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In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene
expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by
developing and applying new sophisticatedmathematical approaches. Here, we present extensions of 2D singular spectrum analysis
(2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to
gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used
cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to
decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different
genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction
and analysis of 3D features in 3D gene expression patterns.

1. Introduction

While the availability of genome sequences has drasti-
cally revolutionized biological and biomedical research, our
understanding of how genes encode regulatory mechanisms
is still limited. Embryonic development depends critically on
such regulatory mechanisms in order for cells to differentiate
in the correct positions and at the correct times. Global
understanding of gene regulation in development requires
determining at cellular resolution in vivo when and where
each gene is expressed. New dynamic, cellular resolution
atlases will address the question of how gene transcription
factors influence expression patterning [1].

With the development of automated microscopy tech-
nologies in recent years the volume and complexity of image
data have increased to the level that it is no longer feasible
to extract information without using computational tools.
Biologists increasingly rely on computer scientists to come
up with new solutions and software [2]. Such computational
tools have been essential for processing the images generated

by high-throughput microscopy of large numbers and vari-
eties of biological samples under a variety of conditions.
Recent advances in labeling, imaging, and computational
image analysis are allowing quantitative measurements to be
made more readily and in much greater detail in a range of
organisms (e.g., Arabidopsis, Ciona, Drosophila, C. elegans,
mice, Platynereis, and zebrafish) [1, 3–6]. In particular,
imaging of single intact small organisms, like Drosophila
and C. elegans, is now feasible with high resolution in two
dimensions, three dimensions, and across time, resulting
in massive image data sets available for comprehensive
computational analysis.

These large-scale quantitative data sets provide new
insights to address many fundamental questions in develop-
mental biology. The initial inputs for deriving quantitative
information of gene expression and embryonic morphology
are usually raw image data of stained fluorescent markers
in fixed material. These raw image sets are then analyzed
by computational algorithms that extract features such as
cell location, cell shape, and gene product concentration.
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Figure 1: An example of overcorrection in gene expression data causing the subtraction of the reference gene pattern (the seven-striped ftz
and eve patterns; dark magenta) from the pattern under study (hb and Kr gene products (transcription factors); light blue). Visualization by
PointCloudXplore tools [7], BDTNP embryos hb “v5-s11512-2oc06-25” ((a) and (c)), Kr “v5-s12169-24oc07-22” ((b) and (d)); (c) is the
same as (a) with added ftz; (d) is the same as (b) with added eve.

Figure 2: An example of undercorrection, in which the periodic
reference gene pattern (eve; dark magenta) adds periodicity to
the nonperiodic pattern under study (sna gene product; yellow).
Visualization by PointCloudXplore. Embryo “v5-s10531-28fe05-
07.”

Ultimately, the most powerful way to analyze 3D spatial data
in biology is by developing and applying new sophisticated
mathematical approaches, allowing for the rigorous compar-
ison of multiple quantitative features [8, 9].

In this publication, we introduce new computational
tools to analyze gene patterning for three spatial dimension
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Figure 3: hb and ftz: original images of the “unrolled” cylindrical
surface; the top values are a direct continuation of bottom values.

datasets, applied to earlyDrosophila embryos.These tools are
an extension of two-dimensional singular spectrum analysis
(2D-SSA).
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Figure 4: hb: the original image and the elementary components extracted by circular 2D-SSA.The original image and the leading component
(F1) are colour-mapped according to themin andmax expression levels. Formore contrast, the remaining components are depicted in a binary
format, with positive values in beige and negative values in purple.

Introduction to the Method. Singular spectrum analysis [10–
15] was originally suggested as a method for decomposition
of time series into a sum of identifiable components such
as trend (or pattern), oscillations, and noise. One advantage
of this method is that it does not need a noise model to
be given a priori. We decompose the data series into a
set of elementary series, analyze them, choose appropriate
components, and finally sum the identifiable components
together in classes. As an example, selection of smooth
components can produce adaptive smoothing. SSA is very
useful for exploratory analysis since the method can deal
with modulated noise, that is, noise that can depend on trend
values (e.g., has a multiplicative nature).

Recently SSA was extended for analysis of two-
dimensional objects (2D-SSA), for example, digital images
[16, 17]. Decomposition of images is more complicated
compared to time series analysis due to variability of 2D
patterns. But methods which are easily controlled and
adaptive, such as 2D-SSA, can have broad applicability.

2D-SSA has much in common with the 2D-ESPRIT
method (see [18]), which is based on the parametric form
of images and has many applications. 2D-SSA and related
subspace-based methods are applied in texture analysis [19],
seismology [20], spatial gene expression data [21], and medi-
cal imaging [22].

The paper [23] applied 2D-SSA to the analysis of dig-
ital terrains in geology and demonstrated that 2D-SSA is
a useful tool for analyzing different levels of details in surface
data. Later, based on the theory given in [17], 2D-SSA was
applied to gene expression data to separate nuclear noise from
expression trend [21].

The papers [24, 25] present extensions of 2D-SSA which
increase the range of SSA applications. In the present paper,
we demonstrate how these extensions can be applied to
analyzing gene expression data.

This paper is structured as follows. Section 2 describes the
data sets which were analyzed. Section 3 describes the new
methodology, and Sections 4 and 5 demonstrate the approach
on several examples.

The new approaches described here, circular and shaped
2D-SSA, are particulary applicable to cylindrical surfaces
(as used for Drosophila embryos), to avoid edge effects
and patterns of irregular shape. For example, the area of
good quality data in an image (e.g., without oversaturation)
can be nonrectangular and even have gaps. Also, since the
planar projection of a Drosophila embryo is nearly ellip-
tical, the ability to analyze nonrectangular shapes can be
useful.

Section 4 deals with the problem of detection and
improvement of under- and overcorrection in multichannel
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Figure 5: ftz: original image, F1 with the background; the remaining elementary components are depicted in a binary format.
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Figure 6: hb (a) and ftz (b): reconstruction from the main striped components 5 and 6 for the hb analysis, 2 and 3 for the ftz analysis. The
stripes are out of phase for hb and ftz.

imaging, while Section 5 considers the problem of analysis of
stripe shapes for the even skipped gene. Section 6 contains a
short discussion and conclusions.

2. Materials

Data are taken from the Berkeley Drosophila Transcrip-
tion Network Project (BDTNP) [4], which contains three-
dimensional (3D) measurements of relative mRNA concen-

tration for 95 genes in early development (including snail
(sna)) and the protein expression patterns for four genes
(bicoid, giant, hunchback (hb), and Krüppel (Kr)) during
nuclear cleavage cycles 13 (C13) and 14 (C14A). BDTNP
Release 2 contains individual datasets (PointCloud files) for
2830 embryos (http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp).
These data were registered to the coordinates of 6078 nuclei
on the embryo cortex and presented as an integrated dataset
(VirtualEmbryo file, with tools for visualization and analysis).
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Figure 7: hb (a) and ftz (b): reconstruction from all striped components.
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Figure 8: hb ((a) to (d)): original image, unstriped pattern, stripes, and residual noise.
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Figure 9: Kr and eve: original images.

Embryos were fixed and fluorescently stained to label the
mRNA expression patterns of two genes plus nuclear DNA.
One of the genes stained was either even skipped (eve) or

fushi tarazu (ftz), which were used as fiduciary markers for
subsequent spatial registration.

3. Methods

3.1. 2D Singular Spectrum Analysis. We will follow the com-
mon structure of 2D-SSA algorithms described in [24, 25].
This common structure consists of embedding, decompo-
sition, grouping, and reconstruction steps. Input for a 2D-
SSA algorithm consists of an image X and the shape of a
moving window (which is the main algorithm parameter).
The output of a 2D-SSA algorithm is the decomposition ofX
into identifiable components of the formX = X

1
+ ⋅ ⋅ ⋅ +X

𝑠
.

Common Scheme of SSA-Like Algorithms

(1) Embedding Step. Construction of the trajectory matrix
X = T(X) ∈ H, where H is a space of structured
Hankel-like matrices. The structure of the matrix X (and
the space H) depends on the algorithm modification and on
the moving window. Generally speaking, the columns of the
trajectory matrix consist of the windows moving along the
image, transformed to vectors by a fixed order of window
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Figure 10: Kr gene expression, with circular 2D-SSA decomposition: original image and elementary components. As with Figures 11 and
10, the original image and leading component (F1) are colour-mapped according to min and max expression levels. For more contrast, the
remaining components are depicted purple and beige.

elements. In a sense, the window size reflects the resolution
of the method; that is, larger windows lead to more detailed
decompositions.

(2) Decomposition Step. Singular value decomposition (SVD)
of the trajectory matrix X = ∑𝑑

𝑖=1
√𝜆
𝑖
𝑈
𝑖
𝑉

⊤

𝑖
= ∑

𝑑

𝑖=1
X
𝑖
. Here

(√𝜆
𝑖
, 𝑈
𝑖
, 𝑉
𝑖
) are so-called eigentriples (abbreviated as ET) and

consist of singular values, left and right singular vectors of
X. The eigenvectors can be transformed back to the window
form.Thismeans that we can consider eigenvectors as images
and call them eigenimages.

(3) Grouping Step. Partition {1, . . . , 𝑑} = ∐𝑠
𝑗=1
𝐼
𝑗
and grouping

of summands in the SVD decomposition to obtain a grouped
matrix decomposition X = ∑𝑠

𝑗=1
X
𝐼𝑗
, where X

𝐼
= ∑
𝑘∈𝐼

X
𝑘
.

The grouping with 𝐼
𝑗
= {𝑗} is called elementary. The aim

of this step is to group the SVD components to obtain an
interpretable decomposition of the initial object. This can be
performed by means of analysis of eigentriples.

(4) Reconstruction Step. Decomposition of the initial image
X = X

1
+⋅ ⋅ ⋅+X

𝑠
, whereX

𝑗
= T−1H(X

𝐼𝑗
);H is the operator

of projection on the space H (e.g., hankelization in the 1D
case);H(X

𝐼
) = ∑
𝑖∈𝐼

H(X
𝑖
) holds.

Let us explain the sense of the embedding operator T
for the 1D case, since it is simpler and demonstrates the

general methodology. For a one-dimensional series X =

(𝑥
1
, . . . , 𝑥

𝑁
), we take moving 1D windows of length 𝐿 and

construct the columns of the trajectory matrix in the forms
𝑋
1
= (𝑥
1
, . . . , 𝑥

𝐿
)

T, 𝑋
2
= (𝑥
2
, . . . , 𝑥

𝐿+1
)

T, and so on. From
these𝐾 = 𝑁−𝐿+1 lagged vectors we gather a Hankel matrix
with equal numbers on antidiagonals called the trajectory
matrix

TSSA (X) =(

𝑥
1
𝑥
2
𝑥
3
⋅ ⋅ ⋅ 𝑥

𝐾

𝑥
2
𝑥
3
𝑥
4
⋅ ⋅ ⋅ 𝑥
𝐾+1

𝑥
3
𝑥
4
𝑥
5
⋅ ⋅ ⋅ 𝑥
𝐾+2

.

.

.

.

.

.

.

.

. d
.

.

.

𝑥
𝐿
𝑥
𝐿+1
𝑥
𝐿+2
⋅ ⋅ ⋅ 𝑥

𝑁

). (1)

It is well known that Hankel matrices are related to
series which consist of sums of products of polynomials,
exponentials, and sine waves and the problem is to separate
this sum into addends. If we can separate exponential and
polynomial approximations from the residual, then we can
extract trends and patterns. If we are able to separate sine
waves with different frequencies, then we can construct
a decomposition on components with different frequency
ranges.

The singular value decomposition (SVD) of the trajectory
matrix constructs a sequence of elementary matrices, which
provides the best approximations of the initial matrix and,
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Figure 11: eve gene expression, with circular 2D-SSA decomposition: original image and elementary components.
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Figure 12:Kr and eve: reconstruction with stripe components, from theKr image (a) and from the eve image (b).The frequencies correspond,
but are out-of-phase, indicating overcorrection in the unmixing algorithm.

in a sense, of the initial series: X
1
, X
1
+ X
2
, and so on.

Thus, we obtain the optimal decomposition, which is adaptive
to the initial series. Note that the maximal number of the
decomposition elements is equal to min(𝐿, 𝐾). SSA theory
explains why we can group the elementary components in
the SVD expansion to solve such problems as, for example,
smooth approximation and extraction of regular oscillations.

After a proper grouping, we obtain a matrix X
𝐼
, which is

close to a Hankel matrix, but not exactly Hankel. We can find

the Hankel matrix closest to X
𝐼
= {𝑦
𝑖𝑗
} by hankelization, that

is, by averaging values by antidiagonals. Thus, we obtain the
series consisting of 𝑦

11
, (𝑦
12
+ 𝑦
21
)/2, (𝑦

13
+ 𝑦
22
+ 𝑦
31
)/3, and

so on.Themth term is determined as∑
𝑖,𝑗∈A𝑚
𝑦
𝑖𝑗
/|A
𝑚
|, where

A
𝑚
= {𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝐾, 𝑖 + 𝑗 = 𝑚 + 1}.
The role of 𝐿 is as follows. Small 𝐿 provides a decomposi-

tion to a small number of components, which mostly differ
by frequency, and where the leading components present
slowly varying series like the trend. Larger 𝐿 leads to more
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Figure 13: Kr: processing of the Kr expression image by circular 2D-SSA. ((a) to (d)): original image, pattern components (numbers 1–8),
stripes (components 9, 10, 13, 15, 20, 25), and residual noise.
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Figure 14: sna image, area 1, strong expression zone. ((a) to (c)): original image, reconstruction without stripes, and stripe components from
the eve marker.

detailed decomposition. This gives more chance to extract a
component; however, some components can mix. Therefore,
if the data series has a trend with a complex form or has
periodicities with complexmodulation, then window lengths
should be moderate.

These generalities also hold for the case of 2D-SSA.
In practice, the difference between 1D and 2D is in the
construction of the trajectory matrices, which are quasi-
Hankel, in particular Hankel-block-Hankel. The moving
window is two-dimensional, for example, a rectangle. In
this paper, we introduce circular SSA, for treating rectangles
with periodic boundary conditions, for example, data sets
on cylindrical geometries. Small window size corresponds to
smoothing. We can take into consideration the structure of
the image in different directions by choosing different sizes
in different directions. The trajectory matrix is constructed
from vectorized windows of arbitrary shape moving within
the whole image (including circular domains, for periodic
boundary conditions).

3.2. Particular Cases. For a rectangular image, with a rect-
angular window which moves within the image boundaries,

we obtain the standard 2D-SSAmethod. If the image and the
window are of arbitrary shape, the shaped version of 2D-SSA
is applied [25]. If the window can cross the boundary of the
image, we obtain a circular version of 2D-SSA.

For example, let us take an image (a matrix in the
mathematical sense)

X = (

1 2 3

4 5 6

7 8 9

) (2)

and the window of size 2×2.Then we have a set of 4 windows
in the ordinary version, ( 1 2

4 5
), ( 2 3
5 6
), ( 4 5
7 8
), and ( 5 6

8 9
), and two

additional windows, ( 7 8
1 2
), ( 8 9
2 3
), in the circular case. For the

circular case, the trajectory matrix will have the form

X = (

1 2 4 5 7 8

2 3 5 6 8 9

4 5 7 8 1 2

5 6 8 9 2 3

) . (3)

One can see that the 2D trajectory matrix consists of
trajectory matrices from each matrix’s row.
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Figure 15: sna image, area 2, weak expression zone. ((a) to (d)): original image, reconstruction without stripes, and stripe components.

3.3. Choice of Parameters, Separability, and Component Iden-
tification. Approach to the choice of window size for one-
dimensional time series is thoroughly described in [13, 26].
Recommendations for 2D objects are more complicated.
For extraction of so-called objects of finite rank (sums of
products of polynomials, exponentials, and sinusoids), which
satisfy linear recurrence relations (LRRs), windows should
be large, up to half of the object size. However, real-world
patterns usually have complex form and satisfy LRRs only
approximately and locally. The window needs to agree with
this local character. In particular, sine waves are exactly
governed by an LRR. However, if a 2D-sine wave has a slowly
changing location, then only its local parts satisfy an LRR.The
window sizes need to be in accordance with the scale of this
locality. Choice of window size is always a balance between
the local and the global scales of the data.

Generally, SSA can separate smooth patterns from noise
for a wide variety of patterns. For regular patterns, 2D-
SSA can be applied whether the pattern varies smoothly
or sharply. However, if the pattern is not regular, variation
needs to be smooth in order to use 2D-SSA for signal
separation. Irregular pattern with sharp variation is poorly
separated by 2D-SSA. If, however, the sharp change occurs
in narrow area, this can be cut out, and the remaining data
analyzed by shaped SSA, which is a version of 2D-SSA with a
nonrectangular shape of the image or the window.

Elementary components are grouped based on their
similarity to the data components being extracted. For regular
components like sine waves, the number of elementary
components can be calculated from theory. Also, patterns
usually have a limited frequency range (usually lacking
high frequencies). In general, therefore, leading elementary
components with the appropriate frequency characteristics
are ascribed to pattern.

In this paper we show how 2D-SSA can be used to remove
noise, to separate regular oscillations from slowly varying
patterns (for correcting erroneous unmixing procedures),
and to extract stripes for their further analysis. Shaped SSA
allows for the analysis of complex patterns by splitting images
into several parts.

Drosophila early gene expression (before the midblas-
tula transition) produces smooth and simple patterns suitable
for 2D-SSA processing. A number of web resources have
such datasets (BDTNP BID [4], Fly-FISH http://fly-fish.ccbr
.utoronto.ca [27], FlyEx http://urchin.spbcas.ru/flyex [28];
see also [29, 30]). Shaped SSA can also be useful for a
common subset of this data, in which patterns fall sharply to
zero. In these cases, subregions can be excised or analyzed
separately from the whole image. The gene sna is a typical
Drosophila example seen in the BDTNP BID; such compact
patterns are also seen in other experimental organisms, such
as the nine zebrafish genes [31]. We expect 2D-SSA and
shaped SSA to therefore have broad applicability to image
processing in developmental biology.

The problem of unmixing expression patterns from two
different genes in one image [32] requires additional con-
ditions. Specifically, information is needed on the unmixed
expression of each gene (i.e., data from one gene in the
absence of the other gene). If the two genes have slowly
varying patterns, they cannot readily be separated by SSA. In
such cases, SSA cannot be used to detect or correct errors in
mixed images.However, SSA is an effective unmixingmethod
for cases in which one gene has an approximately regular
structure, and this differs from the structure of the other gene.
In this paper, we apply SSA to signal unmixing and image
correction for such cases from Drosophila data.

3.4.Data Preprocessing. Initially, the data for 2D-SSAanalysis
should be measured on a regular grid. Data for gene expres-
sion are measured at nuclei, which are not regularly located
on a 3D surface of embryo (which is roughly ellipsoidal in
shape). The first step of preprocessing is a cylindrical projec-
tion of the data (centred on themajor axis of the ellipsoid; the
major axis of the embryo is found by principal component
analysis). We then interpolate the data to a regular grid on
this cylinder. We analyze a central region of the cylinder, in
order to avoid corruptions near the poles from the ellipsoid
to cylinder transformation. After 2D-SSA decomposition, we
interpolated the data back onto the nuclear centers. This
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Figure 16: sna, combined image (both zones from Figures 14 and
15). ((a) to (d)): original image, reconstruction without stripes, and
the difference. BDTNP embryo v5-s10531-28fe05-07.pce.

interpolation is performed for smooth components; residuals
are calculated as the difference between the initial data and
interpolated smooth components.

Interpolation involves Delaunay triangulation followed
by linear interpolation of nuclear centers to the triangulation.

3.5. Implementation. The algorithms are implemented in the
Rssa and BioSSA packages in R. Rssa is a general-purpose
package containing effective implementation of singular
spectrum analysis and its 2D extensions. 2D-SSA algorithms
are time- and memory-consuming and therefore it is very
important to have an effective implementation. A description
of Rssa with examples can be found in [24, 33]. The R-
package BioSSA is an addition to Rssa for application to
fly embryo gene expressions data and is briefly described at
http://biossa.github.io/.

4. Periodic Patterns Produced by
Unmixing Algorithms

Different emission spectra for fluorescent probes allows for
the simultaneous staining for 3-4 gene products in embryonic
tissues. Quantitative imaging projects [4, 30] use the same
gene in one of these channels in all embryos, for reliable
quantitative comparisons, registration, and so forth.The gene
used for this marking in Drosophila embryos is commonly
one of the pair-rule genes (such as eve or ftz), which have a
characteristic periodic 7-stripe expression pattern.

Multichannel imaging suffers from an inherent problem
of overlapping emission spectra (when the fluorescent mark-
ers are simultaneously excited (e.g., [34])), where light from
more than one fluorescent dye is collected by a given acqui-
sition channel. To computationally reduce this “crosstalk,”
an automated channel unmixing method was developed and
applied to the BDTNP data [32].

The problem with this approach in large scale projects
with automatic data processing is that the unmixing parame-
ters can endupbeing too high or too low. If the parameters are
overestimated, unmixing produces an overcorrection, which
is manifest as a partial subtraction of the common, reference
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Figure 17: sna and eve: the original images (a) and the stripes (b),
sna at top and eve at bottom.

pattern from the pattern of the second gene (the gene under
study for the embryo). With periodic reference patterns (eve,
ftz), this produces periodic grooves in the “unmixed” pattern.
Figure 1 shows the effects of such overcorrection in one of the
BDTNP embryos.

On the other hand, if the unmixing parameters are
underestimated, unmixing produces an undercorrection,
which can be seen as an addition of the common, reference
pattern to the pattern of the second gene (that one being
studied in the given embryo). Figure 2 shows an example of
undercorrection on a BDTNP embryo.

Misestimation of the unmixing parameters can be seen to
introduce periodicity in a number of BDTNP embryos from
the 7-stripe eve or ftz reference patterns. The effect is strong
enough to be seen in some images integrated from multiple
embryos (such as Figure 2).

We now show how decomposition by circular 2D-SSA
can be used to estimate and eliminate the periodic compo-
nents caused by under- or overcorrection, using the examples
of the BDTNP images in Figures 1 and 2.

4.1. Circular 2D-SSA, hb Corrupted by ftz, and Strong Over-
correction. Figure 3 shows the original images for hb and ftz
expressions from a BDTNP embryo (ID “v5-s11512-2oc06-
25”). The natural hb trend is of low frequency; the natural
pattern of ftz is of high frequency; crosstalk, with overcorrec-
tion in the unmixing algorithm, “bleeds” the high frequency
ftz pattern into the hb pattern. These images are “unrolled”
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Figure 18: (a) original image, (b) reconstruction of strips, (c) conversion to black and white, according to positive or negative values on the
intensity scale; black-white boundaries are shown as red lines on the original image. BDTNP embryo “v5 s10901-20ap06-11s10901.”

from the cylindrical projection of the data; therefore, the top
and bottom edges connect (periodic boundary conditions).

We preprocess the images by interpolating to a regular
grid (step 0.5%) and removing 20% from the left and 5%
from the right (to focus on the stripe region). Use of circular
2D-SSA allows us to analyze the cylindrical dataset. We use
a rectangular window of 25 × 10. In consideration of the
regular oscillations along the anteroposterior (AP, horizontal)
coordinate, the first window dimension, 25, is larger than the
second dimension, 10.

Figure 4 presents 2D-SSAdecomposition into elementary
image components for hb; Figure 5 shows this for ftz (we
depict the 26 largest components; the smaller components
were not found to be significant in image reconstruction).
Figure 4 contains a number of components with vertical
stripes caused by or influenced by the ftz channel. If one
compares elementary components of the ftz decomposition
(Figure 5, striped components 2–5, 9–11, and 15–17) with the
hb decomposition (Figure 4), it appears that hb components
1–4 are likely due to expression pattern, while components 5–
9, 11, and probably 10, 12 are due to ftz-correction.

Figure 6 shows reconstructions from the leading high
frequency components for each image, components 5 and
6 from Figure 4, components 2 and 3 from Figure 5. The
reconstructions are very similar, but have opposite phases,
indicating that the hb data was overcorrected. Figure 7 is
reconstructed from all striped components for each image;
again, the patterns are very similar but of opposite phase.

Simultaneously, with removing stripes, this process also
decomposes an image into pattern and noise (residuals):
Figure 8 shows reconstruction of hb expression from the
“unstriped” components 1–4, alongside the striped com-
ponents (strongly affected by ftz) 5–12 and the residuals.
Circular 2D-SSA provides a method for removing under- or
overcorrection in the unmixing algorithm and therefore of
clearing gene patterns from crosstalk effects. For an image
without stripes, 2D-SSA produces a direct decomposition
into pattern and noise.We showhere that SSA decomposition
is robust for data with crosstalk stripes.

4.2. Circular 2D-SSA, Kr Corrupted by eve, and Weak Over-
correction. In some cases, crosstalk stripes from the pair-rule
reference marker are barely visible in the gene of interest.
In these cases, circular 2D-SSA is still effective at removing
artefacts from misestimation of the unmixing parameters.
Figure 9 shows images from an embryo “v5-s11512-2oc06-
25” stained forKr (gene of interest)mRNA and eve (reference
marker) mRNA. In this case, there is weak overcorrection,
with eve adding to apparent intensity in the Kr image. Kr, like
hb (Figure 3), is a gap gene, with low frequency expression
pattern, compared to the high frequency evepair-rule pattern.

We perform the same preprocessing and choose the
same method parameters as in Section 4.1. Figure 10 shows
circular 2D-SSA (top and bottom edges are contiguous)
decomposition into elementary components for Kr; Figure 11
shows this for the eve image.

The decomposition in Figure 10 shows components with
low frequency vertical stripes corresponding to the Kr signal,
as well as high frequency stripes corresponding to eve. These
high frequency stripes can be seen in the eve decomposition
(Figure 11), in particular components 4-5, 7–9, 11, 13, 15, 19,
and 20. Conversely, Kr crosstalk on the eve image is apparent
in Figure 11 in components 9, 10, 13, 15, 20, and 25. Figure 12
shows reconstructions using the stripe components from the
images. Again, being a characteristic of overcorrection in
the unmixing algorithm, these patterns are of comparable
frequency, but of opposite phase.

Figure 13 shows reconstruction of the Kr expression
pattern from the circular 2D-SSA components. In the analysis
of Figure 3, crosstalk overcorrection was strong and evident
by eye. In Figure 9, the crosstalk stripes are not as evident by
eye, but circular 2D-SSA is still effective for separating signal
from the gene of interest (Kr) from the striped reference
marker. Separation of pattern components leaves residual
noise, for studying stochastic effects in gene expression.

4.3. Shaped 2D-SSA, sna Corrupted by eve, and Undercor-
rection. A number of genes express in patterns which are
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Figure 19: Four cases of the 3D geometry of eve expression stripes. Stripe 4 can be a forward “C”-shape (a), straight (b), a negative “C”-shape
(c), or “S”-shaped (d). BDTNP embryo IDs are given on the images.

more complex than the general AP variation seen with gap
genes such as hb and Kr. To analyze crosstalk for such
data, we introduce the shaped version of 2D-SSA. As an
example, snail (sna) is expressed in a broad band along the
ventral midline of the embryo (Figure 16, v5-s10531-28fe05-
07, cy3 apical). Since sna shows a very sharp transition
from expressing to nonexpressing regions, we analyzed these
separately (Figure 14, expressing; Figure 15, nonexpressing).
Analysis was conducted on a regular grid (step 0.5%), clipped
15% from left and right (as for Figure 9). For the central
expressing zone (Figure 14), we used a window of 40 × 10; for
the lateral nonexpressing zone (Figure 15), we used a window
of 30 × 10.

Decomposition shows that the elementary components
{3, 4} (Figure 14) and {4, 5, 16, 17} (Figure 15) correspond to
stripes, which come from the eve reference marker. Figures
14 and 15 show these stripe components and the effect of
removing these stripes to reveal the sna signal. Figure 16
shows this for the complete sna image (combination of
the expressing and nonexpressing zones). In this case, the
stripe components from the sna image and from the eve
marker image are in phase, indicating that this is a case of
undercorrection in the unmixing algorithm (see Figure 17,
where the original images and the stripe reconstructions are
put together).

Thus, we have constructed a procedure for removing
under- or overcorrections. Note that if an image does not
contain stripes, images of elementary components also will
not contain stripes and therefore can see if correction is
necessary.

5. 3D Geometry of the Early Segmentation
Pair-Rule Stripes

As discussed above, the early Drosophila embryo is roughly
a prolate ellipsoid. Gene expression patterns defining the
AP and dorsal-ventral (DV) axes are relatively independent.
However, even clearly AP-varying patterns, such as the eve
and ftz pair-rule striped patterns, display some degree of DV
variation. This can be affected by deviations from ellipsoidal
symmetry (e.g., embryos have a longer ventral surface (or
“belly”) than dorsal surface) and also from variations in the
axial ratio (see [4]).

Embryo-to-embryo variability in eve expression in theAP
axis has been well documented and discussed in terms of the
robustness of the developmental programme. However, such
analysis has been in 1D. Analyzing 3D images, for example,
with 2D-SSA, reveals new levels of variability.

Figure 18 is an unfolded cylindrical projection of eve
expression, showing the DV variation of the 7-stripe pattern,
especially as the stripes bend around the ventral “belly” of the
embryo (horizontal midline of image). To quantify the stripe
geometry, we identify stripe boundaries at the threshold
between positive and negative values on the intensity scale.

Using this boundary identification procedure, let us focus
on the shape of the central (4th) eve stripe (Figure 19;
the 4th stripe has minimal effect from the ellipsoidal to
cylindrical projection). Preprocessing included interpolation
of the cylindrical projection to a regular grid, clipping
25% of the image on the left and 15% on the right and
using a 15 × 10 window. Applying circular 2D-SSA, we use
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Figure 20: “C” and straight eve stripe 4 shapes, shown in black and
white. BDTNP embryo IDs given on the images.

components 2 and 3 to represent the striped expression. The
4th stripe is frequently straight across the ventral midline
(Figure 19(b)) but can often show curvature as well. Cur-
vature can be “C”-shaped, both forwards (Figure 19(a)) and
backwards (Figure 19(c)), or “S”-shaped (Figure 19(d)). For
clarity, Figure 20 shows the “C” and straight shapes in black
and white and in the original aspect ratio.

Stripe 4 of eve is critical for subsequent segmentation
events in fly development. These events need to be robust
to the curvature variability reported here. It is currently
unknown which mechanism might produce this robustness,
but it warrants further investigation. For example, what is
the correlation between the size of the ventral “belly” of
the embryo and stripe 4 curvature? And does this suggest a
“shape compensation” such that embryos can develop nor-
mally despite variable early geometry? (Systematic analysis
should also be done to examine the possible contribution
of experimental errors (e.g., fixation procedures) to stripe
variability, which may involve comparison with live imaging
techniques.)

6. Conclusions

This paper has shown the applicability of our new shaped and
circular extensions of 2D-SSA to analyzing embryo images
from a quantitative high-throughput project in developmen-
tal biology. We have shown that 2D-SSA can decompose
images and classify components according to the gene of

interest.This is an effectivemeans for reducing the “crosstalk”
between gene channels which arises in the imaging technique
but can be amplified by the automated postprocessing unmix-
ing algorithm.

Circular 2D-SSA is a critical extension for analyzing
cylindrical data projections (accounting for periodic bound-
aries in “rectangular” images). Shaped 2D-SSA allows for the
analysis of subregions of the image, important for analyzing
complex expression patterns, complex geometries, and avoid-
ing edge effects.

The procedure is performed under user control and can
be adapted to an image’s unique structure with a flexible
choice of window shapes and sizes.This is currently a manual
procedure and future work will focus on reliable automation
of the process.

Wehave demonstrated that 2D-SSA can be used to extract
signal and noise from imageswith both strong andweak over-
or undercorrection of crosstalk. This is a significant tool for
separating gene expression in multichannel images and for
extracting residual noise for studying the stochastic aspects of
gene expression. In particular, we have used SSA to separate
low frequency genes of interest (the gap genes hb and Kr, and
sna) from “bleed-through” crosstalk of the high-frequency
pair-rule fiduciary markers (eve and ftz). In addition, we
have shown how SSA components can be used to quantify
eve stripes (in particular stripe 4) and how this reveals new
types of variability in expression, leading to new insights
into developmental mechanisms. These are all examples of
how 2D-SSA can be applied—we expect them to be broadly
generalizable to other cases of multichannel 3D data from
Drosophila and other organisms.
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