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Histone modifications are widely recognized for their fundamental importance in regulating gene expression in embryonic
development in a wide range of eukaryotes, but they have received relatively little attention in the development of marine
invertebrates. We surveyed histone modifications throughout the development of a marine annelid, Polydora cornuta, to determine
if modifications could be detected immunohistochemically and if there were characteristic changes in modifications throughout
ontogeny (surveyed at representative stages from oocyte to adult). We found a common time of onset for three histone mod-
ifications in early cleavage (H3K14ac, H3K9me, and H3K4me2), some differences in the distribution of modifications among
germ layers, differences in epifluorescence intensity in specific cell lineages suggesting that hyperacetylation (H3K14ac) and
hypermethylation (H3K9me) occur during differentiation, and an overall decrease in the distribution of modifications from larvae
to adults. Although preliminary, these results suggest that histone modifications are involved in activating early development and
differentiation in a marine invertebrate.

1. Introduction

One of the central questions in biology is how differences
in gene expression during development lead to the gen-
eration of form. Epigenetic mechanisms such as histone
modifications activate or silence gene expression and thereby
provide rapid, reversible mechanisms that regulate gene
expression in embryonic development. The importance of
histone modifications in development has been extensively
studied in model systems. As this approach is gradually
extended to nonmodel species, histone modifications are
being discovered as mechanisms that are highly conserved
in a wide variety of eukaryotes and critically important in
regulating fundamental developmental processes, including
meiosis [1], cell differentiation [2], organ development in
plants [3], sexual and asexual reproduction in fungi [4],
genomic imprinting in plants and insects [5], and X-inac-
tivation in mammals [6].

Despite the clearly established importance of histone
modifications in the development of many eukaryotes, they
have received almost no attention in the development of
benthic marine invertebrates. Benthic marine invertebrates
represent an exciting group for epigenetic research as they

not only are morphologically diverse as adults, but their
larvae are morphologically and behaviorally distinct from
adults and form the basis for an impressive diversity of
life-history patterns. Our objectives are to determine if
histone modifications can be detected in a marine worm
using immunohistochemistry, if modifications differ among
differentiating tissues, and if changes in modifications cor-
relate with ontogenetic transitions. We chose the worm
Polydora cornuta Bosc, 1802 (Annelida, Spionidae) for this
study. P. cornuta is a small, opportunistic detritivore that is
common in intertidal mudflats and has a wide distribution
in temperate and subtropical coastal areas [7, 8]. Fertilization
in P. cornuta is internal, and females deposit zygotes in a
string of egg capsules that they brood in their mud tubes.
Larval development for this species has been described by
several authors and is strongly influenced by the presence
of nurse eggs in the egg capsules [8–12]. Some broods
contain only a few nurse eggs and young hatch as small,
swimming larvae that feed on phytoplankton (a trophic
mode termed planktotrophy). In other broods, most eggs
are nondeveloping nurse eggs which provide extraembryonic
nutrition for encapsulated larvae (termed adelphophagy),
and as a result, young hatch as large, advanced larvae which
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settle soon after hatching. Although two developmental
morphs are observed for P. cornuta, the present study focuses
on epigenetic similarities between morphs. Our goal is to
establish a foundational understanding of changes in the
epigenome throughout development, as the first step in a
larger project that investigates the potential for histone mod-
ifications to influence plasticity in larval development in this
species.

We surveyed histone modifications throughout ontogeny
using immunohistochemistry. The survey included oocytes,
embryos, early larvae, and adults. This allowed us to correlate
histone modifications with specific developmental events
(e.g., completion of meiosis, tissue formation) and life his-
tory stages (i.e., embryos, larvae, and adults). We focused
on histone modifications as histones are among the most
highly conserved proteins in eukaryotes [13]. Their modifi-
cations are equally conserved and are an important aspect
of epigenetic gene regulation in many different organisms
[5, 14–17]. We used antibodies for core histones as well as
for four commonly studied histone modifications including
antihistone H3 acetyl Lys14 (referred to in this paper as
H3K14ac), antihistone H3 dimethyl Lys4 (or H3K4me2),
antihistone H3 monomethyl Lys9 (or H3K9me), and anti-
histone H4 dimethyl Lys20 (or H4K20me2). Generally,
H3K14ac is associated with transcription, as acetylation
loosens the nucleosomes and allows transcription factors
to bind to promoter regions; H3K9me and H3K4me2
are associated with both transcription and gene silencing;
H4K20me2 is associated with gene silencing [2, 18–20].
Because we do not know the transcriptional outcome of a
change in histone modifications in Polydora cornuta, and
also because of the overall complexity of the epigenome,
we follow the advice of Turner [18, 21] and interpret an
ontogenetic change in histone modifications as a change
within the histone code, rather than a specific indicator
of gene expression. We show that histone modifications
were detected throughout ontogeny in Polydora cornuta.
Similarities in the distribution of three histone modifications
suggest that certain phases of development (i.e., early cleav-
age and possibly metamorphosis) represent transition points
during which widespread changes in histone modifications
occur.

2. Materials and Methods

2.1. Collection and Culture. Adult Polydora cornuta were col-
lected from intertidal mudflats at West Marsh, Halifax Co.,
Nova Scotia (N44.6456, W-63.3744) in early summer (May
to July) of 2010 and 2011. Adults were cultured in 250 mL
Pyrex crystallizing dishes which contained enough sand to
cover the bottom. Each dish contained approximately 10–16
worms, including some males to ensure sperm availability.
Cultures were immersed in seawater at approximately 14-
15◦C, provided with continuous aeration, and maintained
on a 15 : 9 LD photoperiod.

After spawning, broods were removed from the females’
tubes and cultured. As P. cornuta is poecilogonous [11],
broods were identified under a compound microscope by

determining the trophic morph of young (planktotrophy or
adelphophagy) and counting the number of nurse eggs per
egg capsule. We use the term P-brood to refer to broods
in which there are few or no nurse eggs (<5% of the total
number of eggs per brood), most eggs develop (approxi-
mately 80 embryos/capsule) and young hatch as small (3
to 5 segments), planktotrophic larvae. The term A-brood
is used for broods in which most eggs (>90%) are nurse
eggs, few young develop (approximately 5/capsule), and
most young are adelphophagic while in the egg capsule (data
from MacKay and Gibson) [11]. Individual egg capsules were
placed in 3.5 mL Falcon well plates containing filtered sea-
water with antibiotics (1000 mL seawater : 1 mL penicillin-
streptomycin; Sigma P4333). Well plates and culture water
were changed daily until broods reached desired ontogenetic
stages. Stages examined were oocyte, cleavage (2- to 32-cell
stages), blastula, gastrula, trochophore, metatrochophore,
early larva (3-4 chaetigers), and for adelphophagic morphs
only, advanced larvae (5–12 chaetigers).

Forty-eight A-broods and sixteen P-broods were exam-
ined. Unequal sample sizes reflect the fact that P-broods
were relatively uncommon in the West Marsh population.
Approximately eight egg capsules were fixed per brood per
ontogenetic stage. We processed two to three egg capsules per
assay and examined all embryos per capsule for consistency
in epifluorescence (i.e., presence and relative intensity of
epifluorescence in specific cells or tissues). A complete ex-
amination was done for young from both A- and P-
broods at all ontogenetic stages, and observations of histone
modifications common to both morphs are presented.

2.2. Fixation and Immunohistochemistry. Embryos and lar-
vae of both morphs were fixed and labeled with commercially
available primary antibodies for histones and histone mod-
ifications. Egg capsules were fixed in 4% paraformaldehyde
in phosphate buffered saline (PBS) for 45 minutes on ice,
rinsed in PBS, dehydrated to absolute methanol, and stored
at −20◦C for up to two months.

Immunohistochemistry was performed using a proce-
dure modified from Sagawa et al. [22] and kindly provided
by Shiga. Specimens were rehydrated to phosphate buffered
saline containing 1% (v/v) Tween 20 (PT), and under a
dissecting microscope, a small hole was then torn in each
egg capsule to allow further reagents to enter. Specimens
were blocked in PT containing 2% (w/v) bovine serum
albumin (2% BSA/PT) for 2 hours at 4◦C and then incubated
in one of the following primary antibodies (1/500) in 2%
BSA/PT overnight at 4◦C. Five primary antibodies were used:
antihistone, histone 1 and core histones (monoclonal mouse,
Millipore MAB052), antihistone H3 acetyl Lys14 (mono-
clonal rabbit, Abcam ab52946), antihistone H3 dimethyl
Lys4 (polyclonal rabbit, Abcam ab32356), antihistone H3
monomethyl Lys9 (polyclonal rabbit, Abcam ab9045), and
antihistone H4 dimethyl Lys20 (polyclonal rabbit, Abcam
ab9052-25). Histone proteins and modifications are highly
conserved [13], and the primary antibodies used here have
also been used to detect the same histone modifications in
a wide variety of eukaryotes, ranging from yeast to plants
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[23–25]. Specimens were then washed ten times over 1 hour
with PT. Secondary antibodies were FITC-goat anti-rabbit
IgG (1/50, Invitrogen 65-6111) for specimens incubated with
H3K14ac, H3K4me2, H3K9me, and H4K20me2; TRITC-
goat anti-mouse IgG (1/50; Invitrogen T-2762) for specimens
incubated with antihistone. All specimens were also cola-
beled with DAPI (1/500; Sigma 32670) in 2% BSA/PT for 2
hours at 4◦C. Specimens were washed 12 times over 1 hour
with PT and mounted onto glass slides using Vectashield
(Vector Laboratories H-1000). Coverslips were sealed with
nail polish.

Gravid females were examined in whole mounts of indi-
vidual segments (n = 8 females) or in paraffin section (n =
5). Whole-mounted segments were processed as for embryos.
For paraffin sectioning, females were placed in filtered
seawater for 24 h to allow the gut to void of sand and then
fixed and dehydrated as described for egg capsules. After
females were embedded in paraffin, they were sectioned at
10 µm and 5-6 sections from each female placed on poly-L-
lysine coated slides. Sections were deparaffinized in xylene,
rehydrated to PT, and processed as described for egg capsules.
Sections were ringed with a liquid blocker pen to avoid loss of
reagents, and the immunohistochemistry protocol was done
in a humid, sealed chamber.

Negative controls were processed using the typical proto-
col but with the primary antibody replaced with 2% BSA/PT
during the first incubation, followed by labeling as usual with
FITC- or TRITC-conjugated secondaries during the second
incubation. Epifluorescence was not detected in the negative
controls.

Samples were examined using a Zeiss Axioplan II
compound fluorescence microscope and micrographs taken
using an SPOT-2 camera (Diagnostic Instruments, Inc.).
Micrographs were adjusted for size and contrast using Corel
PhotoPaint 11.0.

3. Results and Discussion

3.1. Detection of Histones (Antihistone 1 and Core Histones).
Epifluorescence of TRITC-conjugated antihistone indicated
that histones were present in the nuclei of all cells throughout
development (Table 1). TRITC epifluorescence colocalized
with that of DAPI, providing evidence that the TRITC signal
was restricted to nuclear chromatin (Figures 1(a) and 1(b)).
TRITC-conjugated antihistone was detected in all cells of
embryos and larvae throughout development and is shown
here for a gastrula from a P-brood (Figure 1(c)). These
results demonstrate that this antibody appears to recognize
and bind to worm antigens, and also that we can detect
histones in all blastomeres, even at early stages when the
blastomeres are very yolky.

3.2. Antihistone H3 Acetyl Lys14. Acetylation of H3K14 was
not detected in oocytes located within the coelom of gravid
females although it was detected in a few of the follicular
cells associated with the oocytes (Figures 2(a) and 2(b)).
The earliest embryo that was surveyed for H3K14ac was
at a two-cell cleavage stage. H3K14ac was not detected in

blastomeres although it was evident in the polar bodies
(Figures (2(c)–2(e); Table 1). Four-cell embryos were similar:
H3K14ac was not detected in blastomeres, but it was detected
in polar bodies (not shown). H3K14ac was first detected
in blastomeres in embryos that were entering the eight-
cell stage. In these embryos, H3K14ac was present in all
blastomeres except the large D macromere (Figures 2(f)–
2(h), shown in an embryo in which the D blastomere is
undergoing mitosis; H3K14ac was detected in mitotically
active cells in other embryos, described below). Acetylation
of H3K14 was also absent in the D blastomere of 12- to
16-cell embryos (not shown). By late cleavage (roughly 32
cells), H3K14ac appeared to be present in most, if not all,
blastomeres although epifluorescence in the inner, yolky
macromeres was sometimes difficult to observe.

In gastrulae, H3K14ac was detected as weak epifluo-
rescence throughout the epidermis and as strong epifluo-
rescence in a few cells associated with the mouth (shown
below). In trochophores and early larvae, bright epifluores-
cence was detected in the mouth and also on the ventral
surface and pygidium (Figures 3(a)–3(c), shown for a three-
chaetiger adelphophagic larva). As larvae developed, this
pattern of H3K14ac was retained: weak epifluorescence was
detected throughout the epidermis (Figures 3(d)–3(f), dorsal
view shown in a four-chaetiger adelphophagic larvae), and
strong epifluorescence was present in a few cell lineages,
specifically the mouth, ventral cells, and pygidium. Bright
epifluorescence was also observed in cells during mitosis,
indicating that H3K14ac persists or is restored through
karyokinesis (Figures 3(g) and 3(h)). Older larvae had a
similar distribution of H3K14ac-positive cells (not shown).
In contrast, gravid females had detectable levels of H3K14ac
in relatively few cells, including scattered cells of the epi-
dermis, nephridia, and chaetal sacs (Figures 3(i) and 3(j)).
Importantly, the differential brightness observed in specific
cell lineages was consistent among young from the same egg
capsules and across multiple (in some cases, up to four)
broods per ontogenetic stage.

Histone acetylation is generally associated with transcrip-
tion and in eukaryotes is common in undifferentiated cells,
while differentiated cells often contain hypoacetylated chro-
matin [26]. Our observations fit with that general pattern as
H3K14ac was acquired in most blastomeres (i.e., all except
the D macromere) in early development (around the 8-
cell stage), rapidly growing larvae had detectable levels of
H3K14ac throughout the epidermis, and the relative number
of H3K14ac-positive cells decreased in adults. One result that
differed from that reported in model systems (specifically,
mammals and Drosophila) is the lack of detectable H3K14ac
in oocytes and early embryos (2- to 4-cell stages). Histone
acetylation is important in oogenesis in mammals [1] and
while lack of H3K14ac is reported in mammalian zygotes,
H3K14ac is often restored in cleavage [27]. H3K14ac is also
important in meiosis in oocytes of Drosophila and has been
shown to vary at different points in the meiotic cycle [28].
Our detection of H3K14ac in polar bodies is consistent with
Endo et al. (2005) who detected a strong signal of histone
acetylation in polar bodies in mammals [1]. In P. cornuta, it
appears that H3K14ac is important in at least some aspects
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(a) (b) (c)

Figure 1: Distribution of core histones in embryos of Polydora cornuta. (a, b) Companion micrographs of an eight-cell embryo from an
A-brood, showing the distribution of DNA (a, DAPI) and histones (b, TRITC-conjugated anti-histone). (c) Gastrula from a P-brood labeled
with TRITC-conjugated antihistone. Scale bars = 50 µm.
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Figure 2: H3K14 acetylation in early development of Polydora cornuta. (a, b) Companion micrographs of an oocyte inside the coelom of a
female in paraffin section showing nuclear DNA (a, DAPI) and nuclei that are acetylated at H3K14 (b, FITC-conjugated anti-H3K14ac). The
remaining images are bright field (left) and companion images showing DNA (DAPI, middle) and nuclei with H3K14ac (FITC-conjugated
anti-H3K14ac, right). (c–e) Two-cell stage with polar bodies and a polar lobe (P-brood). (f–h) Eight-cell embryo, shown from the animal
pole (P-brood). ch: chaetae, D: D macromere, fc: follicular cell, ma: macromere, mi: micromere, n: nucleus, on: oocyte nucleus, pb: polar
body, and pl: polar lobe. Scale bars = 50 µm.
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Figure 3: H3K14 acetylation in larvae and adults of Polydora cornuta. (a–c) Companion micrographs of the ventral surface of a three-
chaetiger larva (A-brood) in bright field (a), showing nuclear DNA (b, DAPI), and showing nuclei that are acetylated at H3K14 (c, FITC-
conjugated anti-H3K14ac). Note the strong epifluorescence that is typical of cells of the mouth and pygidium (small arrows in c). (d–f)
Dorsal view of a four-chaetiger larva (A-brood) in bright field (d), with DAPI (e) and with FITC-conjugated anti-H3K14ac (f). (g, h) Images
of an ectodermal cell from a gastrula (P-brood) that is undergoing mitosis, double labeled with DAPI (g) and FITC-conjugated anti-H3K14ac
(h). (i, j) Paraffin section through the body wall of a female that is double labeled with DAPI (i) and FITC-conjugated anti-H3K14ac (j). cs:
chaetal sac, ch: chaetae, e: eye, ep: epidermis, g: gut, h: head, ls: larval spines, m: mouth, n: nephridium, s: segment, and p: pygidium. Arrows
indicate the presence of FITC-conjugated H3K14ac in the indicated cells. Scale bars = 10 µm (g, h) or 50 µm (a–f, i, j).

of meiosis, as it was detected in polar bodies and suggests a
potential pathway by which polar bodies may be determined.

The onset of acetylation of H3K14 occurred in early
embryos (8-cell stage), when it was detected in all blas-
tomeres except for the D macromere; this pattern was
retained at least through the sixteen-cell stage but was
difficult to follow in later development (from 32 cells
on) given the techniques used here. In polychaetes, the
D macromere gives rise to most of the segmented tissue
including ectoderm and mesodermal derivatives [29]. Lack
or delayed onset of acetylation of H3K14 in the D blastomere
suggests a delay in transcription of some genes within this
lineage, but this remains to be confirmed.

3.3. Antihistone H3 Monomethyl Lys9. H3K9me was not
detected in oocytes located within the coelom of gravid
females (Figures 4(a) and 4(b)). The earliest stage of
development in which H3K9me was detected was the eight-
cell stage where it was detected in all blastomeres (Figures

4(c)–4(e); note that the distribution of H3K9me is shown
for planktotrophic embryos and larvae throughout this
section; Table 1). In blastulae, H3K9me was detected as weak
epifluorescence in all blastomeres but gave a characteristically
bright signal in a ring of cells around the presumptive
head (Figures 4(f)–4(h)), a distribution pattern that was
retained in gastrulae. We interpreted this bright signal as due
to increased histone modification (i.e., hypermethylation)
rather than altered nuclear structure (i.e., micromeres giving
brighter signal in their nuclei simply because they were small
and concentrated). Our interpretation is founded on the
argument that other micromeres (e.g., the two in the centre
of the blastula in Figures 4(g) and 4(h)) also had small and
concentrated nuclei, but did not possess the same bright
signal as those forming the ring around the presumptive
head.

In trochophores and metatrochophores, moderate levels
of H3K9me were detected throughout the ectoderm with
bright epifluorescence in the head and laterally in the region
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Figure 4: H3K9 monomethylation in Polydora cornuta. (a, b) Companion micrographs of an immature oocyte inside the coelom of a female
in paraffin section showing nuclear DNA (a, DAPI) and nuclei that are monomethylated at H3K9 (b, FITC-conjugated anti-H3K9me). The
remaining images are bright field (left) and companion images showing DNA (DAPI, middle) and nuclei with H3K9me (FITC-conjugated
anti-H3K9me, right) for embryos and larvae from planktotrophic broods. (c–e) Eight-cell embryo shown from the animal pole. The small
arrow indicates the presence of H3K9me in a dividing blastomere. The micromeres are out of the plane of focus and are difficult to see in (e).
(f–h) Blastula, shown from the animal pole. The small arrows indicate the ring of hypermethylated micromeres surrounding the presumptive
head. (i–k) Ventral view of a three-chaetiger larva. H3K9me is visible throughout the epidermis, chaetal sacs, and gut. cs: chaetal sac, e: eye,
ep: epidermis, g: gut, h: head, ls: larval spines, m: mouth, ms: muscle, on: oocyte nucleus, and s: septa. Scale bars = 50 µm.

of the presumptive chaetal sacs. Epifluorescence was also
detected in the mesoderm and endoderm (demonstrated
below). Early larvae had moderate FITC signal throughout
the epidermis, chaetal sacs and mesoderm, and weak epi-
fluorescence in the gut (shown in a three-chaetiger larva;
Figures 4(i)–4(k)), a pattern of distribution that was retained
at least to the six-chaetiger stage. In gravid females, H3K9me
was detected in ectodermal and mesodermal derivatives
including many epidermal cells, nephridia, muscle, and a few

cells of the chaetal sacs (shown for muscle and septa; Figures
4(a) and 4(b)).

These observations suggest that the distribution of
H3K9me is in many ways similar to H3K14ac; H3K9me
was not detected in oocytes, it was first detected in early
cleavage, and it was widely distributed in cells of embryos
and larvae and varied in intensity among cell lineages (e.g.,
in the blastula stage), and H3K9me-positive cells decreased
in distribution in adults. Here, we interpret the presence
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or relative intensity of H3K9me as indicating a change
in histone modifications (onset, loss, or hypermethylation)
rather than specifically indicating gene activation or repres-
sion, as H3K9me has been associated with both [19, 25,
30, 31]. Differences among cell lineages in epifluorescence
intensity were consistent from blastulae to larvae, with
low levels of epifluorescence throughout the ectoderm and
bright signal in some nuclei of the head. This suggests
that hypermethylation occurs in these cells and may affect
differential levels of gene expression as differentiation occurs.
Adults showed a decrease in methylation of H3K9; in larvae,
H3K9me was broadly found in most, if not all, cells of
the epidermis, mesoderm, and, gut but in adults, H3K9me
was restricted to relatively few cells of the epidermis and
mesodermal derivatives. This suggests that a transition in
histone modifications occurs between larvae and adults that
involves a shift from detectable levels of H3K9me in most
cells to methylation in few cell lineages only and is consistent
with loss of methylation of H3K9 during differentiation that
has been observed elsewhere [19].

3.4. Antihistone H3 Dimethyl Lys4. H3K4me2 was not
detected in oocytes located within the coelom of gravid
females (Figures 5(a) and 5(b)). H3K4me2 was detected in
both micromeres and macromeres in early cleavage although
epifluorescence was difficult to detect in the macromeres
because of the large amount of yolk in these cells (six- to
eight-cell embryos; Figures 5(c)–5(e); Table 1). In blastulae
and gastrulae, H3K4me2 was present in most, if not
all, blastomeres. At the trochophore stage, H3K4me2 was
detected throughout the ectoderm and also in some of the
deeper cells of the underlying mesoderm (demonstrated
below). The distribution of H3K4me2 was similar in early
larvae (i.e., three to four chaetigers in length) and was
generally detected throughout the epidermis and underlying
muscle and was also detected as weak epifluorescence in the
developing gut (Figures 5(f) and 5(g)). Only adelphophagic
larvae were observed at later ontogenetic stages. In later
larval development (i.e., five chaetigers) and at hatching
(roughly twelve chaetigers), adelphophagic larvae still had
strong FITC signal associated with the epidermis and in
the underlying muscle (not shown). In gravid females,
H3K4me2 was detected throughout the epidermis, septa, and
muscle but not the gut (shown for septa; Figure 5(a) and
5(b)).

These observations suggest that H3K4me2 was similar
in distribution to H3K14ac and H3K9me: H3K4me2 was
not detected in oocytes, had an onset in early cleavage,
was broadly distributed in embryos and larvae, and was
detected in adults in specific tissues only. The major dif-
ference between H3K4me2 and the modifications described
above was the lack of hypermethylation in specific cell
lineages. These observations suggest that widespread changes
in H3K4me2 occur at roughly the eight-cell stage (i.e.,
onset) and possibly also with metamorphosis (i.e., change
in tissue-specific expression). As with H3K9me, the specific
functional implications of H3K4me2 are not yet known for P.
cornuta, as dimethylation of H3K4 is associated with varying

transcriptional activity depending on interactions with other
histone modifications as differentiation occurs [20, 32].

3.5. Antihistone H4 Dimethyl Lys20. We attempted to detect
H4K20me2 in female tissue (specifically the body wall
and palps), in trochophores, and in three-chaetiger larvae.
H4K20me2 was not detected at any of these ontogenetic
stages, and therefore, our search for it was discontinued.

3.6. Changes in Histone Modifications throughout Develop-
ment. In many metazoans, histone modifications are re-
programmed during meiosis and embryos gradually acquire
modifications during differentiation [33]. Our results suggest
that this general pattern also occurs in polychaetes. H3K14ac,
H3K9me, and H3K4me2 were not detected in oocytes, but
all three were detected in early cleavage embryos (at roughly
the eight-cell stage in the planktotrophic morph), had a
widespread distribution in larvae within the derivatives of
certain germ layers, and were detected in adults but in
specific tissues only.

Collectively, these observations suggest that global
changes in gene expression occur at about the eight-cell
stage with the onset of three modifications that affect
gene transcription (i.e., H3K14ac, H3K9me, and H3K4me2).
The onset of histone modifications was consistent but not
uniform among blastomeres; for example, the onset of
H3K14ac was delayed in the D blastomere relative to other
cells of the same embryo. While the importance of histone
modifications in the early development of marine inverte-
brates has not received much attention, the importance of
histone variants has been demonstrated by Arenas-Mena
and colleagues for the polychaete Hydroides elegans and the
sea urchin Strongylocentrotus purpuratus [34]. Both species
express the histone variant H2A.Z in early cleavage where
it is specifically associated with undifferentiated cells, and
as cellular differentiation occurs in larvae, the expression of
H2A.Z declines [34]. Our observations suggest that histone
modifications (in addition to histone variants) may be
associated with determination of cell fate in polychaetes,
given the common onset of three modifications in early
cleavage in P. cornuta. Additionally, histone modifications are
associated with differentiation as they were also detected in
specific larval and adult tissues.

The potential for histone modifications to be associated
with tissue differentiation is supported by the presence of
hyperacetylation of H3K14 in cells of the mouth and pygid-
ium of larvae, of hypermethylation of H3K9 in cells of the
presumptive head of embryos (blastulae and gastrulae), and
of the restriction of some modifications to specific organs
(e.g., H3K9me and H3K4me2 were detected in the larval gut,
but H3K14ac was not). Thus, lineage-specific modifications
also occur and suggest that histone modifications may
influence not only early specification of cell fate but also
cell differentiation as tissues (such as the gut) specialize and
become functional in larvae.

All three histone modifications had patterns of distri-
bution that differed between larvae and adults. In larvae,
H3K14ac was broadly distributed throughout the epidermis,
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Figure 5: H3K4 dimethylation in Polydora cornuta. (a, b) Companion micrographs of an oocyte inside the coelom of a female in paraffin
section showing nuclear DNA (a, DAPI) and nuclei that are dimethylated at H3K4 (b, FITC-conjugated anti-H3K4me2). Note that H3K4me2
was not detected in the oocyte nucleus. (c–e) Early cleavage stages of a planktotrophic embryo in bright field (c) and with epifluorescence for
DAPI (d) and FITC-conjugated H3K4me2 (e). The small arrows indicate the presence of H3K4me2 in the micromeres. (f, g) Three-chaetiger
larva from a P-brood in bright field (f) and with epifluorescence for FITC-conjugated H3K4me2 (g). e: eye, ep: epidermis, g: gut, ls: larval
spines, m: mesoderm, on: oocyte nucleus, s: septa, and p: pygidium. Scale bars = 50 µm.

and H3K9me and H3K4me2 were detected throughout
derivatives of ectoderm, mesoderm, and endoderm. In con-
trast, the distribution of all three modifications was restricted
in adults, in terms of being detected in relatively few cells
within a tissue (e.g., H3K14ac in the adult epidermis) or
no longer being present at detectable levels (e.g., H3K4me2
in the adult gut). This suggests that a transition in the
histone code may occur as larvae undergo metamorphosis.
Metamorphosis was not a focus of this study, but this
general pattern suggests two hypotheses. One is that his-
tone modifications affect a change in gene expression that
correlates with changes in growth from rapidly growing
larvae to more slowly growing adults. The other hypothesis
is that changes in histone modifications correlate with
a developmental reprogramming at metamorphosis. Both
hypotheses have merit. Most larval tissues contribute directly
to adult tissues in spionid polychaetes, suggesting that the

first hypothesis may be more valid, but settlement involves
widespread behavioural and morphological changes; thus,
the potential for a global reprogramming of gene expression
at metamorphosis is also to be considered.

4. Conclusions

We surveyed histone modifications in the development of a
polychaete, Polydora cornuta, using immunohistochemistry.
We found that three of the four tested primary antibod-
ies for histone modifications appeared to recognize and
bind to antigens of this species. H3K14ac, H3K9me, and
H3K4me2 colocalized with DAPI and were consistently
detected throughout development. The fourth primary
antibody, H4K20me2, did not react with the tissue. The
three detected modifications collectively suggest that these
histone modifications are first present in early cleavage,
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are widely distributed throughout larval development, and
also are found in some adult tissues but with a more
restricted distribution. The observed common onset in
histone modifications suggests that a global change or ac-
tivation of gene expression occurs in early embryos. Two
modifications showed a generally low level of epifluorescence
in most cells but a very strong signal in a few cell lineages,
indicating a role in tissue differentiation. Finally, differences
in the distribution of three modifications between larvae and
adults suggest a second transition in histone modifications
may occur at metamorphosis. Although preliminary, this
research indicates that histone modifications are present in
a marine invertebrate and show characteristic changes with
tissue differentiation and also with specific life stages.

Acknowledgments

The authors thank Y. Shiga for kindly providing them
with protocols for immunohistochemistry. They thank two
anonymous reviewers for their insightful comments and also
thank Haixin Xu for help with microscopy. This research
was funded by NSERC Discovery grants to G. Gibson and
V. Lloyd, by an NSERC USRA to C. Hart, and by an Acadia
University Honours Summer Research Award to R. Pierce.

References

[1] T. Endo, K. Naito, F. Aoki, S. Kume, and H. Tojo, “Changes in
histone modifications during in vitro maturation of porcine
oocytes,” Molecular Reproduction and Development, vol. 71,
no. 1, pp. 123–128, 2005.

[2] C. Kovach, P. Mattar, and C. Schuurmans, “The role of epige-
netics in nervous system development,” in Epigenetics: Linking
Genotype and Phenotype in Development and Evolution, B.
Hallgrimsson and B. Hall, Eds., pp. 137–163, Berkeley, Calif,
USA, The University of California Press, 2011.

[3] L. Tian, M. P. Fong, J. J. Wang et al., “Reversible histone acety-
lation and deacetylation mediate genome-wide, promoter-
dependent and locus-specific changes in gene expression
during plant development,” Genetics, vol. 169, no. 1, pp. 337–
345, 2005.

[4] K. K. Adhvaryu, S. A. Morris, B. D. Strahl, and E. U. Selker,
“Methylation of histone H3 lysine 36 is required for normal
development in Neurospora crassa,” Eukaryotic Cell, vol. 4, no.
8, pp. 1455–1464, 2005.

[5] L. A. McEachern and V. Lloyd, “The epigenetics of genomic
imprinting: core epigenetic processes are conserved in mam-
mals, insects and plants,” in Epigenetics: Linking Genotype
and Phenotype in Development and Evolution, B. Hallgrimsson
and B. Hall, Eds., pp. 43–69, University of California Press,
Berkeley, Calif, USA, 2011.

[6] I. Okamoto, A. P. Otte, C. D. Allis, D. Reinberg, and E. Heard,
“Epigenetic dynamics of imprinted X inactivation during early
mouse development,” Science, vol. 303, no. 5658, pp. 644–649,
2004.

[7] G. Bellan, “Polydora cornuta bosc, 1802,” in World Poly-
chaeta Database. Accessed Through: World Register of Marine
Species, G. Read and K. Fauchald, Eds., 2011, http://www.
marinespecies.org/aphia.php?p=taxdetails&id=131143.

[8] V. I. Radashevsky, “On adult and larval morphology of
Polydora cornuta Bosc, 1802 (Annelida: Spionidae),” Zootaxa,
no. 1064, pp. 1–24, 2005.

[9] J. A. Blake, “Reproduction and larval development of Polydora
from northern New England (Polychaeta: Spionidae),” Ophe-
lia, vol. 7, pp. 1–63, 1969.

[10] R. N. Zajac, “The effects of sublethal predation on reproduc-
tion in the spionid polychaete Polydora ligni Webster,” Journal
of Experimental Marine Biology and Ecology, vol. 88, no. 1, pp.
1–19, 1985.

[11] J. MacKay and G. Gibson, “The influence of nurse eggs on
variable larval development in Polydora cornuta (Polychaeta:
Spionidae),” Invertebrate Reproduction and Development, vol.
35, no. 3, pp. 167–176, 1999.

[12] S. A. Rice and K. A. Rice, “Variable modes of larval develop-
ment in the Polydora cornuta complex (Polychaeta: Spionidae)
are directly related to stored sperm availability,” Zoosymposia,
vol. 2, pp. 397–414, 2009.

[13] J. Fuchs, D. Demidov, A. Houben, and I. Schubert, “Chro-
mosomal histone modification patterns-from conservation to
diversity,” Trends in Plant Science, vol. 11, no. 4, pp. 199–208,
2006.

[14] T. Jenuwein and C. D. Allis, “Translating the histone code,”
Science, vol. 293, no. 5532, pp. 1074–1080, 2001.

[15] J. S. Lee, E. Smith, and A. Shilatifard, “The language of histone
crosstalk,” Cell, vol. 142, no. 5, pp. 682–685, 2010.

[16] A. J. Bannister and T. Kouzarides, “Regulation of chromatin
by histone modifications,” Cell Research, vol. 21, pp. 381–395,
2011.

[17] P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz et
al., “Comprehensive analysis of the chromatin landscape in
Drosophila melanogaster,” Nature, vol. 471, pp. 480–485, 2011.

[18] B. M. Turner, “Cellular memory and the histone code,” Cell,
vol. 111, no. 3, pp. 285–291, 2002.

[19] P. Lefevre, C. Lacroix, H. Tagoh et al., “Differentiation-
dependent alterations in histone methylation and chromatin
architecture at the inducible chicken lysozyme gene,” Journal of
Biological Chemistry, vol. 280, no. 30, pp. 27552–27560, 2005.

[20] H. Santos-Rosa, R. Schneider, A. J. Bannister et al., “Active
genes are tri-methylated at K4 of histone H3,” Nature, vol. 419,
no. 6905, pp. 407–411, 2002.

[21] B. M. Turner, “Defining an epigenetic code,” Nature Cell
Biology, vol. 9, no. 1, pp. 2–6, 2007.

[22] K. Sagawa, H. Yamagata, and Y. Shiga, “Exploring embryonic
germ line development in the water flea, Daphnia magna, by
zinc-finger-containing VASA as a marker,” Gene Expression
Patterns, vol. 5, no. 5, pp. 669–678, 2005.

[23] R. Sugioka-Sugiyama and T. Sugiyama, “A novel nuclear
protein essential for telomeric silencing and genomic stability
in Schizosaccharomyces pombe,” Biochemical and Biophysical
Research Communications, vol. 406, pp. 444–448, 2011.

[24] S. Fritah, E. Col, C. Boyault et al., “Heat-shock factor
1 controls genome-wide acetylation in heat-shocked cells,”
Molecular Biology of the Cell, vol. 20, no. 23, pp. 4976–4984,
2009.

[25] H. Wen, J. Li, T. Song et al., “Recognition of histone H3K4
trimethylation by the plant homeodomain of PHF2 modulates
histone demethylation,” Journal of Biological Chemistry, vol.
285, no. 13, pp. 9322–9326, 2010.

[26] A. Eberharter and P. B. Becker, “Histone acetylation: a switch
between repressive and permissive chromatin. Second in

http://www.marinespecies.org/aphia.php?p=taxdetails\&id=131143
http://www.marinespecies.org/aphia.php?p=taxdetails\&id=131143


Genetics Research International 11

review on chromatin dynamics,” EMBO Reports, vol. 3, no. 3,
pp. 224–229, 2002.

[27] J. M. Kim, H. Liu, M. Tazaki, M. Nagata, and F. Aoki, “Changes
in histone acetylation during mouse oocyte meiosis,” Journal
of Cell Biology, vol. 162, no. 1, pp. 37–46, 2003.

[28] I. Ivanovska, T. Khandan, T. Ito, and T. L. Orr-Weaver,
“A histone code in meiosis: the histone kinase, NHK-1, is
required for proper chromosomal architecture in Drosophila
oocytes,” Genes and Development, vol. 19, no. 21, pp. 2571–
2582, 2005.

[29] E. C. Seaver, “Segmentation: mono- or polyphyletic?” Interna-
tional Journal of Developmental Biology, vol. 47, no. 7-8, pp.
583–595, 2003.

[30] F. Chen, H. Kan, V. Castranova et al., “Methylation of
lysine 9 of histone 3: role of heterochromatin modulation
and tumorigenesis,” in Handbook of Epigenetics: The New
Molecular and Medical Genetics, T. Tollefsbol, Ed., pp. 149–
157, Academic Press, Amsterdam, The Netherlands, 2011.

[31] M. D. Stewart, J. Li, and J. Wong, “Relationship between
histone H3 lysine 9 methylation, transcription repression,
and heterochromatin protein 1 recruitment,” Molecular and
Cellular Biology, vol. 25, no. 7, pp. 2525–2538, 2005.

[32] B. E. Bernstein, T. S. Mikkelsen, X. Xie et al., “A bivalent chro-
matin structure marks key developmental genes in embryonic
stem cells,” Cell, vol. 125, no. 2, pp. 315–326, 2006.

[33] K. L. Arney and A. G. Fisher, “Epigenetic aspects of differenti-
ation,” Journal of Cell Science, vol. 117, no. 19, pp. 4355–4363,
2004.

[34] C. Arenas-Mena, K. S. Y. Wong, and N. R. Arandi-Foroshani,
“Histone H2A.Z expression in two indirectly developing
marine invertebrates correlates with undifferentiated and
multipotent cells,” Evolution and Development, vol. 9, no. 3,
pp. 231–243, 2007.


	Introduction
	Materials and Methods
	Collection and Culture
	Fixation and Immunohistochemistry

	Results and Discussion
	Detection of Histones (Antihistone 1 and Core Histones)
	Antihistone H3 Acetyl Lys14
	Antihistone H3 Monomethyl Lys9
	Antihistone H3 Dimethyl Lys4
	Antihistone H4 Dimethyl Lys20
	Changes in Histone Modifications throughout Development

	Conclusions
	Acknowledgments
	References

