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Two‑step genomic sequence comparison 
strategy to design Trichoderma strain‑specific 
primers for quantitative PCR
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Abstract 

Survival of inoculated fungal strains in a new environment plays a critical role in functional performance, but few 
studies have focused on strain-specific quantitative PCR (qPCR) methods for monitoring beneficial fungi. In this 
study, the Trichoderma guizhouense strain NJAU 4742 (transformed with the gfp gene and named gfp-NJAU 4742), 
which exhibits a growth-promoting effect by means of phytohormone production and pathogen antagonism, was 
selected as a model to design strain-specific primer pairs using two steps of genomic sequence comparison to detect 
its abundance in soil. After a second comparison with the closely related species T. harzianum CBS 226-95 to further 
differentiate the strain-specific fragments that had shown no homology to any sequence deposited in the databases 
used in the first comparison, ten primer pairs were designed from the whole genome. Meanwhile, 3 primer pairs, 
P11, P12 and P13, were also designed from the inserted fragment containing the gfp gene. After verification testing 
with three types of field soils, primer pairs P6, P7 and P8 were further selected by comparison with P11, P12 and P13. 
A practical test using a pot experiment showed that stable colonization of gfp-NJAU 4742 in pepper rhizosphere soil 
could be detected using primer pairs P6 and P7, showing no significant difference from the results of primers P11 and 
P12. Hence, the strategy described here for designing fungal-strain-specific primers may theoretically be used for any 
other fungi for which the whole genome sequence is available in a database, and the qPCR methodology developed 
can also be used to further monitor the population dynamics of different strains based on the designed primers.
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Introduction
Fungal species of the genus Trichoderma are wide-
spread in soils and considered to be an ideal biocontrol 
agent, with specific biocontrol mechanisms including 
mycoparasitism, production of antibiotics, competition 
and induced resistance (Harman et  al. 2004; Shoresh 
et  al. 2010). Meanwhile, some Trichoderma strains 
with rhizosphere colonization deliver direct or indirect 
plant growth promotion benefits via enhancing nutri-
ent uptake, as well as stimulating plant defence against 
biotic and abiotic damage (Martínezmedina et al. 2014; 

Trillas and Segarra 2009). In the past dozen years, to 
gain beneficial effects on a target plant, numerous stud-
ies have introduced different Trichoderma agents in 
large numbers by direct inoculation into soil or as soil 
amendments combined with organic fertilizers (Bal and 
Alti ̇Ntas 2008; Haque et al. 2012; Puttanna et al. 2010). 
The survival of the inoculated strains in a new envi-
ronment (Zhang et al. 2015, 2017), however, does play 
a critical role in functional performance, since effec-
tive colonization is necessary for the successful stimu-
lation of plant growth or the soil microbial ecosystem 
by the target strain. In addition, in certain areas, such 
as Europe, a risk assessment for the biocontrol agent 
focusing on the persistence and multiplication of the 
inoculant in the environment is required (Savazzini 
et al. 2008). Thus, the lack of an effective, economical, 
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fast and accurate quantitation strategy has obstructed 
the widespread application of beneficial fungi.

Selective medium has traditionally been utilized to 
detect or isolate beneficial probiotics in different envi-
ronments (Azaizeh et  al. 2003; Bashan and Gonzalez 
1999), and one half-selective medium has also been 
developed for the isolation and quantification of the 
genus Trichoderma (Williams et  al. 2003). However, 
the method has low sensitivity, requires the correct 
identification of conidia, cannot easily detect specific 
fungi that include morphologically similar strains, and 
is extremely time consuming (Ritz 2007). In addition, 
the current method cannot distinguish among different 
Trichoderma at the species level. Based on DNA analy-
ses, quantitative PCR (qPCR), which can accurately 
quantify the abundance of numerous fungal species, 
is widely used for detecting different microbes (Atkins 
et  al. 2003; Boyle et  al. 2005) to investigate their ecol-
ogy in soil and other environments, even at very low 
inoculation levels (Atkins et al. 2003; Bates et al. 2001; 
Böhm et al. 1999; Cullen et al. 2001; Renske et al. 2003; 
Winton et al. 2002). Primer sequences, in general, have 
been designed from regions of the genome with known 
or unknown functions (Carmen et al. 2007; Sarlin et al. 
2006). For Trichoderma, detection and quantification 
have been performed in different soils based on a rec-
ognized genus-specific 600  bp internal transcribed 
spacer (ITS) region (Beaulieu et  al. 2011; Hagn et  al. 
2007; López-Mondéjar et  al. 2010); however, ITS, as 
a common region without enough specificity, cannot 
discriminate between different species, and sequence-
characterized amplified region (SCAR) markers are 
mainly derived from randomly amplified polymorphic 
DNA (RAPD) analysis, leading to a long and laborious 
process to develop a specific SCAR marker.

Trichoderma guizhouense NJAU 4742, belonging to the 
Trichoderma harzianum species aggregate (Chenthamara 
et al. 2014; Zhang et al. 2016), is now commercialized in 
China and is widely used for the solid-state fermenta-
tion of commercial biological agents and the research 
and development of biological fertilizers (Patent Appli-
cation Nos. 200910233576.1, CN201610003589.X and 
CN201610440785.3). A large number of previous studies 
have shown that this strain has a strong growth-promot-
ing ability (Cai et  al. 2013; Huang et  al. 2011; Liu et  al. 
2017; Yang et  al. 2011), as well as a variety of superior 
and advantageous genes, such as HFB7, a novel orphan 
hydrophobic protein, which is involved in response to 
biotic and abiotic stresses (Przylucka et  al. 2017), and 
NMP1, a neutral metallopeptidase, required for mycotro-
phy and self-defence (Zhang et al. 2016). Therefore, it is 
particularly important to uncover the potential mecha-
nisms underlying their use in agricultural practices.

In this study, the Trichoderma guizhouense strain 
NJAU 4742 transformed with the gfp gene and named 
gfp-NJAU 4742 was selected as a model to design 
strain-specific primer pairs using two stages of genomic 
sequence comparison to detect its abundance in soil. The 
sensitivity of the PCR assay was determined, and the PCR 
protocols were tested for their ability to detect strain gfp-
NJAU 4742 in pepper rhizosphere soil and in soil samples 
collected in the field. It is hoped that the results will pro-
vide technical assistance to microbial ecology research-
ers of the species in the future and will be a reference for 
the quantitative study of other strains based on whole 
genome sequences.

Materials and methods
Fungal strains
Trichoderma guizhouense NJAU 4742 wild (CGMCC 
accession No. 12166, China General Microbiology Cul-
ture Collection Center) and gfp-tagged (tagged with the 
gfp gene to express green fluorescent protein) trans-
formed strains (gfp-NJAU 4742) were provided by the 
Jiangsu Provincial Key Laboratory of Organic Solid 
Waste Utilization, Nanjing, China. The mutation strain 
was labelled with the plasmid pCAMBIA-gfp (Additional 
file 1) in the wild-type strain, and the gfp sequence was 
fused with the hygromycin B resistance (hph) genewith 
the glyceraldehyde-3-phosphate dehydrogenase (gpdA) 
promoter from Aspergillus nidulans and the tryptophan 
C (trpC) transcription-termination signal (Additional 
file 1) (Zhang et al. 2016). Whole genome sequence of T. 
harzianum CBS 226-95 (sibling strain to NJAU 4742) was 
downloaded from the NCBI database, and T. harzianum 
CBS 226-95 was provided by Prof. Irina S. Druzhinina, 
Vienna University of Technology.

Primer pair design and evaluation of amplification 
efficiency
Strain-specific PCR primer were designed from the com-
plete genome sequence of Trichoderma guizhouense 
strain NJAU 4742, which is available in NCBI GenBank 
with accession numbers of PRJNA314460. In brief, the 
complete genome sequence of T. guizhouense NJAU 4742 
from the FASTA genome sequence was fragmented in 
silico using in-house scripts to produce non-overlapping 
fragments. For the first comparison, the fragments were 
subjected to a BLASTn search against the NCBI and Joint 
Genome Institute (JGI) databases, and four sequence 
fragments without any match in the two BLAST sequence 
analyses were obtained as putative strain-specific 
sequences (positions T37_S00003:2560926 to 2576741, 
T37_S00005:2001401 to 2006364, T37_S00007:2096560 
to 2099766 and T37_S00017: 678513 to 681994) (Addi-
tional file 2: Table S1). Next, the genome sequence of T. 
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harzianum CBS 226-95 (sibling strain to NJAU 4742) 
was used to build a local BLAST database, and putative 
strain-specific sequence fragments were used as queries 
for a BLASTn similarity search with default parameters 
for the second comparison; then, 10 specific primer pairs 
were designed (Table  1). Meanwhile, 3 primer pairs, 
Primer 11, Primer 12 and Primer 13 (the code “primer” 
is abbreviated as P, and the same is true below), were 
derived from the gfp fragment, the hygromycin frag-
ment and a fragment including both gfp and hygromycin 
(Table 1 and Additional file 1). Because P11, P12 and P13 
were designed from two fragments inserted in the whole 
genome with one copy (Zhang et al. 2016), the number of 
sequences detected was regarded as the standard amount 
and used as reference for the primers P1 to P10, which 
were designed from the genome sequence. The designed 
primer pairs were analysed using Oligo 6, synthesized by 
Nanjing GenScript Biotechnology Co., Ltd. (China) and 
qualitatively detected by conventional PCR. A pair of 

published primers for ITS1 (López-Mondéjar et al. 2010) 
was used as a positive amplification control (Table  1). 
Total DNA from fungal strains was extracted directly 
from 50 to 100  mg mycelia using the E.Z.N.A. Fungal 
RNA Kit (Omega Inc., USA).

Target plasmid construction and qPCR amplification
Thirteen fragments produced from the selected target 
genetic regions of the T. guizhouense gfp-NJAU 4742 and 
ITS1 primer pair were cloned into the pMD 19-T vector 
(TaKaRa). The plasmids were transformed into Escheri-
chia coli TOP10 cells. The fragments in the plasmids 
were verified by a PCR test using the PMD-19T univer-
sal sequence primers M13-F (TGT​AAA​ACG​ACG​GCC​
AGT​) and M13-R (CAG​GAA​ACA​GCT​ATG​ACC​) and 
sequenced by Nanjing GenScript Biotechnology Co., 
Ltd. (China). The DNA concentration of the plasmid was 
measured using a spectrophotometer (NanoDrop 2000, 
Thermo Scientific Inc., USA). qPCR amplification was 

Table 1  Primer characteristics

Genome location or reference Code Primer set Sequence (5′–3′) Fragment 
size (bp)

>T37_S00003:2560926-2576741 P1 T-1F GTG​GCG​AAA​ACT​CTC​ATA​CTCGT​ 127

T-1R CTA​TAA​ATC​AAG​TTT​GCC​GTGCT​

P2 T-2F GCC​CAC​TCA​AAT​TGC​GAA​CATA​ 143

T-2R CGA​CGA​CGA​CAT​ACT​CAT​CAATC​

P3 T-3F TGG​TCT​AAC​GGC​TCT​TCA​ACAT​ 136

T-3R AGG​CAC​TGA​CAC​TTT​ATC​TGGT​

P4 T-4F CGA​CGG​AAC​TAC​ATG​ATA​AGCAA​ 102

T-4R CCT​AAA​TGA​ATG​AGC​CTC​GTCT​

>T37_S00005:2001401-2006364 P5 T-5F TGT​CTA​CCA​ATC​ACC​AGT​TTACG​ 134

T-5R CAC​CAT​TGT​TCC​ATC​CAT​TACCA​

P6 T-6F TGG​TAA​TGG​ATG​GAA​CAA​TGGT​ 126

T-6R CCT​CGC​TTC​ACT​GAC​TGG​A

>T37_S00007:2096560-2099766 P7 T-7F GTG​GCG​TCC​TTG​GTC​ATT​G 128

T-7R ACA​CAG​AGC​GTA​GGC​ATA​GAT​

P8 T-8F TAT​GCT​GGT​GGT​GGT​CTT​AGTG​ 136

T-8R GTA​ATG​GCT​GAA​TAG​GTG​CGA​TAA​

>T37_S00017:678513-681994 P9 T-9F TCT​CTA​CAA​GCT​CCA​AGA​CCAC​ 114

T-9R ATT​GTC​ATT​GTG​CAT​TTA​TCGAG​

P10 T-10F CTC​CAT​CAC​CTG​CAT​TTA​GTGT​ 143

T-10R TCG​ACA​GTG​ATT​CAT​AAG​GCATC​

GFP fragment P11 gfp-F AGA​AGA​ACG​GCA​TCA​AGG​TG 171

gfp-R TCT​CGT​TGG​GGT​CTT​TGC​T

HYG fragment P12 hyg-F CAT​TGA​CTG​GAG​CGA​GGC​ 99

hyg-R CGT​CTG​CTG​CTC​CAT​ACA​A

GFP-HYG fragment P13 gfphyg-F GCC​GAT​AGT​GGA​AAC​CGA​ 140

gfphyg-R CTT​GTG​GCC​GTT​TAC​GTC​G

López-Mondéjar et al. (2010) and Beaulieu et al. 
(2011)

ITS1 ITS1-S ACA​ACT​CCC​AAA​CCC​AAT​GTGA​ 207

ITS1-R CGT​TGT​TGA​AAG​TTT​TGA​TTC​ATT​T
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performed using gradient PCR analysis in a 20  μl reac-
tion volume using SYBR®Premix Ex Taq™ (TaKaRa) on a 
7500 Real-time PCR system (Applied Biosystems, USA) 
(Shen et al. 2017). The plasmids containing the different 
fragments were used to prepare tenfold dilution series 
(in triplicate). Sterile water was used as a negative con-
trol. The cycle threshold (CT) value was automatically 
determined for each sample. A standard curve was gen-
erated by plotting the CT value against the logarithm of 
the DNA concentration (data not shown) and used to cal-
culate the amplification efficiency (E). Initial target gene 
copy numbers in unknown samples were calculated from 
the standard curves (all gene fragments are single copy).

Soil sampling
Three soils with different physicochemical properties 
were collected from Hengxi, Nanjing (31° 43′ N, 118° 
46′ E); Dafeng, Yancheng (32° 56′ N, 120° 13′ E); and 
Luquan, Kunming (25° 58′ N, 102° 45′ E), China. The 
soils were hand-picked to remove stones, larger plant 
residues and macroinvertebrates (earthworms, etc.) and 
then passed through a 2-mm sieve, slightly air-dried, 
and mixed thoroughly. The soil from Hengxi was char-
acterized as yellow brown soil with a pH of 6.83, and it 
contained 2.19  mg  kg−1 NH4–N, 15.5  mg  kg−1 NO3–N, 
120.01 mg kg−1 available P and 307.17 mg kg−1 available 
K; the soil from Dafeng was characterized as saline-alkali 
soil with a pH of 8.81, and it contained 7.72  mg  kg−1 
ammonium N, 24.34  mg  kg−1 nitrate N, 2.36  mg  kg−1 
available P and 285.29 mg kg−1 available K; and the soil 
from Luquan was characterized as red soil with a pH 
of 5.0, and it contained 18.72  mg  kg−1 ammonium N, 
15.34  mg  kg−1 nitrate N, 6.7  mg  kg−1 available P and 
42.6 mg kg−1 available K.

Inoculation of T. guizhouense NJAU 4742 into soils 
and qPCR assay
Spore suspensions of gfp-NJAU 4742 was prepared by 
flooding PDA medium plates containing 7-day-old cul-
tures with sterile water and subsequently scraping with a 
sterile glass rod. The suspension was then filtered through 
a double layer of sterile cheesecloth. The conidial density 
of the suspension was assessed by counting on a haemo-
cytometer. Soil samples of 20  g were loaded into 50-ml 
centrifuge tubes with six tubes for each soil (saline-alkali 
soil, red soil, and yellow brown soil), and the six tubes 
of each soil type were equally divided into the following 
one treatment and one control groups: the treatment was 
inoculated with 4  ml of gfp-NJAU 4742 spore suspen-
sion with concentration of approximately 106 conidia 
g−1 soil dry weight; and the control was combined with 
equal volumes of water. All soil samples were uniformly 
incubated in the dark for 7 days at 28  °C. Yellow brown 

soils inoculated with different gfp-NJAU 4742 spore con-
centrations of approximately 0, 103, 104, 105, 106, 107, and 
108 conidia ml−1, respectively, were further examined to 
verify the specificity of the primer pairs. Each concentra-
tion was assessed in triplicate. Total soil genomic DNA 
was extracted from 0.5 g soil samples using the PowerSoil 
DNA Isolation Kit (MoBio) according to the prescribed 
protocol. The concentration and quality of the DNA were 
determined using a NanoDrop 2000 spectrophotometer 
(Thermo Scientific, Waltham, MA, USA).

Pot experiments and qPCR assay of strain NJAU 4742
The pepper pot experiment was performed in a green-
house located in Huaian, China (32° 43′ N, 118° 12′ E), 
from April to June 2014. The pepper seedlings were cul-
tivated in ordinary nursery substrate and bio-nursery 
substrate, respectively. Bio-nursery substrate was pro-
duced by adding gfp-NJAU 4742 to ordinary nursery 
substrate to obtain a spore concentration in the novel 
product of more than 107 conidia ml−1. The pot experi-
ment included the following four treatments: (a) OF 
treatment, soil amended with chicken manure compost 
and transplanted pepper (Capsicum annuum L.) seed-
lings from ordinary nursery substrate. (b) OFBS treat-
ment, soil amended with chicken manure compost and 
transplanted pepper seedlings cultured from bio-nursery 
substrate. (c) BF treatment, soil amended with chicken 
manure compost and fill the strain gfp-NJAU 4742 spore 
solution into bulk soil, the final spore concentration 
in the bulk soil was 106 conidia g−1 dry soil, and trans-
planted seedlings from ordinary nursery substrate. (d) 
BFBS treatment, soil amended with chicken manure 
compost and fill the strain gfp-NJAU 4742 spore solution 
into bulk soil, the final spore concentration in the bulk 
soil was 106 conidia g−1, and transplanted pepper seed-
lings cultured from bio-nursery substrate. Pepper seed-
lings or “bio-seedlings” were transferred into pots with 
5 kg soil and supplemented with 1.5% (w/w DW) chicken 
manure compost fertilizer. Each treatment had ten ran-
dom independent replications. The chicken manure com-
post was produced by Nantong Huinong Co. Ltd, Jiangsu, 
China by composting chicken manure at 30–70  °C 
for more than 20  days. Rhizosphere soil samples were 
obtained according to Bakker et al. (Bakker et al. 2015). 
Total numbers of gfp-NJAU 4742 were quantified by 
qPCR with primer pairs P6, P7, P11, and P12. Each sam-
ple was assessed in three replicates, and the results were 
expressed as lg (copies g−1) dry soil.

Statistical analysis
Statistical analysis was performed by using the IBM SPSS 
18.0 software program (IBM Corporation, New York, 
USA). All statistical tests performed in this study were 
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considered significant at P < 0.05. The data were subjected 
to analysis of variance (ANOVA) with means compared 
by the Tukey test.

Results
Primer design and evaluation of amplification efficiency
The amplification of 14 cloned plasmids was tested using 
the PMD-19T universal sequence primer M13, and 
unique amplicons of the expected sizes were observed on 
agarose gel electrophoresis, indicating that all fragments 
produced from a total of 14 primer pairs, including ITS1, 
were successfully inserted (Additional file  3: Figure S1). 
The amplification efficiencies of all strain-specific primer 
pairs obtained in this study were tested by construct-
ing a standard curve. The primer pairs P1, P2, P3, P4, P5 
and P9 were excluded from further analysis because they 
showed low amplification efficiencies (data not shown). 
The standard curves obtained from primer pairs P6, P7, 
P8, P10, P11, P12, and P13 performed well, and their 
melting temperatures were approximately 76–83 °C with 
a single melting peak (Additional file  3: Figure S1). As 
expected, the melting curve obtained from primer ITS1 

showed double peaks, suggesting that this primer is non-
specific in gfp-NJAU 4742 (Additional file 3: Figure S1). 
Thus, the remaining 7 pairs of primers, P6, P7, P8, P10, 
P11, P12 and P13, were used as candidates, and the opti-
mal amplification conditions for each pair are shown in 
Table 2.

Quantification of NJAU 4742 in soils
As shown in Fig.  1, as expected, the primer pair ITS1, 
targeting ITS-encoding genes, showed higher copy num-
bers (Fig. 1), indicating that ITS1 produced a nonspecific 
amplification including other Trichoderma species exist-
ing in the original soil or amended externally. This result 
is consistent with the two peaks shown in the melting 
curve (Additional file 3: Figure S1). Meanwhile, the value 
of primer P10 is very close to that of ITS1, suggesting that 
nonspecific amplification was apparently also present in 
P10, which was discarded in subsequent experiments. 
Beyond that, there was no significant difference between 
the remaining 3 primer pairs (P6, P7, P8) and the 3 
standard primer pairs (P11, P12, P13), which all showed 
a consistent range of copy numbers of gfp-NJAU 4742, 

Table 2  Primer characteristics and parameters evaluated by qPCR

Code Optimum conditions R2 Slope Efficiency (%)

P6 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 62 °C for 34 s 0.9986 − 3.2383 103.61

P7 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 62 °C for 34 s 0.9967 − 3.2561 102.82

P8 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 60 °C for 34 s 0.9989 − 3.3466 98.98

P10 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 60 °C for 34 s 0.9994 − 3.3704 98.02

P11 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 62 °C for 34 s 0.9958 − 3.2657 102.40

P12 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 62 °C for 34 s 0.9973 − 3.251 103.05

P13 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 62 °C for 34 s 0.9971 − 3.4038 96.69

ITS1 1 min incubation at 95 °C, 40 cycles consisting of 95 °C for 15 s and 58 °C for 34 s 0.9834 − 3.1986 105.42

Fig. 1  Amounts of T. guizhouense NJAU 4742 in different soil types by qPCR using different primer pairs. Values are the means of three soil 
treatment replications using different strain-specific primers. The letters indicate significant differences among the primer pairs as determined by 
the Tukey test
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indicating that these primers are specific for detecting 
strain gfp-NJAU 4742. Moreover, soil samples from the 
water control were also subjected to qPCR using primers 
P6–P8 and P10–P13, and the CT values were all above 32, 
indicating that no gfp-NJAU 4742 existed in the original 
soil (data not shown).

Quantitation of gfp‑NJAU 4742 in soils with different 
inoculation concentrations
The primer pairs P7 and P12 were selected to quantify 
the amounts of gfp-NJAU 4742 in initial and after 10 days 
soils with different concentrations of spores. The two 
primers both showed increasing trends with the spore 
concentrations added, and no significant difference was 
observed between the two primers, demonstrating that 
both primer pairs are sensitive and capable of accurately 
distinguishing the copy number (Fig.  2). Similar to the 
above detection, the CT values for the soil with zero and 
102 conidia ml−1 spore inoculations were both above 32 
and thus were under the detection level (data not shown).

Practical application of the quantification method 
in the pot experiments
The copy number of gfp-NJAU 4742 was effectively 
detected using the primers P6, P7, P11, and P12 by qPCR 

in the OFBS, BF and BFBS treatments, respectively, and 
no copies were detected in the OF treatment (CT val-
ues were both above 32, data not shown) (Fig. 3). In the 
OFBS, BF and BFBS treatments, the copy number of 
gfp-NJAU 4742 in the rhizosphere was higher than that 
in the bulk soil, and the value in the OFBS treatment 
was the lowest among the three treatments regardless 
of rhizosphere or bulk soil. Copy numbers in the rhizo-
sphere soils of the BFBS and BF treatments were similar, 
and the number in the bulk BFBS soil was slightly higher 
than that in BF. Furthermore, primers P6 and P7 showed 
similar copy numbers of the target strain, regardless of 
bulk or rhizosphere soil, in the OFBS, BF and BFBS treat-
ments, and the values were consistent with those from 
primer pairs P11 and P12, showing that primer pairs P6 
and P7 possessed the ability to effectively and sensitively 
monitor the target species in natural soil.

Discussion
In this study, strain-specific qPCR primers were explored 
based on two steps of comparative genome analysis and 
protocol to quantify T. guizhouense NJAU 4742, a plant 
growth-promoting fungus chosen as a model species. 
A rapid, sensitive and diagnostic test to confirm the 
presence of Trichoderma spp. inoculants in different 

Fig. 2  Amounts of T. guizhouense gfp-NJAU 4742 detected by qPCR using the primer pairs P7 and P12 in soils amended with different inoculation 
concentrations. Values are the means of three soil treatment replications using different strain-specific primers
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environments is essential, since an increasing number 
of farmers are recognizing the effects of Trichoderma 
not only in promoting plant root growth but also in pro-
tecting plant roots from soilborne pathogens (Cai et  al. 
2013, 2015; Chen et al. 2011; Xiong et al. 2017; Yang et al. 
2011). Thus, the present study will provide a highly useful 
alternative for the detection of Trichoderma using strain-
specific primers designed from the whole genome.

For strain-specific primer design, comparison of T. 
guizhouense NJAU 4742 whole genome with the NCBI 
and Joint Genome Institute (JGI) databases was per-
formed to obtain nonoverlapping fragments (first 
comparison), which were further utilized to arrange a 
second comparison against the T. harzianum CBS 226-95 
genome in a local database, resulting in 10 primer pairs. 
Whole genome sequences provide comprehensive infor-
mation about an organism, and in the past decade, with 
advances in sequencing technology, the cost of sequenc-
ing has been greatly reduced; thus, genomics has become 
an important method in microbial research (Havlak et al. 
2004). Similar to this study, strain-specific primer pairs 
were designed from specific regions of a bacterium, Azos-
pirillum brasilense FP2, by aligning the draft genomic 
sequences of FP2 to the databases and a closely related 

strain, A. brasilense Sp245 (Stets et al. 2015). For Tricho-
derma, sequence characterized amplified region (SCAR) 
markers have mostly been used for designing specific 
primers for biocontrol Trichoderma strains (e.g., bio-
control strain T. harzianum 2413 and T. atroviride 11); 
however, this method is derived from randomly amplified 
polymorphic DNA (RAPD) analysis and is very compli-
cated and time consuming (Hermosa et al. 2001). There-
fore, our findings suggest that direct comparison of the 
genomic sequences of closely related organisms is a rapid 
and reliable approach to detect specific DNA regions.

Next, three representative soil types, saline-alkali soil, 
yellow brown soil and red soil, were further selected 
and inoculated with strain gfp-NJAU 4742 to verify the 
specificity of the designed primer pairs in soil conditions. 
The gfp-NJAU 4742 strain, an Agrobacterium-mediated 
fluorescent protein-tagged strain of T. guizhouense NJAU 
4742, was provided by our laboratory, Zhang et al. (2016), 
and using its inserted single-copy foreign fragments to 
design PCR primers as a measure of the accuracy of the 
primers designed from the NJAU 4742 genomic sequence 
is an important experimental basis and innovation of 
this study. This method is often used to distinguish and 
identify target strains in biological research (Zhang et al. 

Fig. 3  Amounts of T. guizhouense NJAU 4742 detected by qPCR using primer pairs P6, P7, P11 and P12 in the soil collected for the pot experiment. 
Values are the means of three soil treatment replications using different strain-specific primers. The letters indicate significant differences among 
primers determined by the Tukey test
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2014). It is usually difficult to reproduce results from 
DNA extracted from soil compared to results obtained 
from pure DNA, which may be attributed to a number of 
factors, such as the presence of PCR inhibitors (e.g., tan-
nins, humic acids, etc.) (Porteous and Armstrong 1991; 
Tsai and Olson 1992) and the large amount of DNA from 
other microorganisms in the soil. Thus, three soil types 
were selected in this study, and the results showed that 
gfp-NJAU 4742 could be detected and quantified in these 
three different soil types and that, indicating that the 
primers have a wide range of applicability and are suffi-
ciently specific. In comparison to a previous study, which 
showed that T. harzianum could no longer be detected in 
soil using a strain-specific sequence characterized ampli-
fied region (SCAR) when the specific strain was intro-
duced as part of a mixture of 27 Trichoderma spp. strains 
(Rubio et al. 2005), the results of the present study dem-
onstrated the specificity of primer pairs P6-P8 and robust 
colonization by the target strain.

In natural soils with different concentrations of gfp-
NJAU 4742 spores added to the soil, the results using 
primers P7 and P12 showed an increase in gfp-NJAU 
4742 copy number with increasing concentrations of 
spores amended, regardless of initial soil or after 10 days 
soil, and no significant difference between the two primer 
pairs were observed. It was found that the PCR amplifica-
tion of DNA extracted directly from soil samples could 
be problematic (Cullen and Hirsch 1998). The variabil-
ity may be due to the patchy distribution of the strain in 
soil samples and/or the presence of PCR-inhibitory com-
pounds in the soil. Thus, although it is difficult to ascer-
tain a direct relationship between the amount of DNA 
present in the soil and the amount detectable by the 
assay given the inclusion of a biological amplification step 
(Lees et al. 2002), signal reflecting the concentrations still 
can be detected by real-time assays using these kind of 
strain-specific qPCR primers.

Similarly, in pepper root, the copy numbers of gfp-
NJAU 4742 can be determined by comparing P6 and P7 
with each other or with the reference primers, P11 and 
P12. The stable colonization ability of strain NJAU 4742 
in rhizosphere and bulk soils were recognized by qPCR 
with nonspecific primers (Cai et  al. 2013, 2015; Chen 
et  al. 2011), while the present study demonstrated its 
colonization ability by strain-specific qPCR primers. In 
addition, in the OF, OFBS and BFBS treatments, there 
was a significant difference in the number of copies of 
gfp-NJAU 4742. This result is perhaps due to their indi-
vidual soil ecological environments and physicochemical 
properties (Couillerot et al. 2010a, b).

In conclusion, three strain-specific primer pairs, P6, 
P7 and P8, were successfully designed by using available 
genome sequence information to detect the number of 

T. guizhouense NJAU 4742 inoculated into different soil 
types and to monitor its population fluctuation after 
inoculation into pepper roots during a pot experiment, 
demonstrating that the designed primer pairs can be 
utilized in practice. The results from the pot experiment 
also confirmed the stable colonization of T. guizhouense 
NJAU 4742 in plant roots after inoculation. Thus, the 
strategy for designing strain-specific primers described 
here may theoretically be used for any other microbes for 
which the whole genome sequence is available in a data-
base, and the qPCR methodology developed in this work 
is a generally applicable tool that may be used to further 
monitor the population dynamics of different strains 
based on the designed primers.
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