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SUMMARY

2018 was the year of the first marketing authorization of an allogeneic stem cell therapy by the European Medicines Agency. The
authorization concerns the use of allogeneic adipose tissue-derived mesenchymal stromal cells (MSCs) for treatment of complex
perianal fistulas in Crohn’s disease. This is a breakthrough in the field of MSC therapy. The last few years have, furthermore, seen
some breakthroughs in the investigations into the mechanisms of action of MSC therapy. Although the therapeutic effects of
MSCs have largely been attributed to their secretion of immunomodulatory and regenerative factors, it has now become clear
that some of the effects are mediated through host phagocytic cells that clear administered MSCs and in the process adapt an
immunoregulatory and regeneration supporting function. The increased interest in therapeutic use of MSCs and the ongoing elu-
cidation of the mechanisms of action of MSCs are promising indicators that 2019 may be the dawn of the therapeutic era of
MSCs and that there will be revived interest in research to more efficient, practical, and sustainable MSC-based therapies. STEM
CELLS TRANSLATIONAL MEDICINE 2019;8:1126–1134

SIGNIFICANCE STATEMENT

This article provides an overview of the considered mechanism of action of mesenchymal stromal cells (MSCs) and the status
of the development of MSC therapy as of 2019.

INTRODUCTION

Mesenchymal stromal cells (MSCs) reside in all tissues, where part
of them has a perivascular localization [1]. These cells have been
described to be present within the walls of the microvasculature
where they function to stabilize endothelial networks [2]. Tissues
contain, in addition, nonpericyte-derived MSC populations, which
are more abundant in tissues with low vascularity [3, 4]. In gen-
eral, MSCs lack hematopoietic and endothelial markers and share
expression of a range of markers with fibroblastic cells, although
rare MSC populations with different phenotype exist [5]. MSCs
are precursor cells for osteoblasts, adipocytes, and chondrocytes
and will also give rise to tissue fibroblasts [6]. Via their differentia-
tion into tissue fibroblasts, MSCs contribute to tissue maintenance
and repair by depositing tissue matrix. A delicate balance exists
between the tissue repair and fibrotic potential of MSCs [7]. The
role of MSCs in injury-induced tissue fibrosis has been elegantly
demonstrated by genetic ablation of Gli1+ MSC, which resulted in

the abolishment of fibrosis [8]. Targeting pro-fibrotic signaling in
perivascular stromal cells through inhibition of the C-type lectin
transmembrane receptor Endosialin has recently been shown to
inhibit their proliferation and differentiation toward myo-
fibroblasts, which may offer a potential therapeutic target for
inhibition of MSC mediated fibrosis [9].

MSCs also play a role in the control of tissue inflamma-
tion. In response to inflammatory factors such as Interferon
(IFNγ) and Tumour Necrosis Factor (TNFα) secreted by acti-
vated immune cells and tissue cells, MSCs adopt an immu-
noregulatory phenotype [10]. They elevate the expression
of anti-inflammatory factors including programmed death
ligand 1 and prostaglandin E2, and inhibit immune cell
activity and proliferation through metabolic regulation, such
as via indolamine 2,3-dioxygenase-dependent catabolism of
tryptophan [11–13]. MSCs furthermore express ATPases and
possess ecto-nucleotidase activity through CD73 expression,
through which they have the capacity to deplete ATP from
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their environment and convert it into adenosine, which modu-
lates the function of innate immune cells [14–16]. Via these
diverse pathways, MSCs act in a feedback loop to downregulate
ongoing inflammation and restore tissue homeostasis.

The combination of regenerative and immunomodulatory
properties has triggered exploration of the therapeutic use of
MSCs. MSCs are relatively easily isolated from tissues such as the
bone marrow and adipose tissue [6, 17, 18] and more recently
umbilical cord tissue has been indicated as a useful source from
which juvenile MSCs can be isolated noninvasively for therapeu-
tic use [19]. MSCs can be expanded under adherent cell culture
conditions to great numbers, and they exhibit a robustness that
enables them to survive a freeze-thawing cycle after cryopreser-
vation, which is crucial for storage and transportation of the
cells. These properties make MSCs attractive candidates for cel-
lular therapy of degenerative and immune diseases. Although
MSCs from various tissue sources show some differences with
respect to cell surface marker expression, proliferation rate, and
differentiation capacity, it is not known whether these differ-
ences lead to different therapeutic efficacy as no head-to-head
comparisons have been made in clinical settings.

In recent years, significant advances have been made in the
elucidation of the mechanisms of action of MSCs. Furthermore,
in 2018 the first allogeneic MSC product received marketing
approval in the European Union. These events represent major
breakthroughs in the field and therefore in the present article
we pose the question whether 2019 will be the start of the
therapeutic era of MSCs. To address this question, we will eval-
uate the state of the art of the mechanism of action of MSCs
and discuss aspects that still pose challenges for the implemen-
tation of MSC therapy.

MECHANISM OF ACTION; CURRENT STATE OF THE ART

MSC Administration

MSCs are under consideration as a treatment for a wide vari-
ety of conditions. The type of condition determines the route
of administration of the cells. For most immunological disor-
ders, intravenous administration has been the route of choice
whereas for bone repair purposes, MSCs are seeded on trans-
plantable scaffolds [20] or administered as in vitro generated
cartilaginous templates that undergo osteogenic differentiation
after implantation [21]. For treatment of other types of tissue
injuries, MSCs have been applied into the wound area via local
injections [22].

The paradigm of how exogenously administered MSCs are
thought to act has changed considerably over the years. Up to
10 years ago, MSCs were believed to migrate to sites of injury,
engraft long-term, and differentiate into functional tissue cells.
However, cell tracking technology and long-term follow-up
studies have demonstrated little evidence that this is indeed
the case. Intravenously administered MSCs accumulate in the
lungs from where the large majority of cells do not migrate to
other sites and do not survive for more than 24 hours [23–25].
There is also evidence that MSCs that are administered as
endochondral bone constructs are replaced by host cells [26].
On the basis of these findings, the prevailing theory on the
mechanism of action of MSCs evolved to the idea that MSCs
act as trophic mediators and in this role modulate the function
of immune cells and tissue resident progenitor cells [27, 28].

Interaction with Host Cells

MSCs are capable of secreting a range of growth factors,
angiogenic factors, and immune regulating factors. The
secretome of MSCs also includes extracellular vesicles, which
contain proteins and μRNAs that control target cell function.
There are multiple examples of therapeutic effects of MSCs in
preclinical models that are attributed to the MSC secretome,
such as for instance the inhibition of colitis via the release
of tumor necrosis factor-induced protein 6 by intraperito-
neal administered MSCs [29] or via the release of the
osteoclastogenic factor Receptor Activator of Nuclear factor
Kappa-B Ligand by MSCs seeded on biomimetic scaffolds
for the treatment of osteopetrosis [30]. Other studies have
demonstrated that the effects of MSCs can be mimicked by
infusion of MSC conditioned culture medium [31, 32]. The
MSC secretome may therefore be effective as a cell-free
therapy in regenerative medicine [33].

Many clinical trials have used the intravenous route of injec-
tion to administer MSCs [34–38]. In the setting of a clinical trial, it
is difficult to provide scientific evidence that the effects of intra-
venously infused MSCs are indeed mediated via secreted factors.
Dosing of MSCs in clinical trials is typically several fold lower than
in animal experiments, and, furthermore, MSCs have an esti-
mated half-life of approximately 12 hours after infusion [39, 40]
and therefore there may not be enough cells around to buildup
relevant concentrations of secreted factors in the blood compart-
ment. Nevertheless, after MSC infusion, transient elevations in
serum cytokine and chemokine levels can be observed [41], but
these are derived from host cells rather than from MSCs them-
selves, as secretome deficient MSCs evoke the same responses
[39]. These observations suggest that some of the effects attrib-
uted to the MSC secretome may have in fact another origin.

Immunomodulatory Effects of MSCs

Evidence is accumulating that many of the immunomodulatory
effects of MSCs are mediated by host cells. It has been demon-
strated that the induction of apoptosis of intravenously infused
MSCs and the subsequent engulfment of MSCs by phagocytic
cells is crucial for the therapeutic effect of MSCs in graft versus
host disease [42]. Engulfment of MSCs induces expression of the
regulatory markers CD163 and CD206 on monocytes and
increases IL10 and TGFβ expression and reduces TNFα, which
strongly suggests the adaptation of a regulatory function of
monocytes upon uptake of MSCs [40] (Supporting Information
Fig. S1). Parallels can be drawn with the response of macro-
phages to tissue injury. Although damage associated molecular
patterns, which are typically released after necrotic cell death
[43], induce inflammatory macrophages, the more controlled sig-
nals stemming from phagocytosis of apoptotic cells or immune
complexes lead to damage resolving and repair macrophages
[44]. Intravenous administration of MSCs may thus mimic a con-
trolled tissue injury event to which the immune system responds
by adapting an immune regulatory and regeneration-supporting
status. Monocytes and neutrophils are the dominant cells in
clearing infused MSCs and whereas neutrophils appear to
deposit in the lungs after engulfment of MSCs, monocytes enter
the circulation and can be detected in the liver [40]. It is tempt-
ing to propose that monocytes, which adopt an immunoregula-
tory phenotype through engulfment of MSCs migrate to distant
sites of injury where they exert their acquired immunoregulatory
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effect. This novel hypothesis on the mechanism of action of
intravenously infused MSCs suggests that maximal therapeutic
effects of MSCs can be obtained not by optimizing the migratory
capacity and secretome profile of MSCs, but by generating MSCs
that are optimally capable of inducing an immune regulatory
and regenerative phenotype and function in phagocytic cells.

Clinical Trials up to 2019

In parallel to these changes of paradigm regarding the mechanism
of action of MSC treatment over the last decade, numerous pre-
clinical studies testing MSCs in a great variety of experimental ani-
mal models of immune-mediated diseases have been carried out,
showing in most cases good safety and efficacy results [45–49].
These encouraging results prompted researchers to test the feasi-
bility, safety, and efficacy of MSCs treatment in human clinical tri-
als in a variety of indications (920 at the start of 2019 according
to). These trials, mostly phase I and phase II, confirmed a positive
safety profile, but provided rather underwhelming efficacy out-
comes. This hampered the progression of MSCs as a marketed
therapy. Marketing approval for the use of MSCs for pediatric graft
versus host disease patients in Canada and New Zealand in 2012
did not lead to the use of MSCs outside the context of clinical tri-
als [49]. An innovation-stimulating framework for regenerative
medicine that was enacted in Japan in 2014 allowed the approval
of MSCs for treatment of graft versus host disease in 2015, but no
other countries followed Japan [49].

It has not been until recently that the first statistically signifi-
cant therapeutic effects of MSC treatment in phase III trials have
been reported. The TiGenix-sponsored randomized, double-
blind, parallel-group, placebo-controlled phase III clinical trial,
NCT01541579, reported statistically significant improvement of
intralesional administration of 120 million allogeneic expanded
adipose mesenchymal stem cells (darvadstrocel, formerly
Cx601) over control in the treatment of complex perianal fistu-
las in Crohn’s disease patients [50]. Thus, a significant difference
was observed in combined remission in patients treated with
darvadstrocel (50%) versus control patients (34%) after 24 weeks.
In the darvadstrocel group, less treatment-related adverse events
were observed. Importantly, the therapeutic benefit and the good
safety profile of darvadstrocel were maintained after 1 year of
treatment [50]. These results allowed TiGenix (recently acquired
by Takeda) to receive central marketing authorization approval for
darvadstrocel by the European Medicines Agency (EMA) in March
2018 for its commercialization of the treatment of complex peri-
anal fistulas in adult patients with nonactive/mildly active luminal
Crohn’s disease, becoming the first approved allogeneic stem cell
therapy in Europe. In addition, in September 2018 Mesoblast
announced the positive results of its open-label phase III trial in
55 children with steroid-refractory acute GvHD, NCT02336230.
Treatment with allogeneic bone marrow mesenchymal stem
cells (remestemcel-L) not only significantly improved the
overall response rate at day 28 (69%) compared with the
protocol-defined historical control rate of 45% (p = .0003), but
also provided a sustained therapeutic effect at 6 months after
the treatment with an overall survival rate for the MSC-treated
group of 69%, compared with the historical survival rates of
10%–30% in patients with grade C/D disease and failure to
respond to steroids (press release, data not published). With
these results, Mesoblast announced that the preparation of a
biologics license application to the Food and Drug Administra-
tion (FDA) in the United States is underway.

Discrepancy in Outcome Between Clinical Trials and
Preclinical Models

In recent years, it has been suggested that the discrepancy
between the consistently positive MSCs efficacy outcomes
from nonclinical experimental animal models (mostly in mice)
and the failure to demonstrate efficacy in human phase III
clinical trials is due, at least in part, to MSCs preparation [49].
In this publication, the authors suggested that nearly all pre-
clinical studies have been performed with syngeneic (autolo-
gous), exponentially expanding, cultured (trypsinized prior to
administration) MSCs, whereas in clinical trials, human MSCs
are usually expanded to their replicative limit, cryopreserved
and thawed immediately before administration and mostly of
allogeneic origin [49], which became the concept of “MSC,
fresh is best,” a repeated mantra in the MSC therapy field. In
our view, those statements are not strictly supported by the
literature. To clarify this, we performed a comprehensive sur-
vey for publications using MSCs in experimental animal models
of inflammatory diseases (focusing mainly on sepsis, acute lung
injury, acute respiratory distress syndrome, arthritis, and colitis).
We identified the methodological details provided in each pub-
lication regarding origin and immunological matching of the
MSCs used, the status of the cells prior to administration
(trypsinized from culture or thawed after cryopreservation), and
therapeutic outcome (Supporting Information Table S1; refs:
51–141). Of the 92 publications reviewed, 40 used auto-
logous/syngeneic (43%), 39 xenogeneic (42%), and 7 allogeneic
(8%) MSCs (Table 1). Notably, 87.5% of the publications using
autologous MSCs (35 out of 40) reported beneficial outcomes,
whereas 100% of publications using xenogeneic or allogeneic
MSCs did (Table 1). Moreover, the majority of publications
evaluated did not clearly state whether MSCs were trypsinized
from culture or thawed after cryopreservation prior to adminis-
tration (72%; Table 2). Thus, only 28% of the publications
reported whether MSCs were cultured (21%) or thawed (5%).
All publications reported therapeutic effects, despite the
alterations that have been described in thawed MSCs com-
pared with cultured cells [142–146]. Only two publications
(2%) were found that compared cultured and thawed MSCs
side-by-side, reporting similar therapeutic effects [67, 80].
These results indicate that xenogeneic MSCs seem to be
equally efficacious as autologous and allogeneic MSCs in the

Table 1. Distribution of preclinical mesenchymal stem calls (MSC)
studies in inflammatory diseases with a focus on sepsis, acute lung
injury, acute respiratory distress syndrome, arthritis, and colitis,
based on MSC origin (autologous, allogeneic or xenogeneic) with
corresponding therapeutic outcome

# of papers % Efficacy # (%)

Autologous 40 43.5 35 (87.5)

Allogeneic 7 7.6 7 (100)

Xenogeneic 39 42.4 39 (100)

Autologous/allogeneic 2 2.2 2 (100)

Xenogeneic/autologous 1 1.1 1 (100)

Xenogeneic/allogeneic 1 1.1 1 (100)

Xenogeneic/autologous/allogeneic 2 2.2 2 (100)

Total # (%) 92 87 (94.6)
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animal models included in the survey. That said, in other
models this may not be the case, as has been shown in a rat
corneal transplantation model where human MSCs in contrast
to rat MSCs failed to prolong allograft survival [147]. In this
model, freshly cultured allogeneic rat MSCs showed equal effi-
cacy as the same cells after cryopreservation [148].

Furthermore, it appears that MSCs administered immedi-
ately after thawing retain therapeutic potency that, at least in
the animal models studied, is equivalent to cultured MSCs. With
regard to the in vitro expansion of the cells, 55 publications
reported the use of MSCs in an ample range of passages (from
p2 to p25), 31 did not indicate the passage used, and six stated
the population doublings of the cultures, making it difficult to
draw conclusions on the effect of expansion rate on the efficacy
of the cells. Despite the limitations of our survey (relatively small
number of publications, variety of animal models and the
unavoidable publication bias causing underreporting of studies
with a negative outcome), given these observations, in our opin-
ion the argument that the disparity between preclinical and clini-
cal therapeutic effects is associated with the use of autologous
MSCs straight from culture in animals, whereas in humans allo-
geneic cryopreserved MSCs are used, should be reconsidered as
the evidence is not conclusive. Further research comparing side-
by-side cultured and thawed MSCs in experimental animal
models is needed. Many studies were methodologically poorly
described, and we urge researchers to provide more detailed
methodological information.

Challenges of MSC Therapy

Since the discovery of MSCs, great enthusiasm and expecta-
tions were generated regarding their clinical application, which
have not been fulfilled as anticipated. At a therapeutic level,
the challenge will be to find the way to obtain significant,
durable, disease-modifying therapeutic effects with a cell ther-
apy product that has a short persistence, specific distribution
and is normally administered once or very few times. We
believe the only way to do so is by a deeper understanding
and characterization of the cells through rigorous science at
preclinical and clinical levels. Despite recent progress in under-
standing the mechanism of action of MSCs, dose determina-
tion and the choice for autologous or allogeneic MSCs still
amount at some degree to deductive reasoning. Translation of
dosing used in, mostly rodent, preclinical models to the clinical
situation is unrealistic as often extremely high cell numbers
are used in preclinical studies that can practically not be

reached in man. Although for a few indications, there is a
preference for the use of autologous MSCs for fear for allo-
sensitization, for other indications the choice for autologous or
allogeneic MSCs is led by availability. Studies describing a
head-to-head comparison between autologous and allogeneic
MSCs are scarce.

Another challenge for the development of MSC therapy
remains the safety profile of MSCs. Although concerns about the
risk for MSC transformation and tumor formation have appeared
ungrounded by the excellent safety profile of MSCs when it
comes to MSC-related tumor formation, there are concerns
about potential adverse inflammatory effects and thrombosis
associated with intravenous infusion of MSCs. MSCs have been
shown to elicit a so-called instant blood-mediated inflammatory
reaction (IBMIR) after exposure to blood. This reaction is depen-
dent on cell dose, cell passage number, and MSC donor [149]. In
contrast to endothelial cells and hematopoietic stem cells, cul-
ture expanded MSCs lack expression of hemocompatibility mole-
cules [150]. Non-bone-marrow-derived MSCs generally express
higher levels of the pro-thrombotic tissue factor, which imposes
a further risk for IBMIR [150]. Although the majority of clinical
trials using bone-marrow MSCs have not reported infusion-
related toxicity [151], the use of MSCs from other sources may
increase the risk for thrombosis [152]. Many researchers have
experienced thrombosis-related events in preclinical models in
which MSCs are usually given in high numbers without anti-coag-
ulation, which should be carefully taken into account in dose-
finding clinical studies. Because of these challenges, further stud-
ies to key aspects of MSC biology and properties that make them
therapeutically of interest are required.

As indicated above, the immunological status of the MSC
recipient and the inflammatory environment MSCs encounter
upon administration may be key in obtaining the desired thera-
peutic benefits, as suggested recently by Galleu et al. in GvHD
patients [42]. Understanding the “inflammatory profile” at the
time of treatment both in preclinical and clinical settings that
would realize the optimal therapeutic potential of MSCs is essen-
tial. The identification of predictive biomarkers for patient strati-
fication (i.e., activity or ratio of certain cell subsets, microRNA or
cytokines at local or systemic level), which may vary from disease
to disease, is undoubtedly needed [153–155]. In line with this,
understanding the right posology (dosing and repeats) is of most
importance. Typically, MSCs are administered systemically in
rodents at a dose of 50 million cells per kilogram, whereas in
clinical trials the dose ranges between 1 and 10 million cells per
kilogram. Up to now, no clear translation to humans of the effec-
tive dose in rodents has been made, and information is limited.
With darvadstrocel, a single administration of, 120 million ASC
were applied, resulting in significant healing and closure of a
local fistula [50]. One could extrapolate that treating systemic
indications with doses of approximately 2 million cells per kilo-
gram (140 million cells in a patient of 70 kg), which is nearly
equivalent to the dose for a local fistula, might not be sufficient.
Much higher doses may be needed for systemic indications. In
addition, repeat treatments might be needed to reach and/or
sustain the therapeutic benefit of MSC therapy, in particular in
the context of chronic indications such as Crohn´s disease or
rheumatoid arthritis. However, comprehensive studies compar-
ing the effect of single versus repeat doses at different time
points, even in experimental animal models, are missing. MSCs
have been considered to be immunoprivileged or poorly

Table 2. Distribution of preclinical mesenchymal stem cells (MSC)
studies in inflammatory diseases with a focus on sepsis, acute lung
injury, acute respiratory distress syndrome, arthritis, and colitis,
based on MSC preparation prior to administration (used straight
from culture or after thawing) and corresponding efficacy

# of papers % Efficacy No efficacy

Not stated 66 71.7 61 5

Cultured 19 20.7 19 0

Thawed 5 5.4 5 0

Cultured vs. thawed 2 2.2 2 0

Total 92
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immunogenic due to the low expression of HLA-I and the lack of
expression of HLA-II and costimulatory molecules [156, 157]. This
feature supported the idea of using allogeneic MSCs generated
from healthy donors as an off-the-shelf cell-based therapy. How-
ever, evidence is increasing that although well tolerated, alloge-
neic MSCs may trigger allo-immune responses, such as the
generation of donor specific antibodies against donor MSCs [50,
158–161]. It is unclear whether these allo-responses impair the
long-term therapeutic effect of the cells, particularly if repeat
dosing is needed, or have detrimental consequences in patients
in the event of a future organ or tissue transplant if an antidonor
memory response is generated. Thus, the immunogenicity of
allogeneic MSCs must be closely monitored in clinical trials and
its relation with efficacy and safety should be established.

At a manufacturing level, a major challenge for clinical appli-
cability of MSC-based products will be to guarantee a robust,
comparable (from donor to donor and batch to batch) and sus-
tainable manufacturing process not only during clinical trial
investigation, but, most importantly, after eventual commerciali-
zation. Variability and heterogeneity in manufacturing and prod-
uct characterization of Investigational New Drug submissions to
the FDA has been reported [162]. To strengthen the manufactur-
ing process, efforts to deeply understand the behavior of MSCs
during in vitro expansion, and further characterization of batch-
to-batch and donor to donor variability and heterogeneity
within MSC preparations are extremely important. In fact, in
the context of allogeneic therapies, developing tests or identi-
fying biomarkers to select the best donors (i.e., highest
immunomodulatory properties, lowest immunogenicity, best
in vitro culture expansion, etc.) will be needed. However, defin-
ing meaningful in vitro test and quality specifications correlating
with relevant product attributes, functionalities or characteristics
in vivo will not be easy. The criteria for defining MSCs as pro-
posed by the International Society for Cellular Therapy [163], are
not necessarily predictors for therapeutic efficacy and therefore
the use of additional markers that exhibit expression variability
between donors has been proposed [164]. It has been shown
that MSCs from donors with a high proliferation rate are smaller
in size, have longer telomeres and show enhanced ectopic bone
forming capacity compared with MSCs from donors with a lower
proliferation rate [165]. For other therapeutic applications, dif-
ferent sets of potency tests may be required, such as proposed
for the selection of MSC donors with above average immuno-
modulatory capacity [166, 167]. At the moment, relevant in vitro
potency tests that enable selection of MSC donors and batches
with enhanced therapeutic efficacy are very limited. In fact, at
the moment, the question whether MSC characteristics are at all
relevant for therapeutic efficacy or whether recipient character-
istics are the more important determinant for therapeutic effi-
cacy has not been answered sufficiently.

Beyond 2019: Cell-Free MSC Therapy?

The year 2019 may be the start of the therapeutic era of MSCs.
The future will tell whether this era will last or will be replaced
by an era of novel cellular technology. Academic researchers,
clinicians, and industry recognize that MSC therapy is not a
straightforward treatment as it involves donor selection and
cell harvesting, expansion and storage, which requires spe-
cialized labs. At patient level, identification of predictive effi-
cacy stratification biomarkers is important and the most

appropriate posology and route of administration for the
intended indication needs to be determined. Although the
safety record of MSC therapy is excellent, living cells may have
a small risk for cellular transformation and this could potentially
lead to the administration of transformed cells with
unpredictable behavior. Furthermore, in the search for efficacy
there is a drive for increasing cell doses, which may induce the
risk for blood incompatibility reactions. The most recent find-
ings on the mechanisms of action of MSCs provide new leads
for designing MSC therapy with optimal immunomodulatory
and regenerative effects customized to specific diseases. This
will include indication of specific routes of administration and
the use of active components of MSCs. For particular indica-
tions, the secretome of MSCs may be sufficient to initiate
immunomodulatory or regenerative responses whereas for
other indications MSC therapy may be replaced by
phagocytosis-inducing components of MSCs that shift the status
and function of immune cells. Recent work demonstrated that
isolated fragments of MSC membranes form 100–200 nm sized
lipid bilayer vesicles, which are phagocytosed by monocytes and
subsequently modulate their function [168]. It was also shown
that pretreatment of MSCs with IFNγ, which is well recognized
to lead to modification of MSC membrane protein composition,
leads to the generation of membrane vesicles with distinct func-
tion. Results from ongoing clinical trials with MSCs and preclini-
cal and in vitro models will step-by-step allow researchers to
attribute the therapeutic effects of MSCs to specific compo-
nents of the cells. This is expected to lead to more specific,
easier to handle cell-free MSC therapy in the future.

CONCLUSION

The year 2018 was a milestone in the field of MSC therapy
with the first EMA marketing approval of an MSC product. In
the coming years it will become clear whether MSC therapy
will take flight and become available for multiple indications.
Although clinical trials proceed, we learn more about the
mechanism of action of MSCs. It appears that the host
immune system plays a crucial role in the efficacy of MSC ther-
apy. Donor selection and preparation may be equally impor-
tant for the success of MSC therapy as MSC phenotype. From
the perspective of 2019, we expect to see continuing efforts
to find novel therapeutic uses for MSCs. The mechanism of
action of MSCs will be further elucidated in preclinical and
clinical studies and this will lead to rational predictions of both
patient characteristics and MSC properties that are supportive
for MSC therapy. The year 2019 is the dawn; the future will
tell whether the era will be long and prosperous.
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