensembles or as a function

implemented in graphical crystal analysis software. The greatest envisaged

benefit of the algorithm, however, is for the users of large crystallographic and

chemical databases, since it will permit database maintainers to generate

stoichiometrically correct chemical representations of crystal structures

automatically and to match them against chemical databases, enabling

multidisciplinary searches across multiple databases.

1. Introduction
In many applications, there is a need to compute a molecular

structure and composition from a crystal structure solved by

diffraction methods. Crystallographic structure files describe

the structure of the asymmetric unit and provide symmetry

operators to restore the unit cell and the whole crystal struc-

ture from the minimal unique set of atoms. Since a molecule of

high symmetry can often be located on a special position, such

molecules are represented only by a part of their atoms. To

obtain the full set of atoms for such a molecule, symmetry-

equivalent atoms must be generated by using the crystal

symmetry operators and tracing the networks of covalently

connected atoms. Such algorithms are implemented in free

open-source programs like Jmol (Hanson, 2010) or proprie-

tary ones like enCIFer (Allen et al., 2004). Other programs,

like Avogadro (Hanwell et al., 2012) or Open Babel (O’Boyle,

Banck et al., 2011), rely on pre-generated molecular structures,

although in principle there is nothing that would prevent

adding symmetry-handling algorithms as plugins or as main

code libraries.

The existing algorithms, however, generate separate mol-

ecules, disregarding their relative abundance in a crystal. We

will refer to such an algorithm as a ‘simple reconstruction’

algorithm. To provide an example, our own implementation of

this algorithm in the cif_molecule program from the cod-tools

package (available at svn://www.crystallography.net/cod-tools/

trunk under the GPL2 free software license) reconstructs one

moiety for each distinct atom in the asymmetric unit of a

crystal cell; all other programs that were inspected by us

produce the same result. For example, from the entry 2231955

(Wei, 2011) from the Crystallography Open Database (COD;

Gražulis et al., 2009, 2012), one moiety of sulfonic acid and one

moiety of amine in the default molecule reconstruction (Fig. 1)

are produced.

While this is sufficient for on-screen viewing and visual

analysis, a problem arises when the resulting molecular data

are converted to files in chemical formats that no longer

contain the unit cell and symmetry information. If chemical

information such as molecular formula, charge balance,

molecular weight or component molar ratios is computed from

such files, the results will be wrong and thus will confuse users

who do not know the origin of the file. For example, even a

casual look at Fig. 1(b) reveals that a single positively charged

amino group is accompanied by two negative charges of the

sulfo groups. Unfortunately, such files would be occasionally

generated by conventional algorithms if they were used in

fully automated mode. It is therefore deemed desirable to

employ an algorithm that produces output with correct stoi-

chiometric ratios of all atoms, especially when atom coordi-

nates are represented in chemical information files like SDF

(Dalby et al., 1992) that do not contain any crystallographic

information.

http://crossmark.crossref.org/dialog/?doi=&domain=pdf&date_stamp=2015-01-30


2. Algorithm
Clearly, all necessary information for the above-mentioned

reconstruction of molecules is contained in a crystal structure

[such as one expressed in a PDB (Berman et al., 2012) file or

CIF (Brown & McMahon, 2002)], since the correct summary

chemical formula, representing the composition of the crystal

formula unit at a given Z value (Hall et al., 2005), can be

readily obtained from atom multiplicities and occupancies.

The multiplicities, if not given, can be computed from atomic

coordinates and symmetry operators.

Thus, the only problem remaining is to determine which

symmetry operators need to be applied to atoms so that (a) all

complete molecules are reconstructed and (b) stoichiometric

ratios between molecular components are preserved. To arrive

at a suitable algorithm we observe that the problem with the

COD 2231955 entry conversion arises because the inversion

centre is applied to the naphthalene-1,5-disulfonate atoms,

since this molecule is situated around a special position, but

not to the dimethyl(4-methylphenyl)ammonium ion and a

water molecule at general positions. If we applied the same

inversion centre to the ammonium ion and the water molecule

as we applied to the parts of the disulfonate, we would obtain

the correct molecular composition.

There seem to be two approaches to solve this problem. The

first one would be to expand the crystal asymmetric unit to the

P1 unit cell and then remove excess molecules that are

symmetry equivalent, keeping however the correct ratios of

the molecules. The second approach would be to generate

unique molecules, using symmetry-equivalent atoms if neces-

sary, and then to apply those symmetry operators to the

molecules that were not yet applied to them but were used to

generate their partners in the crystal. The former approach is

straightforward, but excessive molecules will be generated,

only to be removed afterwards; the second approach requires

some algebra but involves less computation and should

therefore be faster. Both algorithms have been implemented,

and a comparison will be given below.

In the first approach, all connected molecules in the unit cell

are generated. Below we provide an informal ‘comments-type’

description of the algorithm; a formal working sample

implementation in the Perl programming language (Wall et al.,

2000) can be found in the cod-tools package:

(1) All symmetry operators of the crystal space group are

applied to each atom, and the image of each atom is reduced

modulo 1, i.e. moved to a representative unit cell which is the

unit cell closest to the origin in the first octant {this unit cell

spans fractional coordinates ½0::1Þ; ½0::1Þ; ½0::1Þ on the crystal

axes}; each such image receives a unique ‘cell_label’ identifier,

and a list of ‘cell_label’ identifiers used in molecules is set up,

originally empty.

(2) Atoms in 26 adjacent unit cells are generated; to speed

up neighbour search, all atoms from all 27 unit cells (the

representative unit cell and the 26 cells adjacent to it) are

distributed into an array of cubic ‘boxes’. Each box has a

vertex equal to the longest possible covalent bond length,

which in this case is twice the largest covalent radius of an

atom in the unit cell plus some (configurable) safety margin [a

strategy known at least since 1966 (Levinthal, 1966)]. Thus, to

search for covalently bonded atoms only the 27 cubic boxes

must be searched that are adjacent to the box containing the

atom at which the bond is supposed to start. This is signifi-

cantly less time consuming than searching all generated atoms

in the 27 unit cells. The algorithm run time grows linearly with

the number of atoms if atom density remains constant. It is

implicitly assumed that the longest bond in the crystal is

shorter than any side of a unit cell.

(3) An atom with a yet unused ‘cell_label’ is chosen as the

starting point for the new molecule. All atoms connected to it

are found in the ‘boxes’ and appended to the molecule atom

list if they are not yet in this list. Then, for each new atom, this

step is repeated recursively. When searching for neighbours of

an atom that is not in the representative cell, the atom’s

coordinates are reduced to this unit cell {i.e. fractional coor-

research papers

86 Saulius Gražulis et al. � Computing stoichiometric molecular composition J. Appl. Cryst. (2015). 48, 85–91

Figure 1
Reconstructions of molecular moieties using the simple algorithm. (a)
The asymmetric unit of the crystal provided by the COD 2231955 (Wei,
2011) entry. (b) Molecules reconstructed using the cif_molecule
implementation. Image generated using Jmol (Hanson, 2010) and
POV-Ray (Persistence of Vision, 2004).



dinates are reduced to the range ½0::1Þ; ½0::1Þ; ½0::1Þ by taking

their fractional parts}, and the neighbours are sought at the

new position. The translation between the original and the

reduced positions is afterwards added to the coordinates of

the found neighbours. In this way, we make sure that we find

also atoms that are outside the 27-unit-cell block. We stop

constructing the molecule when there are no new atoms

connected to it by covalent bonds (all neighbours of the newly

added atom layer are either too far away or already in the

molecule). We stop searching for new molecules when all

unused atoms in the representative unit cell (as identified by

‘cell_label’ identifiers) are exhausted.

(4) In the molecule list generated by the previous step,

symmetry-equivalent molecules generated by each symmetry

operator are present with at least one of their atoms in the

representative unit cell. Molecules fall in groups of symmetry-

equivalent molecules. Each molecule in such a group is the

symmetric image of the other molecule in the group. Not all of

these images are needed for a minimal stoichiometrically

correct description of the substance. Each molecular group

can be identified as originating from the same atoms in the

original CIF; therefore these atoms have the same site labels

(from the atom site label data item) in each equivalent

molecule. We thus form molecular keys K by concatenating

sorted site labels for each molecule and grouping together

molecules with identical keys. We then count the number of

molecules under each key and find a greatest common divisor

D of the molecule counts. We output only Ni=D molecules

from each group, where Ni is the total count of molecules in

the ith group, producing a stoichiometrically correct descrip-

tion of the substance.

(5) The stoichiometric description of a substance is not yet

minimal, however, since a crystal may contain more than one

chemically identical molecule in the asymmetric unit and all

such (crystallographically non-equivalent) molecules will be

present in the output. To reduce such duplication, a chemical

fingerprint, for example a Morgan fingerprint (Morgan, 1965),

can be used as a key for molecule grouping instead of the key

K built from site labels in step 2. The Morgan algorithm

introduces canonical numbering on the atomic graph. The

fingerprint produced with its help would be (usually) different

for covalently different molecules and equal for molecules

with identical connectivities, and thus would allow one to

recognize and remove chemically identical molecules, further

simplifying the resulting molecular structure. Since, however,

the chemical fingerprinting makes additional assumptions

about molecular identity based on different chemical proper-

ties, the use of Morgan fingerprints has been made optional in

the algorithm implementation.

The second approach is similar to the P1 algorithm

described above but we do not use all atoms of the unit cell as

molecule ‘seeds’; instead, in step 2 we only use atoms

belonging to the asymmetric unit, as specified in the original

CIF. We therefore find only a minimal set of molecules in

which each molecule has at least one atom in the asymmetric

unit. This set of molecules is not stoichiometrically correct,

since some molecules may contain a symmetry-equivalent set

of atoms while others will not. For example, application of this

algorithm to the COD entry 2231955 will yield one naph-

thalene-1,5-disulfonate and one dimethyl(4-methylphenyl)-

ammonium moiety, like the other commonly used programs

(Fig. 1). We observe that we have applied an inversion centre

to the naphthalene disulfonate moiety atoms in order to

generate the whole molecule from the asymmetric unit;

therefore, to preserve stoichiometry, the same symmetry

operator (in general, more than one operator) must be applied

to the ammonium ion as well (and to all other molecules if

such are present in the crystal), provided they were not used to

generate these molecules.

To find the minimum set of symmetry operators to be

applied additionally to each generated molecule, the

symmetry group of each molecule must be determined.

Afterwards, all symmetry groups will be multiplied, giving the

symmetry group of the ‘molecular cluster’ in the crystal. To

this end, an algorithm published by R. Grosse-Kunstleve for

reconstruction of symmetry groups was used (Grosse-Kuns-

tleve, 1999). To generate missing molecules of the molecular

cluster, for each molecule we now find and apply operators

that were not used for reconstructing this particular molecule;

these operators do not belong to the symmetry group of the

molecule and therefore must belong to a coset of the mol-

ecule’s symmetry group in the cluster symmetry group. We

must apply exactly one operator from each left coset of the

molecular symmetry group. We will show below that the

molecular cluster generated in this way will have correct

stoichiometric ratios of the molecules.

To begin, we demonstrate that we do not need to apply

several operators from the same left coset. Indeed, let us

assume that all atoms of a molecule M are mapped onto the

symmetry-equivalent atoms of the same molecule by any

molecule symmetry operators s 2 SM, where SM is the (point)

symmetry group of the molecule, yielding the same physical

molecule (with possibly permuted order of atoms):

M ¼ sM: ð1Þ

The molecular cluster symmetry group G is formed by

multiplying all possible combinations of symmetry operators

of all individual molecule symmetry groups, building a

supergroup. Let us now choose a symmetry operator g 2 G

from the cluster symmetry group G that does not belong to SM.

If such an operator exists, it does not map M to itself (other-

wise it would be in SM); thus it maps molecule M to some other

symmetry-equivalent image:

M0 ¼ gM; M0 6¼ M: ð2Þ

If we now choose another symmetry element g1 ¼ gs1 2

gSM from the left coset gSM, and apply it to M, we get

M00 ¼ g1M ¼ gs1M ¼ gM ¼ M0: ð3Þ

Thus, any operator g1 from the same left coset as g yields the

same molecule image M0.

Second, we demonstrate that application of one symmetry

operator from each left coset yields a stoichiometrically

correct molecular cluster. To show this we first note that the

research papers

J. Appl. Cryst. (2015). 48, 85–91 Saulius Gražulis et al. � Computing stoichiometric molecular composition 87



cluster symmetry point group G is a subgroup of the (finite)

full group Gk of the crystal under investigation and thus has an

integer index jGkj : jGj in this full group.1 The operators in Gk

reconstruct one unit cell from the asymmetric unit, and since

the translations of the crystallographic space group preserve

stoichiometric relations within the unit cell, the application of

Gk to the asymmetric unit must yield atoms in correct stoi-

chiometric relations. Further, the application of the repre-

sentative operators from the left coset of G in Gk to the

molecular cluster atoms yields disjoint molecular cluster

images in distinct space points. Indeed, if some molecule in a

cluster is mapped onto itself by an operator, then it belongs to

a point symmetry group of that molecule. But, by the defini-

tion of G, the group G should contain this operator and should

map the cluster to itself, because either it maps a cluster

molecule to itself, or, by definition of the cluster, it maps a

cluster molecule to another molecule in the cluster. Thus, if a

symmetry operator maps at least one cluster molecule to itself,

it maps the whole cluster to itself; alternatively, a symmetry

operator will map every cluster molecule to a spatially disjoint

molecule in the crystal, generating another symmetry-

equivalent image of the cluster. There will be therefore N 2 N

disjoint images of the cluster (without a proof, we note that

N ¼ jGkj : jGj). We will further demonstrate that the stoi-

chiometry of the unit cell will only be correct if the stoichio-

metry of each cluster is correct.

If we use one operator from each left coset of Sk in the

cluster symmetry group G to generate the molecular cluster,

then the multiplicity of each general position atom in the

cluster is equal to the order of the SM point group of the

molecule times the index of the SM group in the cluster

symmetry group, jGj : jSMj, since operators from distinct left

cosets of SM in G generate distinct molecules. This number is,

by Lagrange’s theorem, always the number of symmetry

elements in G. Since the cluster is repeated in the unit cell N

times, the multiplicity of each general position atom will be

NðjGj : jSMjÞjSMj. We see that the multiplicity of each atom on

a general position in the cluster will be the multiplicity of the

atom in the unit cell divided by the same integer N. Since the

ratios of atoms are stoichiometrically correct in the unit cell, it

follows from the above consideration that they were correct in

the molecular cluster as well. For atoms on special positions,

the same argument applies, with their multiplicities obtained

by dividing the general position multiplicity by the special

position site symmetry group order. With this, we consider the

correctness of stoichiometry in a molecular cluster generated

by the above-described rules established.

In both algorithms, atoms are considered as connected by a

covalent bond if the distance between them is less than the

sum of their covalent radii, plus some extra margin. Atoms are

considered overlapping (a ‘bump’) if the distance between

them is less than a given fraction of their covalent radii sum.

The covalent radii are taken from the work of Pyykkö &

Atsumi (2009) and Cordero et al. (2008), as tabulated by the

Blue Obelisk project (O’Boyle et al., 2011).

3. Results

Both algorithms described above were implemented using the

Perl programming language in the cod-tools program collec-

tion. The molecular symmetry reconstruction and analysis

algorithm was implemented as a special mode of the cif_

molecule program, invoked with the option ‘preserve-stoi-

chiometry’. The expansion to the P1 algorithm was imple-

mented both as a second mode of the cif_molecule program,

invoked using ‘expand-to-P1’, and as a standalone Perl

program, cif_p1. To test the algorithm, the cif_molecule

program in both modes was run on all files of revision 117869

of the COD CIF collection. In addition, molecular networks

were computed without any use of stoichiometry reconstruc-

tion, using a conventional molecular reconstruction algorithm

implemented in the same cif_molecule program. To test the

program, summary chemical formulae were computed for

COD entries and compared, the expectation being that both

algorithms, if correctly implemented, should yield the same

results. The COD in this revision contained 287 301 non-

retracted COD CIFs with reported atomic coordinates.2 (Here

and below, footnotes provide SQL statements used to obtain

the quoted numbers from the MySQL database mentioned in

this section.) A total of 270 756 summary formulae were

computed with all three modes. The results of these compu-

tations are available on the COD web site at http://www.

crystallography.net/cod/chemistry/formulae/. The difference

between the number of COD entries forwarded for processing

and the number of computed molecules is caused by the

computation time limitation on the computing cluster; most of

the CIFs that were not processed contain polymeric molecules

with large number of atoms that had to be terminated to make

way for the faster and more abundant computations of sepa-

rate moieties. Since polymeric crystals are not used anyway,

the entries that took too much time for computations were

discarded at this point of the analysis.

The formulae and polymer flags were loaded into a MySQL

database (the database scheme, data load files and Makefiles

that produce them from the cif_molecule computation results

are provided in the supplementary data file3), and summary

chemical formulae computed by all three algorithms were then

compared. The polymeric molecules (a molecule was consid-

ered ‘polymeric’ if it had covalent bonds, as detecting by the

cif_molecule program, in the same molecule related by a

crystal lattice translation) were excluded from the analysis,

since we did not yet implement an unambiguous way to ‘cut’

polymers into monomeric units. Polymers were excluded by

marking them as such during the molecule reconstruction step

research papers

88 Saulius Gražulis et al. � Computing stoichiometric molecular composition J. Appl. Cryst. (2015). 48, 85–91

1 In this manuscript, we use the same definitions as Grosse-Kunstleve (1999);
in particular, a full group is a set of symmetry operations that is closed under
binary multiplication, and symmetry operations that are related by combina-
tions of the unit translations are considered to be equal.

2 mysql -u cod_reader -h www.crystallography.net cod -e ‘select

count(*) from data where (status not like ‘‘%retracted%’’ or

status is null) and (svnrevision <= 117869 or svnrevision is

null) and flags like ‘‘%has coordinates%’’
3 Supporting information for this paper is available from the IUCr electronic
archives (Reference: KK5188).



and storing the mark in a separate database table. After

exclusion of polymers,4 222 867 formula entries were left for

analysis. From these, 25 COD entries were detected5 where

the stoichiometric formula did not match the formula

computed using the P1 expansion. All these cases were

examined individually, since they potentially indicate either

implementation or more fundamental algorithm design errors.

After inspection, all 25 mismatches were found to be due to

the peculiarities of the CIFs. One file had cell constants

incompatible with the declared crystal symmetry (and with no

means to correct the entry). The remaing 24 mismatches were

due to crystal disorder: in these CIFs, different disorder

groups were reported to have different atomic composition,

and thus the formula could not be computed unambiguously.

All these 25 entries were commented in a special comments

table and excluded from the further analysis.

Finally, the most interesting cases were identified where the

stoichiometric summary formula did not match the formula

computed by a ‘simple’ algorithm. There were 37 122 such

structures under investigation.6 These are exactly the cases for

which the described algorithm appears to be useful, as in the

COD 2231955 example (Fig. 1).

4. Discussion

The implemented algorithms generate stoichiometrically

correct molecular ensembles in a fully automated run from all

but 25 nonpolymeric moieties in the COD. The nonpolymeric

molecules comprise more than 82% of the COD entries and

include such important molecules as drugs, bioactive

compounds, organic semiconductors, catalysts and precursors

for synthesis. Therefore, automatic extraction of chemical

information for this COD subset and linking with chemical

databases like PubChem (Bolton et al., 2008), ChemSpider

(Pence & Williams, 2010) and DrugBank (Law et al., 2014) and

open information sources like Wikipedia is deemed to bring

important information about relations between structures and

properties of these molecules. The algorithm, unfortunately,

will not process correctly many inorganic compounds and

metal–organic frameworks, namely the ones that form cova-

lent or coordination polymers in crystals. The proposed

algorithm alone, however, cannot solve the problem of

monomer identification and must be augmented with heur-

istics to provide convenient ‘cut’ positions in the covalently

connected polymer chains, planes or three-dimensional

meshes. The algorithm is run on the COD files to provide

cached results for the COD files, but the described programs

can be run as standalone processes to process any CIFs.

Despite its inability to process crystal structures of covalent

and coordination polymers at present, the algorithm is

extremely useful for processing large crystallographic data-

bases like COD. Indeed, we can now generate stoichiome-

trically correct molecular descriptions (structural formulae,

molecular formulae) in bulk for a large subset of published

crystal structures and deposit them in chemical databases and/

or match them against the chemical database inventories. Such

matches will permit large-scale interdisciplinary cross-data-

base searches in various branches of science, benefiting

chemists, biologists, pharmacologists and materials scientists,

to name representatives of just a few scientific disciplines. The

inability to process polymers is not a fundamental limitation of

our algorithm: a separate pre-processing step can and will be

used to fragment polymer representations into separate

monomers. With such an approach, the presented algorithm

will provide a stoichiometrically correct representation of a

monomer unit. Since the pre-processing does not change the

described molecular unit generation method, and since split-

ting chains into monomers may involve different heuristics

and therefore is not unique, we do not include such splitting in

the current implementation and do not describe it here in

detail.

The algorithm and its implementation are targeted at

database maintenance. The strategy here is to process auto-

matically the bulk of the database records and identify the

difficult cases so that they can either be processed with other

algorithms or, if it is a small number of really difficult cases, be

handled by human experts. Automatically processing 222 867

nonpolymer entries (more than 77% out of 287 301 total COD

records, with just 25 cases for manual investigation) is for

COD maintainers a huge benefit, providing a significant

reduction of the human effort. Indeed, finding 37 122 stoi-

chiometrically incorrect structures out of 222 867 nonpoly-

mers by hand would be a prohibitive task for a human

maintainer: too slow, too error prone and too costly. With the

present algorithm at hand, we can already generate over

222 000 correct structures for, say, deposition to PubChem,

coupling our crystallographic information with the wealth of

chemical and pharmacological data available there.

When applying the described algorithm to crystal structure

analysis, one should take into account a peculiarity of the

results when a crystal structure contains more than one

molecule (Z0> 1) per asymmetric unit (AU), where Z0 is the

number of equivalent molecules in the AU. In such cases, the

described algorithm will treat the whole AU as an above-

molecular assembly and output it as a formula unit of the

crystal. This is because the algorithm assumes that two

molecules are the same if they are symmetry equivalent in the

crystal, and different otherwise. Such an approach is safe, since

we will never declare two different molecules to be identical,

by the definition of symmetry equivalence. The algorithm can

err, however, to the side of falsely declaring two identical or

very similar molecules as different, but this is deemed to be an

acceptable compromise since no data are lost in the algor-

ithm’s output and the identical molecules, after choosing the

identity criterion, can be filtered away from the output of the

molecule reconstruction program. An example of how such

filtering can be done is our implementation of the filtering

using the Morgan algorithm (Morgan, 1965). Taking the COD

7151990 entry as an example (Mali et al., 2011), we obtain the

research papers

J. Appl. Cryst. (2015). 48, 85–91 Saulius Gražulis et al. � Computing stoichiometric molecular composition 89

4 select count(*) from formulae where is_polymer = ‘‘no’’
5 select count(*) from formulae where is_polymer = ‘‘no’’ and

stoichiometric != p1
6 select count(*) from formulae where is_polymer = ‘‘no’’ and

stoichiometric != simple and comment is null



molecular unit formula as C30H54N2O8 in the default mode

(when the Morgan algorithm is not used), corresponding to

Z0 ¼ 1, but the molecular unit formula becomes C15H27NO4

when the Morgan algorithm is employed to detect chemically

identical molecules in the output (Z0 ¼ 2). Interestingly,

although one could argue that Z0 ¼ 2 reflects better the real

molecular formula of the compound under consideration, the

Z and summary formula assignment in the supplementary data

of the original publication are compatible with Z0 ¼ 1. Such

examples are common and seem to hint that the default

behaviour of the proposed algorithm is the same as in other

widely available software packages and is found acceptable by

the chemical community.

To summarize the discussion of Z0> 1 cases, we can

postulate that the proposed algorithm maintains a useful

invariant: (a) its output is a stoichiometrically correct

assembly of atoms (molecules), and (b) its output contains all

covalently connected sets of atoms (‘molecules’ or ‘moieties’)

in full, without fragmenting them, and thus is suitable for

subsequent processing with chemoinformatics tools. In parti-

cular, the output is suitable to derive a formula unit repre-

sentation and the moiety chemical formula, with an

appropriate Z according to International Tables for Crystal-

lography (Hall et al., 2005). The ambiguity of the output

reflects the ambiguity of Z and Z0 assignment based on crys-

tallographic data alone, but the output contains all necessary

information for finding identical molecules (or enantiomers,

diastereomers or conformers) according to any set of desired

criteria in a post-processing step, thus making the algorithm

useful even in cases when more sophisticated molecule iden-

tity definitions are necessary.

As expected, the stoichiometric molecule reconstruction

process based on symmetry analysis is slightly faster than the

algorithm based on expansion to the P1 unit cell (Table 1).

The standalone cif_p1 implementation runs faster than

cif_molecule when the same expansion to the P1 algorithm is

used but is still outperformed by the symmetry analysis

algorithm in cif_molecule. A speed improvement slightly

above 25% might not seem significant for single-structure

computations; for the whole COD computations, for example

for automatic unattended updates of chemical information

derived from new database revisions, such speedup is very

welcome. Even more importantly, analysis of molecule and

crystal symmetry relations gives us a useful tool for repre-

senting molecules in a way that is consistent with the needs of

both chemical and crystallographic applications.

Reconstruction of stoichiometric molecules allows auto-

mated derivation of correct summary chemical formula and

correct moiety formula and depiction of the molecule’s

structural formula using automated conversion tools. As seen

in Fig. 2, the algorithm yields correct ratios of anions and

cations in an unsupervised run and also correctly indicates that

there are two water molecules per naphthalene-1,5-disulfo-

nate moiety in the crystal, which is not immediately apparent

from the structure in Fig. 1.

The algorithm is space-group general and works correctly

also in more sophisticated cases. For example, the COD

7115272 structure (Gau et al., 2014) belongs to the space group

I41=acd (No. 142), featuring 41, 4 and 1 symmetry elements;

research papers

90 Saulius Gražulis et al. � Computing stoichiometric molecular composition J. Appl. Cryst. (2015). 48, 85–91

Table 1
Run times of the stoichiometric molecule reconstruction algorithms.

The cited run times and their standard deviations were computed from five
successive runs for 200 randomly selected COD structures on an unloaded
Dell Precision T3500 computer with 6 GB RAM and the Intel Xeon CPU
W3565 running at 3.2 GHz, under Ubuntu 12.04 LTS GNU/Linux 32 bit OS,
using the distribution’s default Perl interpreter (version 5.14.2), the gcc
compiler (version 4.6.3) and cod-tools revision 2749.

Program
cif_molecule
(simple reconstruction)

cif_molecule
(preserve-stoichiometry)

Run time 4 min 53 s � 3 s 5 min 05 s � 8 s

Program cif_molecule (expand-to-P1) cif_p1

Run time 6 min 55 s � 10 s 5 min 27 s � 5 s

Figure 2
Reconstructions of stoichiometrically correct molecular ensemble from
the COD 2231955 entry. (a) Molecular cluster reconstructed using the
stoichiometry-preserving algorithm. (b) The structural formula auto-
matically generated from the reconstructed molecular file. Chemical bond
and charge comprehension was performed using the JUMBO converters
suite (Murray-Rust, 1997), and then the SVG file was automatically
generated using the Open Babel package (O’Boyle, Guha et al., 2011).



the metal complex is on a special position with the site

symmetry order 4. The described algorithm correctly recon-

structs the cluster and the adjacent solvent molecules; the

sample implementation code of cif_molecule also handles

disorder gracefully. The coset algorithm is 1.5 times faster for

this structure than the full P1 reconstruction (6 versus 9 s run

time on a laptop with 4 GB RAM and an Intel Pentium CPU

B980 running at 2.40 GHz under the Ubuntu 10.04 LTS GNU/

Linux 32 bit OS, using software specified in Table 1).

We thus conclude that the proposed symmetry analysis

algorithm can be useful as the first step for automated

abstraction of chemical information from the Crystallography

Open Database and other crystallographic databases.

This research was funded by a grant (No. MIP-025/2013)

from the Research Council of Lithuania.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M.
(2004). J. Appl. Cryst. 37, 335–338.

Berman, H. M., Kleywegt, G. J., Nakamura, H. & Markley, J. L.
(2012). Structure, 20, 391–396

Bolton, E. E., Wang, Y., Thiessen, P. A. & Bryant, S. H. (2008).
PubChem: Integrated Platform of Small Molecules and Biological
Activities, Annual Reports in Computational Chemistry, Vol. 4,
ch. 12, pp. 217–240. Oxford: Elsevier.

Brown, I. D. & McMahon, B. (2002). Acta Cryst. B58, 317–324.
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverrı́a,

J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans.
pp. 2832–2838.

Dalby, A., Nourse, J. G., Hounshell, W. D., Gushurst, A. K. I., Grier,
D. L., Leland, B. A. & Laufer, J. (1992). J. Chem. Inf. Comput. Sci.
32, 244–255.

Gau, M. R., Hamilton, C. R. & Zdilla, M. J. (2014). Chem. Commun.
50, 7780–7782.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós,
M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A.
(2009). J. Appl. Cryst. 42, 726–729.

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L.,
Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. & Le Bail,
A. (2012). Nucleic Acids Res. 40, D420–D427.

Grosse-Kunstleve, R. W. (1999). Acta Cryst. A55, 383–395.
Hall, S. R., Fitzgerald, P. M. D. & McMahon, B. (2005). International

Tables for Crystallography, Vol. G, ch. 3.2, pp. 93–107. Heidelberg:
Springer.

Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.
Hanwell, M., Curtis, D., Lonie, D., Vandermeersch, T., Zurek, E. &

Hutchison, G. (2012). J. Cheminformatics, 4, 17.
Law, V. et al. (2014). Nucleic Acids Res. 42, D1091–D1097.
Levinthal, C. (1966). Sci. Am. 214, 42–52.
Mali, S. M., Bandyopadhyay, A., Jadhav, S. V., Kumar, M. G. & Gopi,

H. N. (2011). Org. Biomol. Chem. 9, 6566–6574.
Morgan, H. L. (1965). J. Chem. Doc. 5, 107–113.
Murray-Rust, P. (1997). World Wide Web J. 2, 197–206.
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch,

T. & Hutchison, G. R. (2011). J. Cheminformatics, 3, 33.
O’Boyle, N., Guha, R. et al. (2011). J. Cheminformatics, 3, 37.
Pence, H. E. & Williams, A. (2010). Chem. Educ. Today, 87, 1123–

1124.
Persistence of Vision (2004). Persistence of Vision Raytracer. Version

3.6. http://www.povray.org.
Pyykkö, P. & Atsumi, M. (2009). Chem. Euro. J. 15, 12770–12779.
Wall, L., Christiansen, T. & Orwant, J. (2000). Programming Perl, 3rd

ed. Sebastopol: O’Reilly Media.
Wei, B. (2011). Acta Cryst. E67, o2678.

research papers

J. Appl. Cryst. (2015). 48, 85–91 Saulius Gražulis et al. � Computing stoichiometric molecular composition 91

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5188&bbid=BB25

