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Abstract

Population genetic structure, historical biogeography and historical demography of the alpine toad Scutiger ningshanensis
were studied using the combined data mtDNA cytochrome b (cyt b) and the mtDNA cytochrome c oxidase subunit I (COI) as
the molecular markers. This species has high genetic variation. There was a significant genetic differentiation among most
populations. Three lineages were detected. The phylogenetic relationship analyses and the SAMOVA (spatial analysis of
molecular variance) results showed significant phylogeographic structure. 82.15% genetic variation occurred among
populations whereas differentiation within populations only contributed 17.85% to the total. Mantel test results showed a
significant correlation between the pairwise calculated genetic distance and pairwise calculated geographical distance of
the populations (regression coefficient = 0.001286, correlation coefficient = 0.77051, p (rrand$robs) = 0.0185,0.05),
indicating the existence of isolation-by-distance pattern of genetic divergence for cyt b + COI sequence, which suggests
that the distribution of genetic variation is due to geographical separation rather than natural selection. The population
expansion or contraction and genetic differentiation between populations or lineages could be explained by topography
and the repetitive uplifts of the Tsinling Mountains and the climatic cycles during the late Pliocene and Pleistocene. S.
ningshanensis experienced a rapid population expansion about 40,000 years before present. The current decline in
population size was probably caused by anthropogenic disturbance. Current populations of S. ningshanensis are from
different refugia though the location of these refugia could not be determined in our study. Topography, climatic changes
and repetitive population expansion/contraction together led to the high level of genetic variation in S. ningshanensis. A
total of three management units (MUs) was determined, which must be considered when conservation policy is made in the
future.
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Introduction

Population genetic structure refers to the geographical pattern

of genetic diversity within or among populations. It could be

influenced by gene flow, genetic drift, selection, mutation and

recombination. Gene flow is caused by the movement of

individuals from one population to another [1]. Estimation of

the gene flow level allows conservation biologists to understand the

relationships between populations and assess levels of genetic

variation in order to evaluate the relative levels of conservation

concern hierarchically across populations in a species. Genetic

drift is the change in the frequency of a gene variant in a

population due to random sampling [2]. http://en.wikipedia.org/

wiki/Genetic_drift - cite_note-Masel_2011-1#cite_note-Ma-

sel_2011-1Genetic drift may lead to disappearance of gene

variants and thereby reduce genetic diversity.

Phylogeography connects historical processes in evolution with

spatial distributions [4]. Analysis of mitochondrial data promoted

the empirical development of phylogeography [3]. The statistical

phylogeography is one of the widely used approaches in

phylogeography, which takes into account the stochasticity of

genetic processes into demographic inference based on coalescent

models for parameter estimation [4,5].

The Tsinling Mountains are located in the central part of

China, stretching from west to east (Fig. 1). These Mountains are

boundary between Oriental realm and Palaearctic realm accord-

ing to the zoogeographical regions of China [6], and also the

watershed for Yangtze River and Yellow River catchment areas,

for climate, flora and fauna in China [7–9]. The Oriental and

Palaearctic species congregate here forming a specific biotic

province and containing rich animal and plant resources [10,11].

Like other regions in the northern hemisphere, the Tsinling

Mountains experienced several glacial-interglacial cycles during

Pleistocene [12–18]. The climate associated with Pleistocene

glacial cycles in East Asia was likely mild and characterized by a

mosaic of mountains [19,20]. The past climatic events, such as the

Quaternary glaciation, are believed to have played an important

role in forming the geographical pattern of the montane species

and could leave the vestiges in geographical distribution of genetic

diversity of population [21–26]. The founder effect during the

postglacial population recovery causes a reduction in population

genetic diversity [27,28], and the subsequent rapid population
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expansion [29] may erase the previous geographical differences of

the genetic diversity.

The alpine toad Scutiger ningshanensis was described from the

western part of the Tsinling Mountains [30] (Fig. 1). Four years

later, the second specimen of this species was collected from the

same locality [31]. Since then, other specimen of this species was

not collected until 2009 when some specimens were collected from

several localities in the eastern part of the Tsinling Mountains

[32]. Other than the reports on collection of additional specimens,

only the biological characteristics of tadpoles of this species was

studied [33]. The habitat of this species was roughly divided into

two parts: the western part and the eastern part. Is this

geographical pattern caused by habitat fragmentation or by

populations from different glacial refugia? Does the isolation by

distance between the local populations result in occurrence of any

speciation events? The aims of the present study were to explore

the population genetic structure, historical biogeography and the

historical demography of S. ningshanensis.

Materials and Methods

Ethics statement
This study was approved by the Institutional Animal Care and

Use Committee (IACUC) of Shaanxi Normal University. Only the

clipped toes or tail tips of tadpoles were used for extraction of total

DNA. No specific permissions were required for these locations/

activities. This species was ranked ‘‘Endangered B2ab(iii)’’ in ‘‘The

IUCN Red List of Threatened SpeciesTM 2013’’ based on an

outdated information that this species was only found at the type

locality (nsc) [31] (http://www.iucnredlist.org). Actually, in

addition to the type locality, this species was reported later in

2009 from a variety of localities including the Baiyunshan

Mountains (bys), Shirenshan Mountains (srs) and Laojunshan

Figure 1. Locations of sampled populations and geographical distribution of S. ningshanensis clades on the Tsinling Mountains. Nsc
is also the type locality of S. ningshanensis.
doi:10.1371/journal.pone.0100729.g001

Table 1. Sampling information and haplotypes based on cyt b and COI for 6 sampled populations of Scutiger ningshanensis.

Population Location n GPS coordinates Elevation (m) Haplotypes

hby Huangbaiyuan, Taibai Co.,
Shaanxi Prov.

18 33.8749N 107.5168E 1652 hby1 (1), hby10 (1), hby12 (4), hby13 (1), hby14
(1), hby15 (1), hby16 (1),hby19 (1), hby2 (1),
hby20 (1), hby3 (1), hby4 (1), hby7 (1), hby8 (1),
hby9 (1)

lfy Liangfengya, Foping Co.,
Shaanxi Prov.

17 33.6668N 107.8529E 2047 hby13 (1), lfy1(1), lfy10 (1), lfy12(2), lfy13 (1),
lfy14 (1), lfy15 (1), lfy16 (1), lfy17 (1), lfy2(1), lfy3
(1), lfy4 (1), lfy5 (1), lfy6(1), lfy7 (1), lfy8(1)

nsc Pingheliang, Ningshan Co.,
Shaanxi Prov.

15 33.4744N 108.5253E 2000 nsc1 (1), nsc10 (1), nsc11 (1), nsc12 (1), nsc13
(1), nsc14 (1), nsc15(1), nsc2 (1), nsc3 (1),
nsc4(1), nsc5 (1), nsc6 (1), nsc7(1), nsc8 (1),
nsc9 (1)

ljs Laojunshan, Luanchuan Co.,
Henan Prov.

18 33.7272N 111.6309 1590 bys4 (6), ljs1 (4), ljs10 (2), ljs11 (1), ljs18 (1), ljs4
(1), ljs5 (2), ljs6 (1)

bys Baiyunshan, Songxian Co.,
Henan Prov.

16 33.6535N 111.8283E 1675 bys1(8), bys10 (1), bys11 (2), bys14 (1), bys15
(1), bys4 (1), bys7 (2),

srs Shirenshan, Lushan Co.,
Henan Prov.

15 33.7286N 112.2542E 1642 ljs11 (5), srs1 (3), srs15 (1), srs16 (1), srs17 (1),
srs18 (1), srs5 (1), srs6 (1), srs9 (1)

n, sample size.
doi:10.1371/journal.pone.0100729.t001
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Mountains (ljs) [32] (Fig. 1), which indicated that this species

doesn’t meet the criteria of critically endangered or endangered

defined in The IUCN Red List of Threatened SpeciesTM 2013,

therefore this species should be removed from the red list.

However, the new data was not taken into account when this

species was ranked ‘‘Endangered B2ab(iii)’’ in ‘‘The IUCN Red

List of Threatened SpeciesTM 2013’’. The specific location (GPS

coordinates) of our study was given in Table 1.

Sampling and laboratory protocols
Our sampling covers the entire known distribution of this

species. Furthermore, to make an extensive sampling, we explored

the whole Tsinling Mountains, and fortunately collected this

species at two locations where the distribution of this species has

not been recorded. A total of 99 samples were collected from 6

localities during 2011 and 2013 (Table 1, Fig. 1). Eight samples of

the alpine toad Scutiger boulengeri were collected from Jone County

(34.539922N 103.491647E), southern Gansu Province, China. S.

boulengeri will be used as outgroup in phylogenetic relationship

analysis.

The clipped toes or tail tips of tadpoles were preserved in 100%

ethanol and stored at 220uC. A continuous fragment (1009 bp) of

the mitochondrial cytochrome b (cyt b) was amplified using PCR

(MyCycler Thermal Cycler), with primers FrogGlu-f 59-

TGATCTGAAAAACCACCGTTG-39 and FrogThr-r 59-

CTCCATTCTTCGRCTTACAAG-39 [34]. A continuous frag-

ment (631 bp) of the mitochondrial cytochrome c oxidase subunit

I (COI) was amplified using PCR (MyCycler Thermal Cycler),

with primers forward LepF59-ATT CAA CCA ATC ATA AAG

ATA TTG G-39 and reverse LepR59-TAA ACT TCT GGA

TGT CCA AAA AAT CA-39 [35]. The PCR products were

purified using a purification kit (DC3511-02/3514-02 250 Preps,

Biomiga, USA). Sequencing reactions were carried out with the

PCR primers using ABI Prism BigdyeTM Terminator Cycle

Sequencing Ready Reaction Kit on ABI 3730XL sequencer. All

sequences have been deposited in the GenBank databases under

accession numbers KF757340–KF757391 (S. ningshanensis cyt b),

KF757392–KF757439 (S. ningshanensis COI); KJ082065–

KJ082072 (S. boulengeri cyt b), KJ082073–KJ082080 (S. boulengeri

COI). Indicators of nuclear mitochondrial pseudogenes (numts),

such as indels, stop codons and double peaks in sequence

chromatograms [36] were not found.

Determination of generation time
A skeletochronological study of longevity of S. ningshanensis was

conducted. The clipped phalanges were stored in 95% ethanol

solution. The phalanges were washed in running tap water, then

decalcified in 3% nitric acid for 12 to 24 hours. The mid-

diaphyseal region of the phalanges was cross-sectioned at 12–

20 mm using a microtome and stained with hematoxylin for two

min. Sections were examined under a light microscope and the

number of lines of arrested growth (LAGs) was counted [37,38].

The number of LAGs represents the age of the toad.

Nucleotide polymorphism
The sequences were aligned with Clustal X1.83 [39]. The

aligned sequences were edited using the program BioEdit 7.0.9.0

[40]. All analyses were performed based on the combined

mitochondrial DNA data. Haplotype inference was conducted

through Collapse 1.2 (http://darwin.uvigo.es). The number of

variable and parsimony informative sites was determined using the

program DnaSP 5.10.01 [41], and haplotype diversity (Hd) and

nucleotide diversity (Pi) were determined through Arlequin 3.5.1.2

[42].

Phylogenetic analyses
The substitution model selection was implemented in jModelT-

est 2.1.4 [43], the TIM2+I+G model was selected for all datasets

by likelihood ratio tests either under the Akaike Information

Criterion (AIC) or under the Bayesian Information Criterion

(BIC). Bayesian inference (BI) was used to generate a phylogenetic

hypothesis of the DNA haplotypes. BI was performed in MrBayes

Figure 2. The model used to test the refugial hypotheses for S.
ningshanensis using coalescent simulations. A single-refugium
hypothesis concerning the refugia during the Dali glaciation (the last
maximum glaciation in China which occurred about 50 ka before
present) was tested. The detail interpretation for this model is given in
the text. Branch lengths are time in generations based on a 6-year
generation time in S. ningshanensis. Branch widths (effective population
size, Ne) are scaled for each group based on the proportion of the total
Ne that each group comprised.
doi:10.1371/journal.pone.0100729.g002

Table 2. Genetic diversity of each population of S. ningshanensis.

Population Haplotype diversity ±S.D. Mean number of pairwise differences ±S.D. Nucleotide diversity ±S.D.

hby 0.959160.0359 20.18713569.337776 0.01230960.006363

lfy 0.991760.0254 14.41666766.820745 0.00879160.004658

nsc 1.000060.0243 8.87619064.336499 0.00541260.002965

ljs 0.849860.0426 1.92885461.137129 0.00117660.000773

bys 0.750060.1071 2.09166761.231968 0.00127560.000841

srs 0.933360.0773 3.04444461.729647 0.00185660.001193

Total population 0.982560.0055 41.822511618.302675 0.02550260.012361

S.D., standard deviation.
doi:10.1371/journal.pone.0100729.t002
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3. 2 [44] with 1,200,000 generations, sampling trees every 100

generations. Two independent runs each with four simultaneous

Monte Carlo Markov chains (MCMC) were conducted. The first

25% of generations were discarded as ‘burn-in’. The convergence

of chains was confirmed until average standard deviation of split

frequency is below 0.01 (0.009889) and the potential scale

reduction factor (PSRF) is close to 1.0 for all parameters. In

phylogenetic analysis S. boulengeri was used as outgroup.

Population structure analyses
The population comparisons using pairwise difference as

distance method, and the partition of genetic diversity within

and among populations were analyzed by analysis of molecular

variance (AMOVA) [45] using Arlequin3.5.1.2 [42] with 10,000

permutations. Mantel tests [46] were also conducted in Arle-

quin3.5.1.2 to assess the significance of isolation by distance (IBD)

between populations with 10,000 random permutations on

matrices of pairwise population FST values and the geographical

distances. Pair-wise FST values between populations were estimat-

ed using Arlequin3.5.1.2, while geographical distances between

populations were calculated online at http://www.gpsvisualizer.

com/calculators#distance.

The spatial genetic structure of haplotypes was analyzed using

the program SAMOVA1.0 [47] (http://web.unife.it/progetti/

genetica/Isabelle/samova.html) with 1,000 permutations. The

number of initial conditions was set to 100 as recommended by

Dupanloup et al. [48]. The number K of groups of populations

ranged from 2 to 4. The K with the highest Fct represents the best

number of groups and the best population configuration.

Historical biogeography
The effective population size (Ne) of each clade (geographical

group) for coalescent simulations was converted from Theta using

the equation h = Nem with m = 0.6561028 (per lineage per million

years) 66 (generation time of S. ningshanensis). The h-values were

estimated using maximum likelihood method in the program

Lamarc2.7.5 [48]. Total Ne was the sum of the Ne for all groups

and the proportion of total Ne that each group comprised were

used to scale the branch width of hypothesized trees (models of

population divergence) (Fig. 2) [49–51]. Branch widths can be

controlled by the Adjust Lineage Widths tool (the horizontal ruler)

in the Tree Window in the program Mesquite2.75 [52].

A single-refugium hypothesis of population divergence during

the Dali glaciation (the last maximum glaciation in China which

occurred about 50 ka before present) was tested using the

maximum likelihood estimation implemented in Mesquite2.75

[52] to infer the distributional area of the most recent common

ancestor (MRCA) of clades. The single-refugium model hypoth-

esizes that all current geographical populations derived from a

single refugium at the end of the Dali glaciation and that all

population divergences were concurrent and resulted from the

fragmentation of a widely distributed common ancestor’s range

(Fig. 2). Branch lengths are time in generations based on a six-year

generation time in S. ningshanensis. The clades were treated as taxon

states and each haplotype as character states. The haplotype trees

by coalescence within a diverging population tree (model of

population divergence) were simulated, and fit of a haplotype tree

to a population tree was calculated to search for population trees

that optimize fit of gene trees.

Historical demography
Neutrality tests were calculated in Arlequin3.5.1.2 [41], Fu’s FS

test [53] and Tajima’s D [54] were used to detect evidence of

recent demographic expansion within each inferred clade, under

which negative value are expected [55]. Inference of population

expansion events was performed using a mismatch analysis [56,57]

using Arlequin3.5.1.2 with the number of bootstrap replicates set

to 10,000 to explore the demographic history of the studied

populations. A recent growth is expected to generate a unimodal

distribution of pairwise differences between sequences [56]. The

Figure 3. Bayesian tree for the 67 sampled haplotypes of S.
ningshanensis based on the combined mtDNA cyt b and COI
sequences. The Bayesian posterior probabilities from Bayesian
analyses are presented above or under the main branches. The scale
bar represents substitutions per site.
doi:10.1371/journal.pone.0100729.g003

Molecular Ecology of Scutiger ningshanensis

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e100729

http://www.gpsvisualizer
http://web.unife.it/progetti/genetica/Isabelle/samova.html
http://web.unife.it/progetti/genetica/Isabelle/samova.html


validity of the expansion model was tested using the sum of

squared deviations (SSD) and Harpending’s raggedness index (R)

between observed and expected mismatches.

The site-frequency spectrum (for segregating sites) was calcu-

lated in DnaSP5.10.01 [41] to detect the excess of singleton

mutations. The null hypothesis of the neutral model (constant

population size) was rejected when the allelic frequency spectrum

for the entire population revealed an excess of singleton mutations.

The excess of singleton mutations could be caused by the

expansion [58].

Furthermore, the Bayesian Skyline Plot (BSP) approach was

used to estimate the demographic history in BEAST v1.8.0 [59].

The log file was analyzed in Tracer. Strict molecular clock model

was selected based on the results from Tracer. A mean mutation

rate of 0.65% change per lineage per million years was used [60–

67]. Two independent BEAST runs from the same XML file were

carried out and then the log output files were combined using

LogCombiner. The combined log file was analyzed in Tracer to

see if the Trace for each parameter has converged well on a

stationary distribution.

Detection of cryptic species
To detect the existence of potential cryptic species, uncorrected

p-distances [68,69] for all lineage pairs were calculated in

PAUP4.0 [70] from all sequences. The average p-distances of all

possible pairs of sequences (every sequence pair contains sequences

from different lineages) were calculated.

Results

Generation time
The average longevity of tadpoles was estimated by Lu et al.

[33]. The whole longevity equals the longevity of adult plus the

longevity of tadpole. The average duration of the tadpole stage of

S. ningshanensis is three years [33] and the average duration of the

adult stage after metamorphosis is six years. The average life span

of S. ningshanensis is nine years. The average generation time (GT)

of S. ningshanensis is six years.

Genetic variation
A total of 107 samples were sequenced, including 99 samples of

S.ningshanensis and eight of S. boulengeri. A total of 1009 base pairs of

cyt b gene and 631 base pairs of COI gene was obtained, 67

haplotypes were identified for the combined gene sequences (cyt

b+COI) of S. ningshanensis. Of the combined 1640 nucleotide sites,

181 were variable (polymorphic sites or segregating sites), 121 were

parsimony informative, and 60 were singleton variable. The

haplotype diversity of total and most sampled population was very

high, however, the nucleotide diversity of every sampled popula-

tion was low (Table 2). Among the total haplotypes, 82.09% are

private haplotypes (Table 1).

Phylogenetic relationships among haplotypes
BI analysis revealed three distinct clades (lineages) (hby-lfy, nsc,

ljs-bys-srs) in S. ningshanensis. Clades hby-lfy and nsc are well

supported with posterior probabilities of 1 and 0.99. On the other

hand clade ljs-bys-srs only has a posterior probability of 0.74

(Fig. 3). An important feature of these trees was that the

components of each clade showed a strong geographical associ-

ation. All haplotypes of clade hby-lfy were from western localities,

all haplotypes of clade nsc were from locality nsc, all haplotypes of

clade ljs-bys-srs were from the eastern localities (Fig. 1).

Population structure and genetic differentiation
AMOVA analysis suggested that majority of the variation

occurred among populations (82.15%) while differentiation within

populations only contributed 17.85% to the total (Table 3). The

fixation index, a measure of population differentiation due to

genetic structure, was highly indicating a significant genetic

differentiation among populations (p-value = 0.060.0) (Table 3).

Table 3. Results of analysis of molecular variance (AMOVA) of S. ningshanensis.

Source of variation d.f. Sum of squares Variance components Percentage of variation

Among populations 5 1646.756 19.92646 Va 82.15

Within populations 93 402.547 4.32847 Vb 17.85

Total 98 2049.303 24.25492

Fixation Index: Fst = 0.82154 (p-value = 0.060.0)

d.f., degrees of freedom.
doi:10.1371/journal.pone.0100729.t003

Table 4. FST values between populations.

Population bys hby lfy ljs nsc srs

bys 0.0

hby 0.82921 (p = 0.060.0) 0.0

lfy 0.89042 (p = 0.060.0) 0.06828 (p = 0.0685160.002) 0.0

ljs 0.38150 (p = 0.060.0) 0.84979 (p = 0.060.0) 0.90412 (p = 0.060.0) 0.0

nsc 0.86254 (p = 0.060.0) 0.77573 (p = 0.060.0) 0.83417 (p = 0.060.0) 0.87731 (p = 0.060.0) 0.0

srs 0.31488 (p = 0.060.0) 0.79976 (p = 0.060.0) 0.86822 (p = 0.060.0) 0.33801 (p = 0.060.0) 0.83596 (p = 0.060.0) 0.0

doi:10.1371/journal.pone.0100729.t004
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Population comparisons showed a significant genetic differen-

tiation (FST) between most local populations except the population

comparison between hby and lfy (Table 4).

Mantel test results showed a significant correlation between the

pairwise calculated genetic distance and pairwise calculated

geographical distance (Table 5) of the populations (regression

coefficient = 0.001286, correlation coefficient = 0.77051, p

(rrand$robs) = 0.0185,0.05), indicating the existence of isolation-

by-distance pattern of genetic divergence for cyt b+COI sequence,

which suggests that the distribution of genetic variation is due to

geographical separation rather than natural selection. The Mantel

test results provided the evidence for large-scale geographical

population structure in this species.

Results from SAMOVA analysis indicated that the highest FCT

equals to 0.84285 (p (rand.value $ obs.value) = 0.0166260.0)

when K = 3, showing that the most likely number of populations is

three.

Historical biogeography
The observed value of s is 55 which doesn’t fall within the model

of single-refugium indicating that the fragmentation model of

population divergence was rejected (Fig. 4), that is, the current

three lineages were derived from multiple refugia.

Demographic history
The results of mismatch distribution showed that the p-values

for SSDs and Rs of the total population and all clades were larger

than 0.05, indicating a stable population size in the past;

moreover, mismatch distribution in the total population and the

clade hby-lfy showed frequency distribution of pairwise difference

with multiple peaks (Fig. 5), on the other hand, the p-values for

Tajima’s D of total population, clade hby-lfy and clade nsc were

larger than 0.05 also indicating a stable population size in the past.

However, the p-values for Fu’s FSs of all clades were smaller than

0.01, and the p-values for Tajima’s D of clade ljs-bys-srs was

smaller than 0.05, indicating all clades experienced a sudden

population expansion (Table 6); on the other hand, mismatch

distribution in clades nsc and ljs-bys-srs showed frequency

distribution of pairwise difference with single peak (Fig. 5),

indicating an sudden population expansion in the past. The two

statistics, Tajima’s D value and the Fu’s FS, are sensitive to

Table 5. Geographical distances among populations.

Population bys hby lfy ljs nsc srs

bys 0.0

hby 400.14 0.0

lfy 368.7 38.76 0.0

ljs 20.05 381.29 350.31 0.0

nsc 307.33 103.54 65.98 289.6 0.0

srs 40.36 438.94 408.07 57.77 347.22 0.0

doi:10.1371/journal.pone.0100729.t005

Figure 4. Distribution of s-values from simulated genealogies constrained within the models of population divergence. Single-
refugium hypothesis.
doi:10.1371/journal.pone.0100729.g004
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Figure 5. Mismatch distribution analysis for the total population and the clades.
doi:10.1371/journal.pone.0100729.g005
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bottleneck effects or population expansion which leads to the more

negative values of Tajim’s D and Fu’s FS [71–74].

The allelic frequency spectrum for the entire population and all

clades revealed an excess of singleton mutations and doesn’t fit the

neutral model (Fig. 6). The excess of singleton mutations could be

caused by the expansion [58].

Bayesian skyline plot (BSP) further estimated the demographic

history. The effective sample size (ESS) for all parameters of the

BSP was greater than 200, showing that the 20 million generations

were sufficient to determine the demographic history for each

examined lineage. All lineages and the total population experi-

enced population expansion. The hby-lfy lineage, nsc lineage and

the total population experienced quick population growth after

about 40,000 years ago, while the ljs-bys-srs lineage experienced a

slow population growth after about 15,000 years ago. Noticeably,

the hby-lfy lineage and the total population experienced a recent

sharp decline in population, the ljs-bys-srs lineage showed a more

recent population decline, while the nsc lineage maintained

basically constant population size after the population expansion

(Fig. 7).

Genetic distances between lingeages
The lineage hby-lfy and the lineage nsc were highly divergent

from each other with an uncorrected p-distances of 4.2%, the

lineage hby-lfy and ljs-bys-srs were also highly divergent with an

uncorrected p-distances of 4.37%. Similarly, there was an high

divergence between the lineage nsc and ljs-bys-srs, with an

uncorrected p-distances of 2.37%. These values were similar to

those p-distances (3%) reported between two different frog species

[75]. Therefore S. ningshanensis probably contains three cryptic

species or at least three subspecies.

Discussion

Genetic diversity
Our results showed high levels of genetic diversity in S.

ningshanensis. High-level genetic diversity in narrowly endemic

species could be associated with the factors such as the long species

history, the high-level gene flow, having experienced a recent

contraction in population, multiple founder events, the mainte-

nance of genetic diversity in refugia, the hybridization, and the

ability to survive in a range of different habitats. [76–78]. All these

factors except hybridization might contribute to the high level of

genetic diversity in S. ningshanensis. This species has probably

undergone a long history through which many mutations were

accumulated since their origin. High-level gene flow is beneficial to

fix the mutations in population. Multiple founder events were

another alternative explanation for the high-level genetic diversity

in this species. There is a possibility that multiple founder events,

which accumulated more and more mutations, occurred in the

history of this species. The two congeners of S. ningshanensis are S.

boulengeri and S. liupanensis. The nearest localities of these two

species are 167 km or 361 km respectively away from the locality

hby of S. ningshanensis, which makes it impossible for the occurring

of hybridization among these three species [79,80]. Therefore,

hybridization may not contribute to the high-level genetic diversity

in S. ningshanensis. The distributing region of S. ningshanensis include

a range of different habitats such as high mountains with different

elevation, streams, and different vegetations. High-level diversity

in habitats also contributed to the high-level genetic diversity.

Population structure
Significant population structure occured based on the statistics

pairwise differentiation. Most pairwise FST values are high and
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statistically significant. Thus, the Ningshan alpine toad appears to

exhibit substantial population differentiation across the Tsinling

Mountains.

Mantel test results showed a significant correlation between the

genetic distance and geographical distance of the populations,

indicating the presence of IBD pattern of genetic divergence for

cyt b+COI sequences, suggesting that the distribution of genetic

variation is due to geographical separation rather than natural

selection. The Mantel test results provided the clear evidence for

large-scale geographical population structure in S. ningshanensis. It

is not possible that a significant Mantel test provided the evidence

for discontinuity in the distribution of genetic variation. It rather

showed a continuous distribution of the variation due to

individuals mating preferentially with individuals from nearby

populations [81].

AMOVA results indicated that 82.15% genetic variation

occurred among populations, while differentiation within the

populations only made 17.85% contributions. The high genetic

variation among populations affirmed the presence of phylogeo-

graphic structure in S. ningshanensis. SAMOVA results and the

phylogenetic relationship analysis further affirmed the existence of

phylogeographic structure in this species.

Amphibians have poor dispersal capabilities and are sensitive to

fine-scale landscape structure, topographic and altitudinal varia-

tion and climatic changes [82–88]. Many amphibians are

philopatric to breeding sites [89] which restricts gene flow and

leads to significant genetic differentiation among populations and

lineages.

Topography and Pleistocene climate changes drive population

genetic differentiation forming genetic structure pattern [90–92].

East Asia including China has undergone a series of cooler-drier

climate cycles in the last 15 million years [93]. Dramatic climatic

changes have caused the extinction of many organisms [94]. S.

ningshanensis that distributed in the areas with low elevation

disappeared during the interglacial in the Quaternary since it is an

alpine species. In addition, S. ningshanensis retreated to a few refugia

during glacial period. At the end of the Dali glaciation, S.

ningshanensis experienced a rapid population expansion which

occurred about 40,000 years before present, and it is experiencing

a population contraction now probably due to anthropogenic

disturbance. Topographic features, climatic fluctuation and

anthropogenic activity together led to the current patchy

geographic pattern for S. ningshanensis. This geographical distribu-

tion pattern also seen in other montane organisms [95,96].

Finally, there is the possibility that unsampled populations

between nsc and ljs may be genetically intermediate among the

three groups.

Historical biogeography
The uplifts of the Tsinling Mountains promoted genetic

differentiation among lineages of S. ningshanensis. The Tibetan

Plateau experienced three phases of rapid uplifts [97,98]. The

uplifts of the Tibetan Plateau impacted the environment of the

surrounding areas including the Tsinling Mountains [97]. The

Tsinling Mountains experienced similar uplift process, and three

phases of uplifts occurred in Pliocene, Early Pleistocene and

Figure 6. Allele frequency spectrum indicated an excess of singleton mutations in the combined mtDNA cyt b and COI sequences.
Numbers above the line represent the number of sites with singleton mutations.
doi:10.1371/journal.pone.0100729.g006
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Holocene respectively [99–102]. Coalescent simulations indicated

multiple refugia in S. ningshanensis though we could not determine

the number and location of the refugia based on the statistical

phylogeography analyses. Most species of the genus Scutiger inhabit

in the eastern Tibetan Plateau [81], we guess that S. ningshanensis

evolved when the Scutiger species dispersed eastward along the

Tsinling Mountains. The hby-lfy lineage split apart at first, split

between the lineages nsc and ljs-bys-srs occurred when this species

continued dispersing from west to east on the Tsinling Mountains,

while no further split occurred after the second split.

Demographic history
Most demographic analyses revealed a sharp population

expansion in all lineages of S. ningshanensis, and the expansion

began simultaneously 40,000 years before present, which corre-

sponds to the end of the Dali glaciation. Retreat of glacier led to

population expansion in species on the Tsinling Mountains. A

noteworthy phenomena is that S. ningshanensis is experiencing a

distinct recent population contraction (though the lineage nsc is

exceptional) as shown by the BSP analyses (Fig. 7), there is a

possibility that anthropogenic disturbance resulted in the contrac-

tion in population size of this species. Multiple uplifts of the

Tsinling Mountains and fluctuations in population size of S.

ningshanensis associated with glacial-interglacial cycles led to

increases or decreases in the levels of genetic variation and

coalescence times [23,25,28].

Putative cryptic species
S. ningshanensis probably contains at least two cryptic species or

subspecies based on the p–distance analysis though there is not

difference in morphology among these cryptic species or

subspecies. The geographical distances between the local popula-

tions are long enough for occurrence of gene flow break in S.

ningshanensis since it is philopatric to breeding sites. In addition,

high peaks and deep valleys also contributed to the break of gene

flow between populations. Subsequently, poor level of gene flow

led to speciation events. However, there are limitations in

taxonomic consequences based on only one taxonomic discipline.

We will further confirm the cryptic speciation using data from

nuclear DNA and ecological niche modeling (ENM) in the future.

Conservation and management implications
All potential cryptic species should be considered for conserva-

tion. Different conservation strategies should be accepted for

different species, therefore, it is inappropriate to protect a cryptic

species complex using a single conservation strategy [103]. It is

indispensable to understand and quantify biodiversity so that we

can better explain and at last carry out conservation [103]. The

distribution area of this species is limited to a narrow zone along

Figure 7. Demographic patterns of each clade and the total population as determined from the Bayesian skyline plot (BSP). The X-
axis is in units of million years in the past and the Y-axis is Ne*m (effective population size 6 mutation rate per site per generation). The median
estimates for the log10 of the population size are shown as thick solid lines, and the 95% highest posterior density (HPD) limits are shown by the
shaded areas.
doi:10.1371/journal.pone.0100729.g007
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the Tsinling Mountains, if this species is a cryptic species complex

itself, the distribution area of each cryptic species is much smaller

which increases the risk for extinction. Effective protection

measures are to be provided and carried out. Conservation should

be considered for every cryptic species.

Management units (MUs) are used to make conservation

strategy for threatened species [104,105]. The three lineages

(hby-lfy, nsc, ljs-bys-srs) derived from our study could be used as

three different MUs, each MU has its own unique genetic

structure. Every MU should be considered when conservation

policy is made.

Conclusions

Three lineages were detected. The phylogenetic relationship

analyses showed significant phylogeographic structure. The

population expansion or contraction and genetic differentiation

between populations or lineages could be explained by topography

and the repetitive uplifts of the Tsinling Mountains and the

climatic cycles during the late Pliocene and Pleistocene. S.

ningshanensis experienced a rapid population expansion about

40,000 years before present. The current decline in population size

was probably caused by anthropogenic disturbance. Current

populations of S. ningshanensis are from different refugia though the

location of these refugia could not be determined in our study.

Topography is very important in shaping genetic connectivity.

Topography, climatic changes and repetitive population expan-

sion/contraction together led to the high level of genetic variation

in S. ningshanensis. At least two putative cryptic species were

detected. A total of three MUs were determined, which must be

considered when conservation policy is made in future.
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