
Pseudorabies Virus Infection Alters Neuronal Activity
and Connectivity In Vitro
Kelly M. McCarthy, David W. Tank, Lynn W. Enquist*

Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America

Abstract

Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus
(PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain
indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these
characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known
to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times
after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were
accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP
firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting
membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as
demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by
transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced
fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral
membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP
firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain
delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion
pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may
contribute to the altered neural function seen in PRV-infected animals.
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Introduction

Alpha-herpesviruses infect a wide variety of cell types, but their

hallmark is infection of the nervous systems of their hosts.

Infections result in a variety of symptoms, some of which suggest

an effect on motor and sensory neuron activity. For example,

herpes simplex virus type 1 causes herpes labialis with the

sensations of numbness and tingling [1]; herpes simplex virus type

2 causes genital herpes with the sensations of itching and pain [2];

and varicella-zoster virus causes chicken pox and shingles with

sensations of itching, as well as intense pain [3]. Understanding

how herpesvirus infection affects the function and connectivity of

peripheral nervous system (PNS) neurons is central to understand-

ing the cause of characteristic symptoms and pathogenesis.

Pseudorabies virus (PRV) is an alpha-herpesvirus with a broad

host range that is the causative agent of Aujesky’s disease in adult

swine. All other susceptible animals (including most mammals,

except higher primates) typically die following infection preceded

by marked symptoms of PNS and central nervous system (CNS)

dysfunction. Symptoms occur in a strain dependent manner and

include severe pruritus with frantic self-mutilation (known as the

‘‘mad itch’’), loss of motor coordination, and ataxia [4,5].

Several early studies examined the effects of virulent PRV

infection on the electrical function of infected neurons of non-

natural hosts [6,7,8]. Extracellular recordings of rat superior

cervical ganglia (SCG), a sympathetic ganglion of the PNS,

showed that infected ganglia exhibited spontaneous discharges

from pre- and post- ganglionic nerves in contrast to silent

uninfected ganglia [6]. Simultaneous extracellular recording of

pre- and post-ganglionic nerves together with intracellular

recording of ganglionic neurons, revealed synchronous spontane-

ous discharges in pre- and post- ganglionic nerves [7,8,9,10,11].

These PRV-induced changes were hypothesized to arise from

spontaneous neurotransmitter release and/or fusion of pre- and

post-synaptic membranes [7,12].

Because of their broad host range and reduced virulence,

selected attenuated strains of PRV are used to trace chains of

connected neurons in a variety of non-native hosts [4,5,13,14,15].

A commonly used tracer is PRV Bartha, an attenuated strain

harboring a number of mutations including those in the genes

encoding viral membrane glycoproteins gM [16] and gC [17], and

in tegument protein UL21 [18]. This strain also carries a deletion

removing the genes encoding for membrane proteins gE, gI and

Us9, essential for anterograde spread of infection through

neuronal circuits, as well as tegument protein Us2 [19,20,21].

Recent tracing studies employing attenuated PRV Bartha strain

derivatives reported that the electrophysiological properties of

infected hamster and rat CNS neurons were unaffected by
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infection, despite behavioral signs of neurological defects late in

infection prior to death [22,23,24,25].

In this study we describe the effects of infection of virulent and

attenuated strains of PRV on neuronal activity and connectivity

using whole-cell patch recording methods on dissociated primary

cultures of embryonic rat SCG neurons. The PRV strains used

included a virulent PRV Becker strain expressing GFP (PRV 151),

an avirulent mutant derivative of PRV Becker (PRV 233) that

cannot express gB, an essential component of the viral membrane

fusion complex [26], and an attenuated PRV Bartha strain

expressing GFP (PRV 152). We report that neurons infected with

PRV 151 exhibited elevated rates of action potential (AP) firing

and spikelet-like events that correlated with formation of small

fusion pores between adjacent cell bodies. Over the course of

infection, PRV 151 neurons become increasingly dye and

electrically coupled, resulting in synchronous activity. By 40 hpi,

multinucleated neuronal syncytia were formed. When neurons

were infected with a complemented gB null mutant, PRV 233, AP

firing rates were not increased above uninfected neurons. No

changes in electrical connectivity or dye transfer were observed,

and formation of multi-nucleated syncytia never occurred.

Interestingly, neurons infected with the attenuated tracing strain

PRV152 were substantially delayed in all the infection-induced

changes observed for virulent infection.

We conclude that the viral membrane fusion complex (the gB, gH

and gL proteins) produces fusion pores several hours after infection

that enable ions to flow between neurons resulting in electrical (not

synaptically mediated) coupling. At early times, the pores are small,

open to diffusion of small molecular weight dyes such as Lucifer

Yellow. These pores effectively couple the electrical activity of

neurons. At later times, pores are larger, open to diffusion of larger

molecular weight rhodamine-dextran conjugates. These larger

pores completely synchronize firing events between involved

neurons. The delay, but not elimination, of all firing and coupling

events in PRV 152 infected neurons implies that mutations in the

PRV Bartha genome modulate action or localization of the viral

membrane fusion complex in neurons.

Results

PRV infects and replicates in dissociated SCG neurons
Previous studies investigating changes in electrophysiology of

PRV infected neurons used widely varying techniques, including

intracellular sharp recordings of infected SCG neurons in situ and

patch clamp recordings in brain slices of infected animals. In these

studies, it was difficult to determine if and when a recorded neuron

was infected. To overcome these limitations, we used cultures of

dissociated rat sympathetic ganglion (SCG) neurons, free of

replicating epithelial and support cells. After one week in culture,

(see methods), the cell bodies of some SCG neurons had divided

once or twice before terminal differentiation and were typically

found either in clusters of 2–6 cells. These neurons also formed an

extensive network of axons (Figure 1A). We infected cultures with

sufficient virus to ensure infection of all cell bodies. In most of our

studies we used PRV 151, a virulent PRV Becker recombinant

that expresses diffusible GFP. Fluorescence was visible by 4 hpi in

all neurons across each culture and remained strong for at least

three days following infection (Figure 1A).

PRV infection induces significant electrophysiological
changes in infected neurons in vitro

In situ recordings from rat SCG tissue infected with PRV 151

revealed significant changes in electrophysiological properties,

including highly elevated rates of spontaneous AP firing and

synchronous activity on pre- and post- ganglionic nerves [6,8,9].

To determine whether similar changes would be seen in cultured

PRV infected SCG neurons, we examined action potential (AP)

firing rates using whole cell patch recordings in current clamp

mode. In control mock-infected neurons, AP firing was rare, and

slow rising and decaying excitatory post-synaptic potential (epsp)-

like depolarizations were only occasionally observed on top of the

resting membrane potential (Figure 1B). As PRV 151 infection

progressed, neurons began to fire APs at elevated rates compared

to mock-infected neurons (Figure 1C–E). Infected neurons also

displayed smaller spikelet-like events and had significantly

hyperpolarized resting potentials, despite increases in AP firing

rates (Figure 1C–E). These results demonstrate that electrophys-

iological changes qualitatively similar to those observed in tissue

were observed under our culture conditions.

PRV infected neurons fire APs at elevated rates by
8 hours post infection

We next characterized the time course and magnitude of these

changes. We first recorded from neurons at specific times following

infection (4–8,8–10,14–16,18–20 and 24–46 hpi) and compared

their AP firing rates with that observed under mock-infection. Mock-

infected SCG neurons had a mean AP firing rate of 0.360.2 Hz

(Figure 2A). This same low firing rate was seen in PRV 151 infected

neurons between 4 and 8 hpi (Figure 2A). However, by 8 hpi PRV

151 infected neurons began to fire APs at a mean elevated rate of

4.061.4 Hz (Figure 2A). By 14–16 hpi the PRV 151 infected

neurons were firing at rates 10–25 fold greater than uninfected

neurons; most had rates greater than 5 Hz (86.2%), with a mean rate

of 7.960.8 Hz (Figure 2A,B). Infected neurons continued to fire APs

at elevated rates at 24 hpi and did so until at least 72 hpi, the longest

incubation period assayed (Figure 2A, data not shown).

PRV infected neurons show signs of electrical coupling
In addition to elevated AP firing rates, PRV infected neurons

showed brief sub-threshold depolarizations similar to spikelets

observed in electrically coupled neurons [27,28] (Figure 2B, gray

Author Summary

Alpha-herpesviruses, including human herpes simplex
virus 1 and 2, varicella zoster virus and swine pseudorabies
virus, infect the peripheral nervous system of their hosts.
Symptoms often include itching, numbness, or pain.
Understanding of the physiological basis for these
characteristic sensory and motor anomalies remains
limited. To provide more insight, we examined the
electrical activity of infected neurons in culture. We used
pseudorabies virus (PRV) because infected animals show
strain dependent, and often, dramatic symptoms (violent
scratching and self mutilation). We found that infected
neurons exhibited increased action potential (AP) rates.
Infected neurons also became electrically coupled, pro-
ceeding from small molecular weight dye sharing and
coupled activity to large molecular weight dye sharing and
complete electrical synchrony. Late in infection, cell bodies
fused to form syncytia. When neurons were infected with a
virulent strain that could not express glycoprotein B, a
member of the viral membrane fusion complex, AP rates
were not increased. Changes in electrical connectivity and
dye transfer were not observed, and syncytia did not
occur. These results suggest that infection induced
elevated activity and electrical coupling result from virally
induced membrane fusion and may underlie neurological
symptoms observed during infection.

PRV Alters Activity and Connectivity
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arrows). These putative electrical coupling events had fast rise and

decay rates and were often followed by a shallow after-

hyperpolarization. They were distinctly different from smaller

more slowly rising and decaying, chemically mediated, excitatory

postsynaptic potentials (epsps) observed in mock-infected neurons

(Figure 2B, blue vs black traces) [29,30]. We identified these events

based on rate of rise (see Methods) to distinguish them from any

slower rising and decaying epsps. In the following, we will refer to

these events as ‘‘spikelet-like events’’. Typically when spikelet-like

events were observed, they occurred in several size classes, similar

to previously described spikelets (Figure 2B, blue traces) [31].

Spikelet-like events began to occur at elevated rates above mock-

infection by 4 hpi in PRV 151 infected neurons, and continued to

occur at high rates until at least 24 hpi (Figure 2C).

Elevated AP and spikelet-like event rates are unaffected
by somatic current injections

Current injections through the patch electrode were used to

examine if PRV 151 infection affected the relationship of steady

state voltage and AP firing rate of SCG neurons. In mock-infected

neurons, AP firing rate could be elevated by injection of

depolarizing currents (Figure 3B). A mean depolarization of

6.160.8mV was required to reach AP threshold (n = 22,

Figure 3B). Between 4 and 8 hpi, PRV 151 infected neurons

responded much like mock-infected neurons to current injections

and required the same level of voltage to reach AP threshold

(5.562.4mV, n = 5 Figure 3B).

By 8–10 hpi, PRV 151 infected neurons with elevated AP and

spikelet-like event rates had a weaker response to current

injections: hyperpolarizing current typically was unable to silence

the neuron (Figure 3C). As a result, no threshold could be

calculated for these neurons.

At 14–16 hpi, PRV 151 infected neurons showed no

relationship between AP firing rate and steady state voltage

achieved by current injection (Figure 3A,D). In a few cases, strong

cell body hyperpolarization was able to reduce the AP amplitude.

Full APs were replaced by spikelet-like events of large amplitude

(Figure 3A, arrow). As a result, these neurons did exhibit a weak

dependence of AP firing rate on injected current, as explained in

Figure S1A–F.

By 24–26 hpi, PRV 151 neurons showed AP firing rates that were

largely independent of injected current over a broad range (PRV

151 5/7, Figure 3E). As mentioned above, the replacement of full

APs with large spikelet-like events during strong hyperpolarization

accounts for the apparent dependence of AP rate on injected

current (Figure S1D–F). The combined rate of spikelet-like events

and full APs remained the same as found when no current was

injected infected neurons starting at 14–16 hpi (Figure S1G–J).

The appearance of spikelet-like events and AP firing rates

independent of steady state voltage during current injections

strongly suggests that APs did not initiate in the cell bodies, but

rather occurred in synchrony with large spikelet-like depolariza-

tions in electrically isolated axons.

PRV infected neurons have hyperpolarized resting
membrane potentials and altered AP shapes

We next determined whether PRV infection induced changes in

resting membrane potential or AP shapes. Early in infection (4–10

Figure 1. Elevated rates of electrical activity observed in PRV infected neurons. (A) PRV 151 infected neurons show uniform GFP
fluorescence 15 hpi. (B–E) Typical voltage traces of mock and PRV 151 infected neurons obtained using whole-cell patch recordings in current clamp.
Traces from 4 different neurons are shown. 250 mV is marked by a gray dotted line for resting membrane potential comparison.
doi:10.1371/journal.ppat.1000640.g001

PRV Alters Activity and Connectivity
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hpi), neurons infected with PRV 151 had resting potentials and AP

shapes comparable to mock-uninfected neurons. By 14–16 hpi,

despite high firing frequency, resting potentials of PRV 151

infected neurons were strongly hyperpolarized compared to

uninfected control neurons (259.561.9mV vs 249.561.1mV,

p,0.01). Infected neurons remained significantly hyperpolarized

until at least 24 hpi (Figure 4A). Additionally, the input resistance

of infected neurons was reduced compared to mock infected

neurons as infection progressed (Figure 4F).

The shape of spontaneous APs also was changed by PRV 151

infection. AP shape was quantified by measuring the AP amplitude

(difference in voltage between the absolute peak of AP), AHP

amplitude (difference in voltage between resting membrane potential

and the voltage 11 ms after AP peak) and total AP height (difference

between the absolute peak of AP and the voltage 11 ms after AP

peak) (Figure 4B). During the first 10 h of PRV infection, the shape

of spontaneous APs remained nearly identical to that of mock-

infected neurons (Figure 4B,C,E). However, by 14–16 hpi, PRV 151

infected neurons showed altered AP shapes. Infected neurons’ AHPs

were significantly reduced in amplitude (23.265.3mV range 213.1

to 4.4mV vs 210.063.0mV range 213.9 to 24.0mV) after

14 hours of infection, corresponding with the hyperpolarization of

membrane potentials (Figure 4C,D). Total AP height remained

unchanged throughout infection up to 24 hpi (Figure 4E).

Since these changes in shape coincided with marked hyperpo-

larization, we explored whether hyperpolarization alone was

responsible for the change in shape by injecting hyperpolarizing

and depolarizing current. As seen in Figure 3A, during

depolarizing current injections infected neuron APs showed larger

AHP amplitudes and smaller AP amplitudes, while further

hyperpolarization led to smaller AHP amplitudes and larger AP

amplitudes (Figure 3A). However, the total AP height was

unchanged. This also held true of neurons across all treatments

during no current injection, as shown in Figure 4D. These results

suggest that the differences in AP shape observed during PRV

infection are an indirect result of the changes in resting membrane

potential.

In addition, the AP shape at threshold of AP initiation had a

generally sharper inflection in infected neurons. This change is

evident by inspection of the right versus left traces in Figure 4B.

Sharp inflection points at the onset of AP initiation have also been

observed in cell body recordings of APs back propagated from

axons [31,32]. The observation of brief rapid deflections supports

our contention that APs were initiating in the axons of infected

neurons firing at elevated rates.

PRV infection induces small and large molecular weight
dye coupling, correlated membrane potentials, and late
neuronal syncytia formation

The shapes and characteristics of the spikelet-like events were

suggestive of electrical coupling analogous to that observed with

Figure 2. Onset of PRV-induced elevated AP and spikelet-like event rates. (A) Mean AP rates of PRV 151 infected neurons from 4 to 24 hpi.
PRV 151 infected neurons fired more frequently than mock-infected neurons after 8 hpi. (B) Example whole-cell recording from a PRV 151 infected
neuron at 15 hpi. Grey arrows indicate examples of spikelet-like events. These events are shown in blue, overlaid with an example of slower rising and
decaying epsp in black. (C) Mean rates of spikelet-like events in PRV 151 infected neurons. PRV 151 infected neurons began to show events by 4 hpi
as noted in panel A. Mock n = 51, 4–8 hpi PRV 151 n = 8, 8–10 hpi n = 8, 14–16 hpi n = 29, 18–20 hpi n = 4, and 24–26 hpi n = 14. In this and following
figures asterisks (*) on bars correspond to a statistical significant difference of P,0.05 compared to the mock condition. Asterisks above brackets
indicate a statistical significant difference of P,0.05 between strains. Error bars indicate standard error.
doi:10.1371/journal.ppat.1000640.g002

PRV Alters Activity and Connectivity
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gap junction mediated electrical synapses between neurons. We

used well characterized dye transfer methods used to characterize

gap junctions [33,34] to determine if we could detect any direct

diffusion pathways between two infected neurons. Both Lucifer

Yellow (457 MW), the traditional low molecular weight dye used

in gap junction characterization, and Texas-red conjugated

dextrans of much larger molecular weight (3,000, 10,000, and

40,000 MW) were used to fill individual neurons from the patch

pipette [33,35]. In addition to dye transfer measurements, dual

patch electrodes were used to record from two neurons

simultaneously to analyze the temporal correlation of dye transfer,

APs, and spikelet-like events in the two neurons. The effect of

current injected in one cell on the membrane potential of the

second cell was also evaluated to determine electrical coupling

ratios.

For Lucifer Yellow (LY) dye transfer measurements, whole cell

recordings using dye-filled electrodes were obtained from

randomly chosen cell bodies at various time points after infection.

Recordings were maintained for 10–15 minutes to allow dye to

diffuse into the cell body from the electrode. The electrode was

then removed and a one-hour incubation period was provided to

allow time for LY to diffuse into its processes and to any connected

Figure 3. Despite large cell body current injections, elevated AP rates remain relatively unaffected. (A) Traces from a single PRV 151
infected neuron at 15 hpi. Left, voltage trace during no current injection, right, voltage trace during positive (top) and negative (bottom) current
injections. Voltage levels indicated at the lower edge of each trace. (B–E) Relationship between steady state voltage and AP firing rates during current
injections. The total number of APs during a given voltage bin (5 mV) was divided by the maximum AP rate for that cell (max rate during any
injection 20.15 to 0.14 nA). Ratios were averaged and plotted against steady state voltage. Note relatively unchanging AP rates of infected neurons
as infection progressed. Mock n = 24, 4–8 hpi PRV 151 n = 9, 8–10 hpi n = 7, 14–16 hpi n = 15, 24–26 hpi n = 7.
doi:10.1371/journal.ppat.1000640.g003

PRV Alters Activity and Connectivity
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neurons. Because LY fluorescence is not easily distinguished from

GFP, we used the parent strain PRV Becker, which exhibits

identical electrophysiological changes identical to those induced by

PRV 151 infection (data not shown).

When mock-infected cell bodies were filled with LY containing

electrodes, cell bodies and axonal processes (.20um, range 1–4

2.360.3) were filled with dye, but no other cell bodies or processes

were filled (Figure 5A). Similarly, neurons infected for less than

8 hours with PRV Becker retained LY within their cell bodies and

prominent processes with no evidence of transfer into other cells.

However, by 9 hpi, randomly filled PRV Becker infected neurons

began to share LY with other non-adjacent cell bodies (Figure 5B,D).

At this time the mean number of processes labeled with dye was

similar to that of mock infected neurons (range 1–15, 4.561.1). By

24–26 hpi, many PRV Becker infected neurons shared LY with

adjacent and distant cell bodies (Figure 5C,D). In addition to dye

continuity with other cell bodies, LY filled infected neurons also had

a larger number of contiguous labeled processes by 24–26 hpi (range

2–19, 7.062.5, p,0.05). Some of these processes are likely primary

axons from distant cell bodies. Dye may have transferred from the

filled neurons to the axons passing over the cell body. In general,

these LY transfer results demonstrate that PRV infection produced

a gradual development of small pores between infected neurons that

enabled flow of small molecular weight dyes.

By measuring transfer of large molecular weight dyes (Texas-red

dextran conjugates) known to be too large to pass between gap

junctions (.2,000 MW), we observed that larger pores formed

later in PRV 151 infection. Cell bodies were filled with various

Texas-red dextran conjugates by diffusion from a patch electrode

(3,000–40,000 MW) for 10–15 minutes prior to imaging. Because

Texas-red fluorescence was easily distinguished from that of GFP,

PRV 151 was used in these experiments.

Figure 4. Time course of PRV induced changes in resting membrane potential and AP shape. (A) Resting membrane potentials of PRV
151 infected neurons were similar to mock-infected neurons before 14 hpi and were hyperpolarized for the duration of the times measured. (B)
Example traces of spontaneous AP, representative of means at 14–16 hpi. Horizontal dotted red lines denote resting membrane potential, the first
solid vertical arrowed line indicates AP amplitude, the second solid vertical arrowed line represents AHP amplitude, and the third vertical red line
represents AP height (difference between the peak of AP amplitude and the voltage measured for AHP). (C) AHP amplitude remained comparable to
mock-infected neurons until 14 hpi, and was more positive for the duration of the time course. (D) More positive AHP amplitudes correlated with
resting voltages similarly for PRV 151 and mock-infected neurons, example shown at 14–16 hpi. Linear fits: in black, to all conditions, y = 2.50x234.3
R2 = 0.68, to mock condition y = 2.20x220.15 R2 = 0.26, and to PRV 151 at 14–16 hpi, y = 20.54x236.17 R2 = 0.73. No trend was observed in AP
height as a function of resting voltage. (E) Total peak AP to AHP minimum in infected neurons did not change significantly from mock infected for at
least 24 hours. (F) Input resistance of infected neurons became increasingly lower in magnitude as infection proceeded. Resistance measured from
points in a 10 mV range surrounding 270 mV. (A–E) Mock n = 19, 4–8 PRV 151 n = 12, 8–10 hpi n = 7, 14–16 hpi n = 9, 18–20 n = 4, 24–26 n = 14. (F)
Mock n = 14, 4–8 hpi PRV 151 n = 5, 8–10 hpi n = 4, 14–16 hpi n = 9, 24–26 hpi n = 5.
doi:10.1371/journal.ppat.1000640.g004

PRV Alters Activity and Connectivity
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In both mock-infected and early PRV infected (,24hrs)

neurons, no transfer of the Texas red conjugates was obvious

(Figure 5E–F,H). However, by 24 hpi, conjugates of at least

40,000 MW were readily transferred from filled PRV 151

infected neurons to adjacent infected neurons (Figure 5G,H,

Table 1).

Figure 5. Increasingly larger molecular weight dyes transfer between neurons as infection proceeds. (A) Lucifer yellow (LY, 457 MW) dye
did not transfer from filled mock-infected cell bodies to other cell bodies (0/10). Images represent overlays of excited Lucifer yellow onto bright field
images. (B–C) Transfer of LY to other cell bodies could be seen in PRV 151 infected neurons by 9 hpi,(2/12). White arrows indicate cell bodies that
contain dye transferred from the filled neuron. Transfer of LY from filled cell bodies to other cell bodies was more common in PRV 151 infected
neurons by 24 hpi (2/6). Note that PRV 151 infected cell bodies that contained transferred dye were generally not adjacent to filled cell body, and
were exclusively to non-adjacent cell bodies early (9–12 hpi). (D) Percentage of neurons assayed in which dye spread from the filled cell body to
another cell body. (E) Texas-red dextran conjugates (3,000–40,000 MW) to not transfer from filled cell bodies of mock-infected neurons to other cell
bodies (0/9). (F–H) Large dye transfer between infected neurons occurs late in infection (14–16 hpi, 0/9, 18–20 hpi, 0/9, 24–26 hpi, 11/19). Neurons
selected for dye filling were chosen as potentially fused cells based on outer membrane contours by light microscopy. Green – GFP expressed from
viral genome, Red – Texas-red dextran conjugate, Yellow – overlap of green and red images. Panel F, bright field image was recorded following
fluorescence image and pipette removal; pipette location is indicated by a dashed while line.
doi:10.1371/journal.ppat.1000640.g005

PRV Alters Activity and Connectivity
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To relate dye transfer to electrophysiological activity, dual whole-

cell patch recordings were performed on several pairs of infected

neurons. As shown in Figure 6 during the time period of elevated

firing rate, recorded pairs that did not share large molecular weight

Texas red- dextrans had correlated events in the two recordings.

Fast depolarizing potentials exhibited by one neuron corresponded

to full AP firing of the adjacent, non-filled neuron, and vice versa

nearly 100% of the time (3/3, Figure 6A). In these cases, DC current

that was injected into one cell produced a small change in

membrane potential in the second cell (Figure S2A). The coupling

ratios, a measure of the change in membrane potential in the second

cell divided by that produced in the current-injected cell were .0.1.

However, when large molecular weight Texas red dextrans

transferred between adjacent cell bodies, the membrane voltage

traces of the two recorded neurons were identical and had a

coupling ratio close to 1 (Figure 6B, Figure S2B). From an electrical

standpoint, the membranes of the two cell bodies were contiguous.

At late times after infection (.18 hrs) signs of membrane fusion

were visible by bright field microscopy. Specifically, membrane

contours of the junction between adjacent cell bodies of some

infected neurons relaxed. A distinct vertex is normally observed

where the membranes of two adjacent cell bodies come into

contact; however, as infection progressed, this vertex became

increasingly difficult to resolve. This change suggested that cell

bodies were fusing. To quantify the extent of fusion across a

population of neurons in a culture dish, we examined the

relationship between dye transfer and the angle at the vertex

formed by the outer contours of adjacent neuronal cell bodies that

either shared or did not share large MW dye. As shown in Figure

S3A, outer angles greater than 125 degrees between pairs

unambiguously corresponded to non-dye sharing pairs, while

those with larger angles indicated large MW dye sharing

(examples, Figure 7C, arrow and Figure S3B). We therefore used

vertex angle measurements from bright field images of a

population of neurons in randomly chosen fields of view as an

unbiased indirect estimate (compared to selecting pairs for dual

electrode recording) of fusion. As infection progressed, there was

an increasing fraction of fused cells (Figure 7B,C). These data

suggest clusters of infected neurons transitioned from non-dye

coupled, to small MW dye coupled, to large MW dye sharing and

as infection proceeded. This process continued and resulted in

formation of cell body syncytia by 78 hpi (Figure 7B,C).

The viral membrane protein gB is necessary for PRV
induced elevated rates of AP firing and spikelet-like
events, electrical coupling and neuronal fusion

As shown above, PRV infected neurons become both

electrically and dye coupled leading to the formation of cell body

syncytia. Syncytia formation and cell-cell fusion are well known to

Table 1. Large MW dye transfer between PRV 151 infected
SCG neurons.

PRV 151

Size (MW) 3000 10000 40000 total

14–16 hpi 0/5 0/4 – 0/9

18–20 hpi 0/4 0/4 0/1 0/9

24–26 hpi 5/10 3/6 3/3 11/19

Mock 0/4 0/5 – 0/9

Individual cell bodies were filled with Texas-red dextran conjugates and assayed
for transfer into adjacent cell bodies at either 18–20 or 24–26 hpi.
doi:10.1371/journal.ppat.1000640.t001

Figure 6. Large MW dye transfer between infected neurons corresponds with near complete electrical synchrony. Dual whole cell
recordings from pairs of adjacent neurons that did or did not exhibit large MW dye transfer ($3,000 MW) at 18–20 hpi and 24–26 hpi were used to
examine the electrical continuity of adjacent infected cell bodies. (A) An example pair showing neither dye transfer, nor complete electrical
continuity. Time aligned traces shown are representative of those recorded. (B) An example pair showing both large MW dye transfer and complete
electrical coupling. Note that in the case of large MW dye transfer, pairs of neurons showed complete electrical synchrony, including spikelet-like
events and AP firing (A, grey boxes); however, when large MW dye was not transferred, spikelet-like events occurred at the same time as AP firing in
the adjacent neuron (B, gray boxes). Pair described in B is example from Figure 4F.
doi:10.1371/journal.ppat.1000640.g006
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occur in non-neuronal cells as a result of PRV infection. This

process requires the viral fusion glycoproteins gB, gH, and gL [36].

A null mutation in any of these genes blocks the entry of free viral

particles to initiate infection, as well as eliminates cell-cell spread

and the formation of multi-nucleated syncytia. Therefore, we

infected neurons with the gB null mutant virus 233, derived from

PRV Becker, expressing GFP, to determine the role of virally

induced fusion in the above observations [26]. This mutant is

propagated in gB complementing cells so viral particles produced

contain gB on their host derived membrane envelopes and are

able to enter a cell. Once inside, viral infection proceeds normally,

but no gB is expressed and despite particle production, no further

spread can occur [37,38,39].

Strikingly, gB null infected neurons showed no evidence of

elevated rates of AP firing or spikelet-like events as late as 24 hpi,

the last time point assayed (Figure 8A,B). These infected neurons

had normal resting potentials until 20 hpi, but by 24 hpi resting

potentials were mildly hyperpolarized compared to mock-infected

neurons (254.061.2mV vs 249.661.0mV P,0.05). However,

gB null PRV infected neurons were significantly less hyperpolar-

ized than PRV 151 infected neurons at 24 hpi (260.862.3mV

and 262.062.2mV P,0.05). The input resistance of gB null PRV

infected neurons also was slightly reduced by 24 hpi, but was not

significantly different from mock-infected neurons (137628 vs

206612MV, slope at 270mV n = 4,14). Like the AP firing rate for

mock infected neurons, AP firing rates of PRV 233 infected

neurons had a positive relationship to steady state voltage (or

injected current) (data not shown).

Individual gB null PRV infected neurons showed no signs of

pore formation or fusion events. Infected neurons filled with

dextran conjugated Texas red ($3000 MW) showed no dye

transfer to cell bodies with closely opposing membranes (0/4 at

18–20 hpi and 0/4 at 24–26 hpi, Figure 8C,D). These infected

neurons also showed no cell body-cell body fusion by bright field

microscopy, as late as 78 hpi, the latest time point assayed

(Figure 8E).

The gB null mutant results strongly suggest that virally mediated

membrane fusion events produce pores that allow ions and dyes to

flow between cell bodies. These pores increase in size over time

and their appearance correlates with the induction of rapid AP

firing and spikelet like events. gB null infected neurons are not

hyperpolarized at early times after infection, but do exhibit modest

hyperpolarization at late times.

Strain dependent onset of PRV induced elevated AP
firing rates

The attenuated PRV Bartha strain and its derivatives (e.g., PRV

152) have been widely used to identify synaptically connected

neurons. PRV Bartha derivatives spread only from post-synaptic to

pre-synaptic neurons (retrograde spread only) and all infected

animals have markedly reduced symptoms compared to virulent

strains. The PRV Bartha genome carries several characterized

mutations that affect anterograde spread of infection between

neurons, for efficient spread of infection in the retrograde direction,

and for virulence [4]. It the context of this report, it is important to

stress that PRV Bartha has no known mutations in the gB coding

sequences and is expresses gB at equivalent levels [40].

Given that previous reports had indicated that in animals

infected with PRV 152, neurons showed no signs of abnormal

electrophysiology [24], we used our in vitro system to compare

PRV 151 and PRV 152 infected neurons. SCG neurons infected

with PRV 152 produced titers of infectious virus comparable to

those infected with PRV 151 and the time course of infection (as

measured by GFP expression) was comparable (data not shown).

Unlike PRV 151 infections, PRV 152 infected neurons did not

show elevated rates of AP firing by 8 or 16 hours post infection

Figure 7. PRV infection leads to fusion of adjacent cell bodies into multi-nucleated syncytia. (A,C) Representative 106 fields of view of
PRV 151 and mock-infected neurons at 24 and 78 hpi. White arrows indicate examples of neuronal fusion. (B) Quantification of the percentage of cell
bodies assayed for fusion, as determined by angle between outer membrane appositions or the area of large multi-nucleated syncytia (see Methods,
Figure S3). Mock n = 4, PRV 151 24–26 hpi n = 4, 40–45 hpi n = 3, 75–78 hpi, n = 2. For each .85 individual cell bodies were assayed from random
fields of view.
doi:10.1371/journal.ppat.1000640.g007
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(Figure 9A). However, 10 hours later (18 hpi) PRV 152 infected

neurons showed elevated AP firing rates, indistinguishable from

PRV 151 infected neurons (Figure 9A). Similarly, PRV 152

induced AP firing rates, like those induced by PRV 151, continued

unabated until at least 72 hpi.

The onset of PRV 152 spikelet-like events was also delayed by

10 hours, beginning at 14–16 hpi. By 18 hpi 66.7% of PRV 152

infected neurons showed spikelet-like events at rates greater than

10 Hz (vs. 0% PRV 151 infected), and 86.7% by 24 hpi (vs. 35.7%

PRV 151). These rates were higher than those of PRV 151

infected neurons at comparable time points. However, the

elevated mean AP firing rates were lower during periods in which

PRV 152 infected neurons showed higher rates spikelet-like events

compared to PRV 151 infected neurons. Despite this difference,

the total event rate, including APs and spikelet-like events, in PRV

152 infected was not significantly different compared to PRV 151

infected neurons at 18 or 24 hpi (Figure 9A,B).

AP firing rates independent of steady state voltage during

current injection was also delayed by 10 hours in those infected

with PRV 152 (Figure 9C–E). At 4–8 and 8–10 depolarization

required to reach AP threshold was not altered compared to mock

infected neurons (4.161.9mV, 5.362.4mV vs 6.060.8mV,

Figure 8. The viral membrane fusion protein gB is required for elevated rates of AP firing and fusion of infected neurons. (A–B) Mean
AP firing and spikelet-like event rates of mock, PRV 151 and PRV 233 infected neurons. (PRV 233 14–16 hpi n = 16, 18–20 hpi n = 8, 24–26 hpi n = 15).
(C–D) Large MW dye filling of infected gB null PRV 233 infected neurons and quantification. At both 18 and 27 hpi, dye was contained and neurons
were not firing elevated rates of APs or spikelet-like events (PRV 233 18–20 hpi, 0/4, 24–26 hpi 0/4). (E) Representative fields of view of neurons
infected with PRV 233 gB null mutant. Note no visible fusion of cell bodies over the course of infection. Mock and PRV 151 data replotted from
Figures 2–5.
doi:10.1371/journal.ppat.1000640.g008
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Figure 9. Delayed onset of PRV induced changes by attenuated PRV 152. (A,B) Onset of increased mean AP firing rate of PRV 152 infected
neurons was delayed until 18 hpi and onset of spikelet-like events was delayed until 14 hpi. (C–E) Relationship between steady state voltage and AP
firing rates during current injections, plotted as described in Figure 2. Note delay to unchanging AP rate as a function of steady state voltage until 24–26
hpi. (F) Resting membrane potentials of PRV 152 infected neurons were similar to mock-infected neurons before 14 hpi and were hyperpolarized for the
duration of the times measured. (G) AHP amplitude remained comparable to mock-infected neurons until 14 hpi, (H) Total peak AP to AHP minimum in
PRV 152 infected neurons did not change significantly from mock-infected for at least 24 hours. (I) Input resistance of PRV 152 infected neurons became
increasingly lower in magnitude as infection proceeded. (A–I) PRV 152 data re-plotted with PRV 151 data from Figure 2. (A–B) PRV 152 4–8 hpi n = 9, 8–10
hpi n = 8, 14–16 hpi n = 41, 18–20 hpi n = 6, and 24–26 hpi n = 15. (C–E) PRV 152 4–8 hpi n = 7, 8–10 hpi n = 7, 24–26 hpi n = 8. (F–H) 4–8 hpi PRV 152 n = 4,
8–10 hpi n = 7,3, 14–16 hpi n = 6, 18–20 n = 6, 24–26 n = 11. (I) PRV 152 4–8 hpi n = 5, 8–10 hpi n = 7, 14–16 hpi n = 9, 24–26 hpi n = 5.
doi:10.1371/journal.ppat.1000640.g009
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n = 5,5,22). At 14–16 hpi, PRV 152 infected neurons started to

show a similar trend as PRV 151 infected neurons 8–10 hpi,

namely that hyperpolarizing currents were typically unable to

completely silence the neurons (6/19). By 24–26 hpi the majority

of PRV 152 infected neurons showed AP firing rates with no

dependence on steady state voltage during current injection (5/8,

Figure 9E). A weak relationship between absolute injected current

level and AP firing rate after increased AP firing rates began,

explained in (Figure S4A–F). As seen in PRV 151 infected

neurons, the combined AP and spikelet-like event rate could not

be controlled current injection.

PRV 152 infected neurons also showed changes in resting

potential and AP shape similar to PRV 151 infected neurons. By

14–16 hpi PRV 152 infected neurons became significantly

hyperpolarized compared to mock-infected neurons (252.5

61.0mV, p,0.05, Figure 9F), showed a similar change in AHP

amplitude (27.561.1mV range 215.9 to 7.0mV, Figure 9H) and

showed a sharp infection in rise to AP at threshold. Changes in AP

shape corresponded with hyperpolarization of resting membrane

potential. Input resistance of PRV 152 infected neurons also was

significantly reduced after infection (Figure 9I).

Membrane fusion events occurred in PRV 152 infected

neurons, but were significantly delayed. Neurons infected with

PRV Bartha (the PRV 152 parent) showed no evidence of LY

transfer at 9–12 hpi (0/8, Figure 10A). By 18 hpi, both LY and

Texas red conjugates transferred between infected neurons

(Figure 10B–H, Table 2). While transfer of large MW fluorescent

dye was observed earlier between PRV 152 infected neurons than

those infected with PRV 151 (18 vs 24 hpi), transfer was only

observed between adjacent and not distant cell bodies (Figure 10B–

C,F–G). Similarly to those infected with PRV 151, by 24 hpi PRV

152 infected neurons showed LY dye transfer to a larger number

of adjacent processes (9–12 hpi, range 2–4, 2.960.6, 24–26 hpi

range 2–19, 8.062.7). And, when Texas red conjugates were

shared, neurons showed complete electrical synchrony (3/3 vs 0/2

not sharing). We also noted that in bright field microscopy, PRV

152 infected neurons showed more cell body-cell body fusion at 24

hpi as compared to PRV 151 infected neurons, consistent with

earlier adjacent cell body dye transfer (Figure 10J).

These experiments indicate that infection with PRV Bartha

delayed, but did not eliminate increased neuronal activity and

coupling. Since there is no published evidence that PRV Bartha

has mutations in gB or in membrane fusion activity, these results

indicate that other mutations in the PRV Bartha genome

modulate action or localization of the viral membrane fusion

complex in neurons.

Discussion

PRV infection of sympathetic neurons in vitro results in
changes in neuronal activity and connectivity

Previous studies of rodents infected with PRV indicated that

PNS ganglia, particularly the SCG, exhibited altered activity

characterized by elevated AP firing rates. We used the same PNS

neurons in primary culture to demonstrate that PRV infection

strongly affects electrophysiology and connectivity. Moreover,

using an avirulent (PRV 233) and an attenuated PRV strain (PRV

152), we were able to identify the primary and modulating events

that lead to this altered activity. We found that both PRV 151 and

PRV 152 infected neurons began to fire APs at elevated rates, but

firing induced by PRV 152 was significantly delayed (at least

10 hours delayed). The shape of the induced APs for both

infections was unusual and the induced spikelet-like events were

clearly different from epsps characteristic of synaptic events. We

found that the induced AP and spikelet-like events correlated with

formation of small fusion pores between adjacent cells. These

pores were revealed by dye transfer experiments and by

observation of electrical coupling of fused neurons. Over the

course of infection, the pores became larger as demonstrated by

passage of large molecular weight Texas red dextran conjugates.

When neurons were infected with the avirulent gB mutant, PRV

233, AP firing rates did not change and were indistinguishable

from those seen in uninfected neurons. No changes in electrical

connectivity or dye transfer were observed, and formation of

multi-nucleated syncytia never occurred for as long as three days

post infection.

These results with the gB null mutant are consistent with the

hypothesis that the primary initiator of altered firing of PRV

infected neurons is the viral membrane fusion complex (consisting

of the gB, gH and gL proteins). This complex produces fusion

pores several hours after infection that enable ions to flow between

neurons resulting in electrical (synaptically mediated) coupling. At

early times, the pores are small, open to diffusion of small

molecular weight dyes such as Lucifer Yellow. These pores

effectively couple the electrical activity of neurons. At later times,

the pores are larger, open to diffusion of larger molecular weight

rhodamine-dextran conjugates. These larger pores completely

synchronize firing events between involved neurons. The delay,

but not elimination, of all firing and coupling events in PRV 152

infected neurons implies that mutations in the PRV Bartha

genome modulate action or localization of the viral membrane

fusion complex in neurons. It is conceivable that the gB protein

plays roles outside of the fusion complex that affect firing. Tests of

the idea that the fusion complex is indeed the major initiator of

firing would entail studies of gH and gL null viruses, which should

behave like gB null mutants in these studies.

Elevated AP firing rates despite hyperpolarized
membrane voltage

Resting membrane potentials of PRV 151 and PRV 152

infected neurons were significantly hyperpolarized. This finding is

surprising as hyperpolarization is usually associated with a

decrease in firing rate. Hyperpolarization may be a homeostatic

response of infected neurons to significantly increased rates of

depolarizing inputs [31,32,41]. This hypothesis suggests that when

PRV induced AP and spikelet-like events begin, infected neurons

compensate by shifting the balance of currents responsible for

maintenance of membrane potential. We did observe a small, yet

significant, hyperpolarization of neurons infected with a gB null

strain, which did not exhibit increased firing event rates. These

data suggest hyperpolarization also may reflect a more general

response to PRV infection. Infection alters transcription of a

number of genes, including increased transcript levels of

cyclooxygenase-2 [42,43]. Increased expression of this gene has

been shown to lead to membrane hyperpolarization in a variety of

neurons [44,45,46]. Further work is necessary to determine the

mechanism of PRV induced hyperpolarization.

Electrical coupling and fusion events involving infected
neurons

PRV 151 infected neurons show evidence of electrical coupling

early by 8 hours after infection that correlate with increased AP

firing and spikelet-like events. Neither AP firing or spikelet-like

events could be silenced by hyperpolarizing cell body current

injections and the shape of APs that recorded from cell bodies was

characteristic of that of back-propagated APs, both suggesting

events originated at outside, electrically coupled sites. Infected

PRV Alters Activity and Connectivity
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Figure 10. PRV 152 infected neurons follow a similar progression of fluorescent dye transfer and fusion of cell bodies. (A–D) Lucifer
yellow (457 MW) dye transfer between PRV 152 infected neurons was delayed until 18 hpi (9–12 hpi, 0/8, 24–26 hpi (2/4). (E–H) Large MW ($3,000
MW) dye transfer occurred by 18–20 hpi between PRV 152 infected neurons, earlier than occurred between PRV 152 infected neurons (14–16 hpi, 0/3,
18–20 hpi, 7/9, 24–26 hpi, 9/9). (I–J) Representative fields of view of PRV 152 infected neurons and quantification. Note earlier cell body-cell body
fusion between PRV 152 infected neurons compared to PRV 151 infected neurons, consistent with that observed in large MW dye experiments. (I–J)
PRV 152 24–26 hpi n = 4, 40–45 hpi n = 2 and 75–78 hpi, n = 2. Data were collected displayed as described in Figures 5 and 7.
doi:10.1371/journal.ppat.1000640.g010
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neurons showed progressively stronger electrical coupling and

transfer of larger dye molecules as infection continued. Dual

recordings revealed reciprocal connections early, in which APs

recorded from one neuron occurred at the same time as a smaller,

dampened depolarization (or spikelet-like event) occurred in the

other. Later, adjacent neurons showed synchronous events later in

infection, in which APs and spikelet-like event timing was identical

in adjacent neurons. In addition, late in infection, cell bodies fused

to form multi-nucleated syncytia. These data suggest that fusion of

neuronal membranes occurs first on a small scale, possibly

transiently, early at sites of membrane apposition. Later, these

small pores expand, leading to more cytoplasmic continuity

between neurons. Finally, late in infection, these pores expand

resulting large rounded neuronal syncytia. PRV 152 infected

neurons exhibit identical properties except that everything is

delayed by at least 10 hours. As observed for PRV 151 infected

neurons, increased firing rates are correlated with appearance of

dye transfer events and electrical coupling.

Previous in vitro studies have suggested that alpha-herpesvirus

infection can provoke neuronal membrane fusion. Scanning

electron microscopy of virulent PRV infected rat CNS neurons

in vitro showed evidence of neuronal membrane fusion [47].

Spread of the fluorescent lipophilic dye DiI from PRV infected

SCG axons to adjacent infected epithelial cell plasma membranes

suggested fusion of plasma membranes [48,49]. Intracellular and

patch clamp recordings of cultured rat sensory neurons infected

with a syncytial strain of herpes simplex virus 1 showed elevated

rates of AP firing, spikelet-like events and synchronous activity,

similar to those described in this study [43,50,51]. These effects

were not observed in non-syncytial strains. It was suggested that

neurons became electrically coupled by fusion of axonal processes,

and that this coupling supported spontaneous electrical activity

initiated by spontaneous APs. We have extended these observa-

tions to demonstrate fusion directly by dye transfer between both

adjacent and distant infected neurons in conjunction with

electrophysiological recordings.

Induction of elevated rates AP firing and neuronal
coupling require gB

Changes observed in AP firing rates, spikelet-like events,

electrical coupling, dye transfer and formation of multi-nucleated

syncytia after PRV infection were not seen in neurons infected

with PRV 233, a gB null mutant. gB is an essential PRV

membrane protein found in the virion envelope and on the plasma

membranes of infected cells. gB is required as part of a viral

protein complex for fusion of extracellular particles with host cell

membranes and for spread of infection from one cell to another

including trans-synaptic spread among neurons in vivo and in vitro

[39,52,53]. Because gB mutants complete all other viral

replication, assembly, and egress processes, we conclude that gB

promoted fusion events are necessary for PRV induced changes in

neuronal activity and connectivity. It remains to be seen if

expression of viral fusion machinery (gB, gH, and gL) is alone

sufficient.

Others have reported that when antiviral drugs, such as

Foscarnet, block PRV DNA replication, physiological properties

(resting potential, action potential shape) of cultured sensory

neurons or in tissue explants are not altered [54,55]. Blocking

DNA replication prevents or at least significantly inhibits PRV late

gene expression, which includes fusion proteins gB, gH, and gL.

These findings are consistent with our finding that the PRV fusion

machinery induces electrophysiological changes.

A model for induced elevated AP firing rates and
spikelet-like events in vitro

Our experiments directly demonstrate the development of

electrical coupling between infected neurons, while results

obtained with a gB null virus emphasize the importance of fusion

in inducing increased firing. But how does electrical coupling and

fusion produce an increased firing rate? We suggest that AP

initiation in electrically isolated axonal compartments is crucial.

Three lines of evidence support this assertion. First, hyperpolar-

ization of cell bodies by injected current did not change AP firing

rate, demonstrating that AP rate is not determined by successive

depolarizations of the cell body membrane potential to AP

threshold. Second, very strong hyperpolarization reduces AP

amplitude, revealing a reduced AP originating in electrically

distant compartments, which must be axons as these cells have no

dendrites in culture [56]. Third, the shape of action potentials

recorded in the cell bodies changes from a slow ramp to threshold

to a sharp inflection (Figure 4B), a characteristic signature of a APs

back-propagated from an axon to its cell body [31,32,56].

An important question is what induces APs in axons? More

work is required to provide a definitive answer to this question but

we note that the input resistance of an axon below threshold is

normally very high [57]. We suggest small fusion pores formed

between neurons, particularly those formed between axons, allow

spontaneous APs generated in cell bodies to spread directly into

coupled neurons. As APs normally occur at a low rate in

uninfected neurons, an AP in one neuron could transfer from its

axon into another coupled axon cause a brief depolarizing current

which would result in either a spikelet-like event, or if sufficiently

coupled a full AP, in the second axon. This signal would then

travel to the cell body of the second axon, resulting in either a full

back-propagated AP or spikelet-like event. This signal could then

spread to other axons projecting from that cell, possibly inducing

APs in the axons of other connected cells. In this way, APs could

spread from cell to cell in the network allowing axonally initiated

events to propagate throughout the network without attenuation.

As a result, the number of APs per second would increase in any

individually recorded neuron and also would lead to nearly

synchronous activation of APs across neurons. In support of this

model, spikelets and back propagated APs similar to those

observed here have been observed in hippocampal neurons

electrically and dye coupled by axo-axonal gap junctions [31].

Direct cytoplasmic continuity and ionic current flow mediated by

gap junctions between neurons have been implicated in serving to

support ultra-fast oscillations and synchronize neuronal firing

[27,32,58]. Virally induced fusion pores could serve the same

function, allowing activity to spread through a network of infected

neurons. Although this model provides a qualitative understanding

Table 2. Large MW dye transfer between PRV 152 infected
SCG neurons.

PRV 151 PRV 152

Size (MW) 3000 10000 40000 total 3000 10000 40000 total

14–16 hpi 0/5 0/4 – 0/9 0/3 – – 0/3

18–20 hpi 0/4 0/4 0/1 0/9 3/5 3/3 1/1 7/9

24–26 hpi 5/10 3/6 3/3 11/19 3/3 4/4 2/2 9/9

Mock 0/4 0/5 – 0/9

Individual cell bodies were filled with Texas-red dextran conjugates and assayed
for transfer into adjacent cell bodies at either 18–20 or 24–26 hpi. PRV 151 and
mock data re-displayed from Table 1.
doi:10.1371/journal.ppat.1000640.t002
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of the increased AP firing rate, it does not consider the effects of

reverberation and feedback loops generated in the connected

network. A numerical simulation using realistic compartmental

modeling, or theoretical analysis using methods developed for

understanding feedback neural circuits [31,58,59] could be used to

examine this issue.

Delayed onset of elevated AP firing rates and spikelet-like
events in PRV 152 infected neurons

The delayed development of increased firing rates after PRV

152 infection is of some interest because it suggests that fusion/

coupling events are modulated in some way by other viral gene

products or processes. We have preliminary evidence to suggest

that at least two processes are involved: axonal sorting of viral

proteins and virus particle formation.

In work presented in the supplemental information (Figure S5,

Protocol S1), we first demonstrated that the delayed onset of firing

phenotype exhibited by PRV 152 is recessive by co-infecting

neurons with PRV 151 and PRV 614 (PRV Bartha with RFP in

place of GFP, Figure S5B). At 14–16 hpi, when PRV 152 infected

neurons are firing at background levels and PRV 151 infected

neurons are firing at a rapid rate, co-infected neurons fire at an

elevated rate. Therefore, the PRV 152 genome contains mutations

that delay onset of firing and these can be complemented by PRV

151 infection.

We and others have mapped and characterized several

mutations in PRV Bartha responsible for its attenuated phenotype

[16,17,18,19,21,60]. These mutations were likely candidates for

firing rate modifying genes. We used three recombinant viruses

that carry defined segments of PRV Becker and PRV Bartha DNA

to provide a first approximation of the localization of these

modulating mutations (PRV BaBe, PRV 158 and PRV 327;

Figure S5A).

The PRV Bartha Us region harbors a 3.4kb deletion removing

the coding sequences for viral membrane proteins gE, gI, and Us9,

which are required for localization of PRV structural proteins to

axons and axonal membranes. As a consequence, in PRV Bartha

infections, viral membrane fusion proteins including gB, gH, and

gL are not present in axons [61,62,63,64]. Accordingly, fusion

events will be limited only to cell body-cell body or cell body-axon

sites. This initial limitation in the number of sites where fusion can

occur may reduce the number of sites where APs fired in one cell

can induce an axonal AP in a coupled neuron. Consequently, the

onset of elevated firing is delayed. We tested this prediction by

infecting neurons with PRV 158 (the gE/gI/Us9 deletion in PRV

Bartha is replaced with PRV Becker DNA). We observed that the

early firing phenotype was restored but firing frequency was lower

(Figure S5B). Sorting of viral proteins into axons is required for

early induction of AP firing.

Recently, we reported that repair of the Bartha UL21 locus with

wild-type sequence increased efficiency of transneuronal spread

both in vitro and in vivo [60]. We found that UL21 mutations in

PRV Bartha confer defects that affect infectious particle

production, causing a delay in spread of infection to presynaptic

neurons and subsequent amplification of infection. Remarkably,

when we looked at firing rates after infection by PRV 327 (a PRV

Bartha strain with only the UL21 locus replaced with PRV Becker

DNA), we observed that early firing was restored, but again at a

reduced rate (Figure S5B). We conclude that increased transneu-

ronal spread leads to early AP firing events.

In work not shown, we infected neurons with PRV 4325, a

recombinant PRV Bartha strain that carries the PRV Becker

UL21 locus and the Becker Us region. The onset of firing and the

rate was indistinguishable from PRV 151 infections. We conclude

that reduced transneuronal spread (UL21 mutations) and absence

of axonal localization of viral proteins (gE/gI/Us9 deletion) in

PRV Bartha or PRV 152 infections are the primary contributors

to the delayed firing phenotype.

In vitro versus in vivo infections and electrophysiology
In contrast to our observations in PNS neurons in vitro, studies

using attenuated PRV Bartha derivatives as neuronal circuit

tracers report that infected neurons in CNS tissue display

electrophysiological phenotypes indistinguishable from uninfected

neurons [24,25,65]. It is critical to determine whether the effects

we describe in vitro occur in vivo, as these strains are now being used

to study circuit function using both electrical techniques and

virally expressed functional indicators [66,67].

Because PRV 152 neurons are significantly delayed in

exhibiting increased firing events, the discrepancy between in vitro

and in vitro observations may simply reflect the time at which

neurons were analyzed. In a multi-synaptic circuit, it is difficult to

establish the precise time of infection. The properties of infected

neurons reported in vivo may have been measured during the early

stages of PRV infection, before extensive neuronal coupling and

associated elevated rates of firing began.

In addition, differences in the architecture of the infected

neuronal circuit must be considered. If viral induced fusion can

occur at any site of close membrane apposition (between cell

bodies, or at synapses) where viral fusion proteins are present, then

the extent of electrical coupling, fusion and un-attenuated AP

firing will be limited by the quantity of potential fusion sites and

circuit interconnectivity. In our in vitro system, neurons form an

extensive, highly inter-connected network, free of any other cells,

providing ample opportunity for fusion and AP propagation. In

vivo, neurons are organized into functional circuits with varying

degrees of inter-connectivity and often are ensheathed by glia,

satellite cells or thick extracellular matrices [68]. Depending on the

neuron and circuit in question, the quantity of potential sites for

fusion and inter-connectedness of the circuit may dictate the

timing and extent of fusion and elevated AP firing rates.

Alternatively, fusion and electrical coupling of infected CNS

neurons may be revealed as more subtle changes in physiology,

such as the synaptic integrity between connected neurons. One

study by Glatzer el al. [23] reported that neurons of the nucleus

tractus solitarius infected by PRV showed normal electrophysio-

logical properties, but evoked postsynaptic currents of infected

neurons had a significantly different latency and reproducibility.

More recently, Boldogkoi et al [66] characterized the properties of

neurons labeled with a PRV mutant (virulent background, deleted

for gE/gI) expressing a genetically encoded activity sensor and a

timing virus expressing a dsRed protein that is delayed by about

10 hours in maturing to form the fluorophore. They reported that

retinal ganglion cells maintained normal electrophysiological

properties over the first 10 hours of infection; however, by 10

hpi, light evoked photo-responses were significantly impaired.

They took advantage of the onset of dsRed fluorescence to

indicate the limit of when measurements could be taken. This

timing ability will be useful in determining when if and when

physiologically relevant measurements can be recorded from

infected neurons in vivo.

Biological implications
The dramatic peripheral neuropathy exhibited by PRV infected

animals may reflect elevated rates of AP firing and neuronal fusion

in neurons that innervate the infected tissue. Virulent strains of

PRV lead to violent scratching at the site and dermatome of

inoculation [6,69]. Correspondingly, virulent PRV inoculation in
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the anterior chamber of the eye induces infected SCG neurons to

fire at synchronously at elevated rates [6,9]. These synchronous

AP firing events are strongly reminiscent of our in vitro findings.

While infection with virulent PRV Becker induces pruritus in

the mouse flank model of infection, the attenuated strain PRV

Bartha does not [69]. PRV Bartha infects the sensory dorsal root

ganglia; however, it does not spread to the dorsal horn of the

spinal cord and from there through sensory routes to the brain as

do the virulent strains of PRV. Infection of these neurons in the

sensory pathway may result in abnormal sensory input, leading to

scratching behavior. Because PRV Bartha cannot spread to these

areas, no stimulus is induced and scratching behavior does not

ensure. PRV Bartha does, however, invade the CNS from the skin

via retrograde infection of descending pathways [69]. In the mouse

model, signs of ataxia appear when PRV Bartha reaches the

cerebellum, a highly interconnected region responsible for

coordination. In highly connected circuits, electrophysiological

changes induced by viral mediated fusion may be responsible for

some of the neurological symptoms exhibited by infected animals.

Neuronal fusion has not been reported in PRV infected PNS

ganglia or brain regions. However, previous assays, including

electron microscopy, immuno-labeling and confocal microscopy,

have relied on visual methods and did not measure fusion directly

[7,68]. Fusion of neurons has been shown in vitro and in vivo after

infection with other viruses. Neuron-microglia fusion has been

shown in vivo and in vitro by a replication incompetent retrovirus

[70], while measles virus infection leads to fusion synaptic

membranes in vitro [71]. Recently, fusion between neurons and

satellite cells was reported in human sensory ganglia infected with

varicella-zoster virus, a close relative of PRV [72].

Given our in vitro observations, neuronal fusion and associated

changes in activity must be considered in PRV infected PNS

ganglia and CNS nuclei. Future work will be directed at

determining the extent to which changes in neuronal activity

and connectivity occur in these tissues and their relevance to

neurological symptoms central to pathogenesis.

Materials and Methods

Ethics statement
All experimental protocols related to animal use were approved

by the Institutional Animal Care and Use Committee of the

Princeton University Research Board under protocol number

1691 and are in accordance with the regulations of the American

Association for Accreditation of Laboratory Animal Care and

those in the Animal Welfare Act (public law 99–198).

Cell lines and virus strains
All strains were propagated on porcine kidney (PK15) cells at a

low multiplicity of infection for 48 hours and then collected into

the conditioned medium as described previously [61]. Wild type

PRV Becker [73] and its derivative PRV 151 expressing GFP were

described previously [74]. PRV Bartha [20] and its derivative

PRV 152 expressing GFP [24] were described previously. PRV

233 is recombinant virus created by crossing PRV HF22, a virus

deleted for the UL27 gene encoding gB, and PRV 151 [26,38].

This virus propagated on a gB complementing PK15 cell line

(LP64e3). Mock inoculum stocks were prepared as above, but

without adding virus.

Primary neuronal cultures
Embryonic rat superior cervical ganglia (SCG) were isolated

from Sprague-Dawley rats (Hill-Top Labs Inc., Scottdale, PA)

between embryonic day 16.5 and E17.5 and dissociated into

individual neurons as described previously [75]. In more cases the

equivalent of one ganglia was plated in the center (in 100 ml,

<0.5cm) of a 35-mm plastic tissue culture dishes (BD Falcon, New

Jersey) coated with 500 g/ml of poly-DL-ornithine (Sigma

Aldrich) diluted in borate buffer and 10g/ml of natural mouse

laminin (Invitrogen). Dissociated neurons were allowed to settle for

5 minutes prior to addition of 2 ml of medium. Neuron culture

medium used was either serum-free medium as previously

described [75] or Neurobasal (Invitrogen) supplemented with

100 ng/ml nerve growth factor, 16 B27 (Invitrogen), 2mM L-

glutamine (J. T. Baker) and 100 ng/mL penicillin and streptomy-

cin (P/S). On a few occasions, SCGs were stored for less than one

week in Hibernate E minus Calcium (BrainBits, Illinois) before

dissociation. In all cases, 1–2 days after plating, cultures were

exposed to the antimitotic drug, cytosine-D-arabinofuranoside

(1 mM, Sigma-Aldrich), for 1–2 days to kill contaminating

epithelial or support cells. Cultures were maintained in a

humidified incubator at 37uC with 5% CO2 at (Thermo-

Scientific). Medium was replaced every 3–5 days.

Viral infection of neuronal cultures
Infection of neurons was performed as described previously

[75]. Cultures were inoculated with 106 plaque forming units (in

600 ml over entire 35 mm dish) and incubated for 1 hour prior to

replacement with neuronal medium. Mock-infection consisted of

either addition of mock inoculum described above or DMEM

supplemented with 2% FBS and 1% P/S.

Electrophysiological recordings
Whole-cell patch clamp recordings were performed at 37uC on

neurons grown in culture for 10–20 days. Before recording,

neuronal medium was replaced with warmed physiological

extracellular solution, (mM) 146 NaCl, 4.7 KCl, 1.6 NaHCO3,

0.13 NaH2PO4, 10 HEPES, 7.8 glucose, 2.5 CaCl2 and 0.6

MgSO4 (OSM 320) pH 7.2. A section of culture dish side-wall was

removed by melting a small section to allow unobstructed pipette

access to the culture dish. Extracellular solution was maintained at

37uC (62uC) by placing the culture dish on a heated copper plate

with supporting walls and monitored during recordings (HH-

25TC Thermometer, Omega). Patch pipettes pulled (P-2000,

Sutter Instruments) from borosilicate glass (30-31-1, FHC,

Bowdoinham, ME) to a resistance of 4–7MV were filled (mM)

with intracellular solution, 140 K-gluconate, 10 HEPES, 2 MgCl2,

3 ATPNa2 and 0.3 GTPNa (OSM 275) pH 7.3 (Sigma-Aldrich).

Prior to and during recordings neurons were visualized with a 406
water immersion objective (Olympus LUMPIPlanFI/IR 406
0.80) using an Olympus BX51WI microscope. Whole-cell patches

were obtained from soma of individual neurons in clusters of 2 to 8

after 1–4 GV seals were formed. Stable whole cell recordings were

observed for 1–5 min prior to recording of spontaneous activity

and resting membrane potentials with a Dagan N = 0.1 or

N = 0.01 headstage and BVC700 amplifier for 2–5 minutes in

current clamp mode with no holding current. Next, a series of 1s

current injections (20.15nA to 0.15nA) were delivered every

10 seconds under current clamp from resting voltage. Capacitance

and series (5–40MVs) resistance were compensated. In several

occasions uncompensated series resistance was subtracted off-line

prior to analysis. Recordings from cells with .10 mV baseline

changes through the duration of spontaneous activity were

rejected. Current injection data from neurons showing this

instability were also rejected. Dual recordings were obtained

using the same procedure as above with a second electrode,

headstage and amplifier. Following recordings, cells were briefly
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viewed for GFP fluorescence to confirm infection (Olympus

FITC/GFP filter cube).

Electrophysiology data acquisition and analysis
Data were obtained and digitized at 20kHz using an Axon

Digidata 1233a and Clampex 9 or 1440a and Clampex 10

software (Axon/Molecular Devices). Junction potential was

calculated as 217 mV using Clampex software’s junction

potential assistant and subtracted from all raw voltage data prior

to analysis. All data were analyzed offline using custom MATLAB

software.

Resting voltage was determined as follows: for silent neurons

(0 Hz) resting voltages were determined by averaging voltage

across the entire recording, for neurons with events occurring

between .0 and ,1 Hz the mean voltage across the entire

measurement except for times when the resting membrane

potential was greater than 6SEM (during action potentials/

AHP), and for neurons showing events .1Hz the mean voltage

during of periods of steady voltage, recalculated and confirmed by

manual inspection of .3 1 s intervals. Action potential firing rate

was determined from whole-cell recordings of 120 seconds,

defined as the number of large voltage deflections crossing a

threshold (.50 mV from baseline) divided by total time. AP

amplitude was defined at the peak voltage following threshold

crossing minus resting voltage, AHP was defined as the difference

between resting voltage (baseline) and the voltage 11 ms following

AP peak. AP height was defined as the difference between AP peak

and voltage 11 ms following the peak.

Spikelet-like events were identified by a threshold imposed on

the first derivative of the smoothed voltage trace (4–20V/s).

Identified events were then manually confirmed by visual

inspection based on determination of maximum rise rate and

time to half decay from the peak. Rates of either event (APs and

spikelet-like events) were determined as the number of events

divided by total recording time analyzed. Total event rate was

defined as the sum of these three classes of events. Total event

rates during current injections were determined as above and

reported as the ratio of event rate to the maximum event rate for

each cell (up to 0.15nA). Steady state voltage during injections

with ,3 events was defined as the mean voltage during the last

200 ms. For those injections eliciting .3 events, steady state

voltage was determined as the mean voltage during the last 200 ms

excluding events.

Input resistance was calculated using the linear fit of steady state

resting voltages recorded during injections to current injections. AP

threshold was calculated by subtracting the steady state voltage

during the lowest positive current injection eliciting at least one AP.

Slopes were taken over 10 mV bins to account for starting resting

voltage differences between treatments. DC coupling ratios were

determined by current injections into one cell body during dual

recordings. Values reported are the mean voltage deflection of the

second cell divided by the mean voltage deflection of the directly

injected cell. All data reported as 6SEM. Student t-tests or unpaired

two-tailed t-tests were used to determine significance, *P,0.05.

Fluorescent dyes and image acquisition
Whole-cell patch clamp recordings were performed as above

with 0.5 ug/ml neutral Texas-red Dextran conjugates at 3000,

10000 or 40000 MW (Invitrogen) or 0.05% Lucifer yellow (LY),

MW 457 (Invitrogen). In LY experiments, dye was allowed to

diffuse from the patch pipette into the neuron for 10–15 minutes.

The pipette was then removed and the extracellular medium was

replaced. After one hour, fluorescence images were taken at 406
of the filled cell body and its processes, at multiple focal planes.

Resulting images were assessed for additional labeled cell bodies

and contiguous labeled processes were counted. In large MW dye

experiments, dye was allowed to diffuse from the patch pipette and

images were recorded immediately, in most cases prior to pipette

removal. Images were taken at multiple planes and assessed for

additional labeled cell bodies. All images were obtained using an

Olympus Bx51WI microscope by a CoolSnapcf CCD camera

(Photometrics) and RS Image (Roper Scientific). Fluorescence

images were acquired using automatic exposure with an intensity

target of 3000, limit 1s, gain 1. Images of GFP expressed from the

viral genome, Texas-red or Lucifer Yellow from patch pipette, and

bright-field images using Olympus HQ:FITC or HC Red filter

cubes. Fluorescence images were pseudo-colored as appropriate

and enhanced for contrast at 0.5% saturated pixel intensity using

ImageJ (NIH). Cell bodies were considered to have dye transferred

from the filled cell body if their mean intensity was three times the

standard deviation of background. Resulting images were screened

onto bright field images obtained at the same focal plane using

Adobe Photoshop 10.0.

Large-scale neuronal fusion assay
Percentage of fused neurons was determined by a combination

of the angle measured between cell bodies and, for heavily fused

cultures, by the area of large rounded neuronal syncytial. The

angle between the outer edge of adjacent neurons was first

determined in pairs of neurons that were tested for large MW dye

coupling using ImageJ. These measurements resulted in clear

separation between fused (.125 degrees) and unfused neurons

(,50–,115 degrees, Figure S4A,B). This separation allowed us to

determine whether unfilled cell bodies from randomly chosen 106
fields of view were fused (Olympus UMPPlanFI 106 0.30). For

large structures (syncytia) observed late (40 & 78 hpi, Figure 8A,

Figure S4C) no angle could be measured. To determine the

number of fused neurons in this case, a standard curve was

constructed by measuring two dimensional area and fitting to a

curve of known area to nuclei. Hoechst 33342 (Invitrogen) was

added at 1 ug/ml in neuronal media for 20 min, washed twice

with extracellular solution prior bright field and fluorescence

imaging. Images were collected over several focal planes to count

the number of nuclei and the two dimensional area of

multinucleated syncytia was measured using ImageJ. The resulting

standard curve was created using MATLAB (Figure S4D). Single

neurons not in clusters, as defined as having an area less than the

maximum area of a cell body with a single nucleas (,300 mm2),

were excluded from calculation the percentage of cell bodies fused.

The standard curve allowed us to determination of minimum

number of nuclei (cells fused) in area measurements from random

unstained fields of syncytial clusters of neurons. The total number

of cell bodies counted as fused by either method was divided by the

total number assayed.

Supporting Information

Protocol S1

Found at: doi:10.1371/journal.ppat.1000640.s001 (0.07 MB PDF)

Figure S1 AP and spikelet-like event responses of PRV infected

neuron to cell body current injections late in PRV 151 infection. (A–

D) Relationship between injected current and AP rate during

current injections. The rate of APs for each current injection

(between I = 20.15 and 0.14nA) was divided by the maximum

event rate for that cell over all injections. Ratios were averaged and

plotted against injected current. Note increasingly unchanged ratios

in PRV 151 infected neurons as a function of time after infection.

(E–F) Ratios of AP rate/max AP rate for individual neurons fall into
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several categories late in infection, leading to large error bars in A–

D. (E) At 14–16 hpi, 10/15 PRV 151 infected neurons showed very

little change in ratio over the range of hyperpolarizing and

depolarizing currents, example neuron marked with circled #1.

5/10 showed a relationship similar to that observed at 8–10 hpi,

example neuron marked with #2. F) At 24–26 hpi, PRV 151

infected neurons showed AP firing rates largely independent of

current injection (5/7), examples labeled as in E. (G–J) Relationship

between injected current and total (AP and spikelet-like) event rate

during current injections. The rate of total APs and spikelet-like

events for each current injection (between I = 20.15 and 0.14nA)

was divided by the maximum event rate for that cell over all

injections. Ratios were averaged and plotted against injected

current. As above, note increasingly unchanged ratios in infected

neurons as a function of time after infection. (B–E) Mock n = 24, 4–

8 hpi PRV 151 n = 9, 8–10 hpi n = 7, 14–16 hpi n = 15, 24–26 hpi

n = 7. Plots were generated using data from Figure 3.

Found at: doi:10.1371/journal.ppat.1000640.s002 (0.55 MB TIF)

Figure S2 Infected neurons that share large MW dyes are

strongly electrically coupled. Near complete electrical coupling is

seen when large MW dye is able to transfer to an adjacent cell

body. Voltage response of a second neuron was divided by the first

neurons response to direct current injection. Examples shown are

from PRV 151 infected neurons at 18–20 hpi. (A) A pair of

infected neurons with no large MW transfer shows a low level of

electrical coupling. (B) A pair of infected neurons with large MW

dye transfer shows a high level of electrical coupling.

Found at: doi:10.1371/journal.ppat.1000640.s003 (0.24 MB TIF)

Figure S3 Criteria for cell body-cell body fusion. (A) Histogram

of measured angles between adjacent cell bodies. Angles were

measured from cell pairs in which large MW did or did not

transfer, at 24 hpi with either PRV151 or PRV 152. Neuron pairs

with angles less than 125u were determined not fused and pairs

with larger angles were determined fused. Mock-infected neurons

had a similar distribution of angles. (B) Examples of measured

angles, one each of fused and not fused used in calculation of % of

cell bodies fused. (C) Examples of extensive fusion of clustered

neurons at 40 hpi for both PRV 151 and PRV 152 infected

neurons. Blue - Hoechst, (406). Example of two-dimensional area

measured, cell indicated by an asterisk in D. To estimate the

number of fused cells in a syncytia, we used the minimum number

of nuclei observed for measured area to avoid over counting. (D)

Standard curve constructed from two-dimensional area calculated

and the number of nuclei counted. Cells with areas larger than

300 mm2, larger than maximum size of a single neuron, indicated

by the dotted line, were counted as fused. Those with smaller areas

adjacent to other cell bodies, were counted as not fused and those

with smaller areas not adjacent to other cell bodies were not

included in percentages presented in Figure 8B).

Found at: doi:10.1371/journal.ppat.1000640.s004 (1.29 MB TIF)

Figure S4 AP rate responses of PRV infected neuron to cell

body current injections late in PRV 152 infection. A–D)

Relationship between injected current and AP rate during current

injections. The rate of APs for each current injection (between

I = 20.15 and 0.14nA) was divided by the maximum event rate for

that cell over all injections. Ratios were averaged and plotted

against injected current. Note unchanged ratios in PRV 152

infected neurons are delayed until 24–26 hpi. E–F) Ratios of AP

rate/max AP rate for individual neurons fall into several categories

late in infection, leading to large error bars in A–D. E) At 14–16

hpi, 13/19 PRV 152 infected neurons responded to positive

current injections with increased AP firing (#3), while 6/19

showed little change in rate over the range of voltages (#4). F) By

24–26 hpi, 5/8 PRV 152 infected neurons did not respond to

current injections by firing increased APs. 4/8 of these had very

high levels of spikelet-like events and did not fire APs during any

injection and showed no change in spikelet-rate across injections

(J, Figure 8B). 3/8 PRV 152 infected neurons did show a slight

increase in AP rate in response to more positive current injections

(#3). G–J) Relationship between injected current and total (AP

and spikelet-like) event rate during current injections. The rate of

total APs and spikelet-like events for each current injection

(between I = 20.15 and 0.14nA) was divided by the maximum

event rate for that cell over all injections. Ratios were averaged

and plotted against injected current. Note increasingly unchanged

ratios in infected neurons as a function of time after infection. The

total event range was not changed by current injection in all

categories of neurons infected with either strain at 24–26 hpi (B–J)

PRV 152 4–8 hpi n = 7, 8–10 hpi n = 7, 24–26 hpi n = 8. Plots

were generated using data from Figures 3 and 8.

Found at: doi:10.1371/journal.ppat.1000640.s005 (0.63 MB TIF)

Figure S5 Multiple alleles of PRV Becker contribute to early

onset of elevated AP firing rates. (A) Genotype maps of PRV

Becker and PRV Bartha recombinants assayed in B. (B) Mean AP

firing rates of infected neurons at 14–16 hpi. PRV 151 + PRV 614

n = 6, PRV 158 n = 8, PRV BaBe n = 10, PRV 327 n = 7.

Found at: doi:10.1371/journal.ppat.1000640.s006 (0.50 MB TIF)
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