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Abstract: Conformational changes of D-glucose/D-galactose-binding protein (GGBP) were studied
under molecular crowding conditions modeled by concentrated solutions of polyethylene glycols
(PEG-12000, PEG-4000, and PEG-600), Ficoll-70, and Dextran-70, addition of which induced noticeable
structural changes in the GGBP molecule. All PEGs promoted compaction of GGBP and lead to the
increase in ordering of its structure. Concentrated solutions of PEG-12000 and PEG-4000 caused
GGBP aggregation. Although Ficoll-70 and Dextran-70 also promoted increase in the GGBP ordering,
the structural outputs were different for different crowders. For example, in comparison with
the GGBP in buffer, the intrinsic fluorescence spectrum of this protein was shifted to short-wave
region in the presence of PEGs but was red-shifted in the presence of Ficoll-70 and Dextran-70. It was
hypothesized that this difference could be due to the specific interaction of GGBP with the sugar-based
polymers (Ficoll-70 and Dextran-70), indicating that protein can adopt different conformations in
solutions containing molecular crowders of different chemical nature. It was also shown that all tested
crowding agents were able to stabilize GGBP structure shifting the GGBP guanidine hydrochloride
(GdnHCl)-induced unfolding curves to higher denaturant concentrations, but their stabilization
capabilities did not depend on the hydrodynamic dimensions of the polymers molecules. Refolding of
GGBP was complicated by protein aggregation in all tested solutions of crowding agents. The lowest
yield of refolded protein was achieved in the highly concentrated solutions of PEG-12000. These
data support the previous notion that the influence of macromolecular crowders on proteins is rather
complex phenomenon that extends beyond the excluded volume effects.

Keywords: D-glucose/D-galactose-binding protein; macromolecular crowding; polymers; protein
unfolding; protein folding; protein aggregation; intrinsic fluorescence; circular dichroism

1. Introduction

Protein folding has been intensively studied for the past 50 years. Currently, most of the data
related to folding of different proteins were obtained as a result of in vitro experiments. As a rule,
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these experiments were performed in dilute solutions, but the processes of in vitro and in vivo folding
are significantly different [1]. Firstly, protein folding in the cell is intimately associated with protein
biosynthesis. When a nascent polypeptide chain leaves the ribosome, the protein begins to fold
immediately, giving rise to the cotranslational folding process. Secondly, there is always a danger
of formation of incorrect intramolecular contacts. Therefore chaperones and foldases (i.e., enzymes
catalyzing cis-trans isomerization of proline residues and formation of ‘correct’ disulfide bonds) are
required for correct protein folding in the cellular environment [1]. Thirdly, protein folding in vivo
occurs in highly crowded environment; i.e., under conditions of minimal free space and permanent
steric contacts of a protein undergoing folding process with other macromolecules.

Conditions mimicking macromolecular crowding in vitro are created using solutions containing
high concentrations of inert polymers (so called crowding agents) such as polyethylene glycol
(PEG), Dextran, Ficoll, etc. [2–6]. Concentrated solutions of these polymers are used for imitation
of excluded volume effects; i.e., for generation of conditions under which volume occupied by
molecules of crowding agents is not available for other macromolecules. As a consequence of
mutual impenetrability of solute molecules, steric interactions between tested biological object and
solvent molecules significantly increase in such conditions. Relationship between hydrodynamic
dimensions of studied objects and crowding agents is one of the factors defining the “effectiveness” of
a macromolecular crowder to affect different biochemical processes including protein folding. It is
believed that the highest effectiveness of crowders on biochemical processes can be achieved under
conditions where the target macromolecule and the crowding agent possess comparable hydrodynamic
dimensions [7].

One of the main approaches for studying protein folding in vitro is the examination of
protein structure and folding/unfolding processes by various biophysical methods [8]. This allows
characterization of a conformational transition between native and unfolded states of a protein needed
for the evaluation of the protein molecule stability. As a rule, the increase in protein stability is typically
observed in the solutions of crowding agents [9–11]. One of reason for such stabilization is the increase
in the difference of free energy between the native and unfolded states of protein due to the decrease
in the conformational entropy of an unfolded polypeptide chain caused by the excluded volume
effects [12,13]. However, several recent studies showed that this is not always the case, and some
crowding agents are capable of destabilization of some proteins [14]. Decrease in the conformational
entropy of a polypeptide chain and compaction of the protein structure in solutions of crowding agents
could also promote increase in the number of non-native contacts between amino acid residues. This
can cause protein aggregation in vitro especially during the presses of protein refolding when various
partially folded intermediate can be formed [15,16].

The main goal of this work was to study the folding/unfolding reaction of D-glucose/
D-galactose-binding protein (GGBP) from E. coli under conditions of macromolecular crowding. GGBP
is a well-studied periplasmic ligand-binding monomeric protein that activates high affinity transport
of glucose and galactose through MglABC transporter, promotes chemotaxis towards these sugars,
and participates in the cooperative interactions between bacteria (quorum sensing) by binding with
chemoreceptor Trg from E. coli [17]. The molecular mass of GGBP is 32 kDa, and its amino acid
sequence has 309 residues. The spatial structure of this protein is organized in the N- and C-terminal
domains with α/β/α fold linked by three strands commonly referred to as a hinge region that form
the sugar-binding site. The active center of GGBP is formed by aromatic amino acids Trp 183 and
Phe 16 [17]. Stacking interactions between these residues and sugar molecules make dominating
contribution to the protein-ligand interaction [18]. It is known that the guanidine hydrochloride
(GdnHCl)-induced unfolding of GGBP in diluted buffer solutions can be described as a two-state
unfolding and is completely reversible [19]. On the other hand, the thermal denaturation GGBP is
complicated by protein aggregation.

It is thought that macromolecular crowding exerts its greatest effects when the tested protein
and crowders feature comparable hydrodynamic dimensions [7]. The hydrodynamic radius of GGBP
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is 28 Å [20]. For this reason the polymers differing in hydrodynamic dimensions and chemical nature
were chosen as crowding agents: PEG-600 (a crowder with the average molecular mass of 600 Da,
polymerization degree n = 14, and R = 5.6 Å), PEG-4000 (a crowding agent with an average molecular
mass of 4000 Da, polymerization degree n = 91, and R = 16.5 Å), PEG-12000 (a crowder with an
average molecular mass of 12,000 Da, polymerization degree n = 273, and R = 31 Å), the glucose-based
polymer Dextran-70 (a crowding agent with an average molecular mass of 70,000 Da and R = 58 Å), and
sucrose-based polymer Ficoll-70 (a crowder with an average molecular mass of 70,000 Da and R = 40 Å).

2. Results and Discussion

2.1. The GGBP Structure under Crowding Conditions

Our analysis revealed that GGBP adopts different conformations in solutions of crowding
agents of different chemical nature (polymers of ethylene glycol and sugars). Figure 1 shows that
regardless of molecular mass, the increasing PEG concentrations induced the short-wave shift of
protein fluorescence spectrum and the increase in its fluorescence of anisotropy. This indicates some
PEG-induced compaction of GGBP, likely due to the excluded volume effects.
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Figure 1. Characteristics of the GGBP intrinsic fluorescence in the presence of different crowding
agents. The excitation wavelength was 297 nm.

Figure 2 shows that the molar ellipticity in the far-UV circular dichroism (CD) spectrum of GGBP
increases with the increase in PEG concentration to 250 mg/mL in solutions of all tested PEGs. This
indicates some increase in the amounts of ordered secondary structure under crowding conditions.
Further increase in concentration of PEG-12000 and PEG-4000 promoted changes in the shape of far-UV
CD spectra of GGBP. This may be due to the protein aggregation.
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in the Dextran-70 and Ficoll-70 concentrations promoted long-wave shift of the GGBP intrinsic 
fluorescence spectrum and induced some increase in the amount of ordered secondary structure of 
this protein. Curiously, anisotropy of intrinsic fluorescence of GGBP monotonically increases with 
the increase in Ficoll-70 concentration, whereas the analogous dependence of intrinsic fluorescence 
anisotropy of GGBP on Dextran-70 concentration shows a maximum in the vicinity of 250 mg/mL of 
polymer. Since Dextran-70 and Ficoll-70 are polymers of glucose and sucrose, respectively, so one 
cannot exclude the possibility of binding of these polymers to the GGBP active center. This is in line 

Figure 2. Far-UV CD spectra of GGBP in the presence of PEG of different molecular weight. (A): PEG-12000;
(B): PEG-4000; (C): PEG-600.

GGBP characteristics in Dextran-70 and Ficoll-70 solutions were somewhat different from the
spectral characteristics of this protein in PEG solutions. In fact, Figures 1 and 3 show that the increase
in the Dextran-70 and Ficoll-70 concentrations promoted long-wave shift of the GGBP intrinsic
fluorescence spectrum and induced some increase in the amount of ordered secondary structure
of this protein. Curiously, anisotropy of intrinsic fluorescence of GGBP monotonically increases with
the increase in Ficoll-70 concentration, whereas the analogous dependence of intrinsic fluorescence
anisotropy of GGBP on Dextran-70 concentration shows a maximum in the vicinity of 250 mg/mL
of polymer. Since Dextran-70 and Ficoll-70 are polymers of glucose and sucrose, respectively, so one
cannot exclude the possibility of binding of these polymers to the GGBP active center. This is in line
with the previous work, where the possibility of specific interactions of maltose-binding protein (MBP,
which is a structural analog of GGBP) with Ficoll-70 was reported [21]. It is known that the interaction
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of GGBP with glucose is accompanied by the increase in the content of ordered secondary structure
of this protein, by the compaction of its tertiary structure, the decrease in the accessibility of GGBP
tryptophan residues to solvent, and is also manifested by a small but reproducible short-wave shift
of the intrinsic fluorescence spectrum of GGBP [19]. These observations on the structural causes of
the glucose binding to GGBP seem to contradict to the data found in our study; i.e., the long-wave
shift of the GGBP fluorescence spectrum in the Dextran-70 and Ficoll-70 solutions. To shed more light
on this issue, we examined the accessibility of the GGBP tryptophan residues to solvent using the
acrylamide-induced quenching of intrinsic fluorescence of GGBP in solutions of PEGs, Dextran-70 and
Ficoll-70. Results of these analyses are reported in Table 1.
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Table 1 shows that in solutions of all crowding agents analyzed in this study, the accessibility of
GGBP tryptophan residues to solvent is noticeably decreased in comparison with solvent accessibility
of protein tryptophan residues in buffer solution. The values of Stern-Volmer constant measured for
GGBP in the presence of crowders are similar to that recorded for a protein in the presence of glucose.
These data indicate that the compaction of protein tertiary structure takes place in solutions of PEG,
Ficoll-70, Dextran-70, and glucose. Since the local microenvironment of GGBP tryptophan residues
is sufficiently polar [22], the long-wave position of the GGBP fluorescence spectrum in solutions of
Dextran-70 and Ficoll-70 could be explained by the crowder-induced decrease in distance between the
quenching groups of amino acid residues of GGBP and tryptophan residues of this protein because of
compaction of its tertiary structure.
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Table 1. Some spectroscopic characteristics of GGBP in crowding milieu.

Crowding Agent KSV, M−1 A297 r [θ]222·10−3, deg·cm2·dmol−1

PEG-12000 2.1 1.12 0.20 −11
PEG-4000 2.2 1.16 0.18 −18
PEG-600 1.7 1.18 0.18 −16
Ficoll-70 1.3 0.82 0.19 −16

Dextran-70 1.7 0.77 0.17 −15
No crowding

agents * 4.7 1 0.15 −14

Glucose * 1.9 1 0.16 −15

All experiments were performed in buffer solutions (see Materials and Methods). Concentration of all crowding
agents was 300 mg/mL. * For comparison, the same experiments were conducted in the absence of crowding agents
and in solutions of glucose in concentration of 300 mg/mL.

2.2. Unfolding/Refolding of GGBP in Crowded Milieu

It is known that in the absence of crowding agents, the GdnHCl-induced unfolding of GGBP is
described as a two-state reversible process. Complex formation of GGBP with glucose resulted in
the significant shift of the unfolding transition to larger GdnHCl concentrations (Figure 4, upper left
panel). On the other hand, unfolding curve of the GGBP pre-incubated in 2.5 M GdnHCl solution and
regenerated after extensive dialysis GGBP coincided with the unfolding curve of the GGBP apo-form
(Figure 4, upper left panel). These observations indicate that the protein purification procedure used
in our study generates the glucose-free form of GGBP.
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Figure 4. Unfolding/refolding transitions of GGBP induced by GdnHCl in the presence of different
concentrations of PEGs of various molecular weights recorded as the GdnHCl dependencies of
parameter A = I320/I365. The excitation wavelength was 297 nm. The unfolding of GGBP is represented
by open symbols, whereas refolding is shown by closed symbols. The black curve is equilibrium
GdnHCl-induced unfolding of GGBP in the absence of crowding agents. The gray curve in the upper
left panel represents the equilibrium GdnHCl-induced unfolding transition of the glucose bound GGBP.
The gray dashed curve in the same plot shows the equilibrium GdnHCl-induced unfolding of the GGBP
sample prepared by the pre-incubation in 2.5 M GdnHCl solution followed by the extensive dialysis.



Molecules 2017, 22, 244 7 of 16

Data presented in Figures 4–11 clearly show that in solutions containing 80 mg/mL of Dextran-70,
Ficoll-70, and PEG (regardless of its polymerization degree), the unfolding curves of GGBP are shifted
toward higher GdnHCl concentrations in comparison with the positions of the corresponding curves
in the absence of crowding agents.
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In this work, we conducted two series of experiments to gain the information on the peculiarities of
the GGBP unfolding/refolding in crowded milieu. In the first series, we investigated the concentration
effect of the selected crowding agent on the process of protein unfolding. In the second series,
experiments were conducted at fixed crowder concentrations to analyze the effects of crowding agents
of different molecular mass on the unfolding/refolding reaction. As expected, the increase in the
excluded volume caused by the increase in the concentrations of the crowding agent (PEG-600) resulted
in a shift of the GdnHCl-induced unfolding curve of GGBP toward higher denaturant concentrations.
On the other hand, although increasing the size of the crowding agent among PEG-600, PEG-4000
and PEG-12000 at constant weight concentration of a given crowder (80 mg/mL) also increases the
excluded volume (volume occupied by PEGs are 6%, 23% and 50%, respectively), no shifts of the
unfolding curves were caused by the increase of the excluded volume in this case. Based on these
observations it was concluded that the differences in the unfolding-refolding behavior of a target
protein in concentrated polymer solutions and in dilute buffered solutions due not only to the excluded
volume effect, but may be caused by some other factors as well.

Earlier, several in vitro and in silico studies reported the results of investigation of the effect of
macromolecular crowding on proteins with the topology similar to the structural organization of
GGBP [23–28]. For example, it has been shown that increasing Ficoll concentration increased the
stability and folding rate of the B. burgdorferi VlsE, as well as caused a change in the shape of this
protein from an ellipsoidal to spherical form, leading to the exposure of a hidden antigenic region [23].
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It was also established that the conditions of molecular crowding can promote significant shift of
the equilibrium between the calmodulin conformers toward more compact forms [26]. It was also
shown that under the conditions of molecular crowding phosphoglycerate kinase (PGK) became more
compact, and there was a significant increase in the functional activity and stability of PGK under
these conditions [25]. In general, our data are correlated with the results reported in these studies,
since it is shown that highly concentrated solutions of crowding agents can promote compaction
of the target proteins, increase the orderliness of the protein structure, and increase the stability
of the investigated proteins toward thermal and chemical denaturation and unfolding. However,
the fact that the GGBP conformational stability was only minimally dependent on the ratio between
the hydrodynamic dimensions of the protein and crowding agents suggested the existence of the
excluded volume-independent mechanisms of the effect of highly concentrated polymer solutions on
the GGBP stability. It is likely that these mechanisms are related to the changed structure of water
in the concentrated solutions of crowding [29,30]. The GdnHCl dependences of the GGBP intensive
fluorescence characteristics (such as parameter A and fluorescence anisotropy) measured at protein
refolding coincide with unfolding processes, indicating good reversibility of the unfolding transition
(see Figures 4, 5, 8 and 9).
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When comparing the unfolding and refolding dependencies of the molar ellipticity and
fluorescence intensity of GGBP on GdnHCl concentration, hysteresis is observed in solutions of
PEG-4000 and PEG-12000 (see Figures 6 and 10), indicating the quasi-stationary nature of the obtained
dependences and slow establishment of equilibrium in the solutions of PEG-4000 and PEG-12000.
Further increase of concentration of crowding agents regardless of their hydrodynamic dimensions
and chemical structure promoted further shift of the GGBP unfolding curves to larger GdnHCl
concentrations (Figures 4–11). Also, a significant decrease in the cooperativity of unfolding transition
was observed in solutions of PEG-4000 and PEG-12000, likely indicating the non-equilibrium nature of
the obtained dependences.
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In order to confirm this hypothesis, the kinetics of the GGBP unfolding in solutions of different
concentrations of PEGs, Dextran-70 and Ficoll-70 was studied for 4 weeks (data not shown).
This analysis revealed that at all tested time intervals, the CD signal of GGBP decreased and the
protein fluorescence spectrum was red-shifted in PEG solutions. However, these effects were not
observed in solutions containing Dextran-70 and Ficoll-70. It is likely that these observations reflect
the presence of gradual aggregation/destabilization of protein in PEG solutions. The GGBP unfolding
curves measured in the presence of high concentrations of PEG and Ficoll-70 as dependencies of
the molar ellipticity and fluorescence intensity on GdnHCl concentration have local maximum and
minimum in the vicinity of 1.2–1.7 M GdnHCl (Figures 10 and 11), respectively.
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Such effects were not observed in the Dextran-70 solutions. Decrease in the fluorescence intensity
and CD signal in this region of denaturant concentrations could indicate the decrease in the effective
protein concentration due to aggregation of GGBP under these conditions. Furthermore, when protein
concentration was high, precipitation was observed under these conditions. These findings are
consistent with the current views on a higher degree of compaction of an unfolded protein in crowded
milieu compared to that in dilute buffers [31–36].
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Figure 9. Unfolding/refolding transitions of GGBP in the presence of different concentrations of
Ficoll-70 and Dextran-70 recorded as the dependence of the anisotropy of intrinsic fluorescence on
GdnHCl concentration. The excitation wavelength was 297 nm, the emission wavelength was 365 nm.
Other designations as in Figure 4.
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Figure 11. Unfolding/refolding transitions of GGBP in the presence of different concentrations of
Ficoll-70 and Dextran-70 recorded by the dependence of the molar ellipticity at 222 nm on GdnHCl
concentration. Other designations as in Figure 4.
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GGBP refolding curves measured in the presence of highly concentrated solutions of crowding
agents (200 and 300 mg/mL) in a form of GdnHCl dependences of parameter A and protein
fluorescence anisotropy coincide with the unfolding curves recorded as GdnHCl-induced changes
of these GGBP characteristics (see Figures 4, 5, 8 and 9). However, unfolding and refolding curves
recorded as GdnHCl dependencies of the GGBP molar ellipticity and intensity of protein intrinsic
fluorescence were significant different in the presence of high concentrations of all tested polymers
(see Figures 6, 7, 10 and 11).

Even in solutions with low denaturant concentrations, values of the CD signal and fluorescence
intensity of GGBP obtained after protein refolding under these conditions were close to the values of
the corresponding characteristics of unfolded GGBP. Apparently, during GGBP refolding, the increase
in the concentration of crowding agents promoted formation of protein aggregates that lead to the
decrease in the effective GGBP concentration, which was reflected in low CD and fluorescence signals.
The lowest yield of refolded protein was observed at high concentrations of PEG-4000 and PEG-12000.

3. Materials and Methods

3.1. Materials

PEG-600, PEG-4000, PEG-12000, Ficoll-70, Dextran-70, guanidine hydrochloride (Sigma, St. Louis,
MO, USA) were used without further purification. To determine the GdnHCl concentration, we relied
on the measurement of the refraction coefficient using Abbe refractometer (LOMO, St. Petersburg, Russia).

E. coli strain K-12 (F+ mgl503 lacZ lacY+recA1) carrying an mglB gene deletion transformed with a
pTz18u-mglB vector was primarily used for the obtaining of GGBP wild type. Upon induction with
D-fructose, the expression efficiency of the GGBP protein was rather low.

The recombinant protein yield in this system does not exceed 5–8 mg/L of culture. Therefore, for
the increase in the expression levels, the nucleotide sequence of mglB gene was optimized and the gene
was recloned into a pET-11d plasmid with the T7 promoter (Stratagene, La Jolla, CA, USA) using NcoI
and BglII restriction sites. Specific forward and reverse primers were used to insert new restriction
sites and a polyhistidine tag at the C-terminal region of the target protein. Site-directed mutagenesis
was performed with the Quik-Change mutagenesis kit (Stratagene) using primers encoding sequences
corresponding to the desired amino acid substitutions. Plasmids were isolated from bacterial cells
using plasmid DNA isolation kits (Omnix, St. Petersburg, Russia). Primer purification was performed
using either reverse-phase chromatography or electrophoresis in a polyacrylamide gel [37].

pET-11d plasmid encoding GGBP was used to transform E. coli BL21(DE3) cells. The expression
of the protein was then induced by adding 0.5 mM isopropyl-beta-D-1-thiogalactopyranoside (IPTG;
Nacalai Tesque, Kyoto, Japan). Bacterial cells were cultured for 24 h at 37 ◦C. Recombinant proteins were
purified using Ni2+-agarose packed in the His-GraviTrap columns (GE Healthcare, Chicago, IL, USA).
Protein purification was controlled using denaturing SDS-electrophoresis in 15% polyacrylamide gel.

The experiments were performed in solutions with protein concentration of 0.2 mg/mL. All solutions
were based on the sodium phosphate buffer at pH 7.4. All experiments were conducted at 23 ◦C.

However, at the beginning of our work with recombinant GGBP, we carried out systematic
analysis aimed at the investigation of the structure of this protein in different conformational states.
Among these preliminary studies, we compared the structural characteristics of the purified protein
and apo-protein produced by the standard procedure for elimination of the tightly bound ligands by
partial unfolding of the protein at low GdnHCl concentrations (1.5–2.5 M) followed by the extensive
dialysis. We found that the structural characteristics of GGBP were identical in both cases. Furthermore,
in one of our papers [19] we have shown that the complexation of GGBP with glucose causes a shift in
the middle of the transition between the native and unfolded states of protein from 0.4 M GdnHCl
to 0.9 M GdnHCl.
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3.2. Methods

3.2.1. Steady-State Fluorescence Spectroscopy

The fluorescence experiments were carried out using Cary Eclipse (Agilent, Santa Clara, CA,
USA) spectrofluorimeter. The measurements were made at 23 ◦C with 10 mm × 10 mm cells (Starna,
Atascadero, CA, USA). The fluorescence intensity of tryptophan residues was corrected for the primary
inner filter effect [38]:

F0(λex) = F(λex)/W (1)

where W is the factor that corrects measured total fluorescence intensity for so-called primary inner
filter effect.

Because the fluorescence measurements were performed using the Cary Eclipse spectrofluorimeter
with horizontal slits, the value of correction factor W was calculated using the following ratio:

W =

(
1 − 10−AΣ

)
AΣ

(2)

where AΣ is the total absorbance of exciting light in the solution. In work [38] it was shown that the
corrected in such manner value of the total fluorescence intensity is a product of the absorbance AFL to
the quantum yield of fluorescence q when one fluorescent substance is present in solution.

The excitation wavelength for the intrinsic protein fluorescence was 297 nm. The position and
form of the UV fluorescence spectra were characterized by the parameter A = I320/I365, where I320 and
I365 are the fluorescence intensities measured at emission wavelengths of 320 and 365 nm, respectively.
The values of parameters A and the fluorescence spectra were corrected using the instrument’s
spectral sensitivity.

3.2.2. Dynamic Quenching of Intrinsic Fluorescence

The study of dynamic quenching of the intrinsic UV fluorescence of wild type GGBP by small
quencher acrylamide in sodium phosphate buffer, 0.1 M GdnHCl and 0.4 M urea was carried out
for evaluating the accessibility of protein tryptophan residues to solvent under these conditions.
The protein intrinsic fluorescence was excited at 297 nm and total intrinsic UV fluorescence (from 300 to
450 nm) was registered.

The quenching constants were obtained using Stern-Volmer equation written for total fluorescence
intensity:

F([0])
F([Q])

=
W([0])
W([Q])

(1 + KSV [Q]) (3)

where F([0]) is the total fluorescence in the absence of quencher, F([Q]) is the total fluorescence in the
presence of quencher at a concentration [Q], W([0]) is correction factor W in the absence of quencher,
W([Q]) is correction factor W in the presence of quencher, KSV is Stern–Volmer constant; i.e., the rate
constant of fluorescence quenching due to collisions of quencher molecules with fluorophore molecules
in the excited state. Here, it is assumed that AFL([0]) = AFL([Q]). It is necessary to bear in mind that
the acrylamide absorbs at the wavelength of excitation 297 nm. Therefore, the recorded fluorescence
intensity should be amended, relating to changes in W with the increase in the quencher concentration.

3.2.3. Circular Dichroism Measurements

CD spectra were obtained using a Jasco-810 spectropolarimeter (Jasco, Tokyo, Japan). Far-UV CD
spectra were recorded in a 1 mm path length cell from 260 nm to 190 nm with a step size of 0.1 nm.
Near-UV CD spectra were recorded in a 10 mm path length cell from 320 nm to 250 nm with a step
size of 0.1 nm. For all spectra, an average of three scans was obtained. CD spectra of the appropriate
buffer solution were recorded and subtracted from the protein spectra.
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4. Conclusions

The results obtained in this study suggest that some compaction and increase in the ordering
of GGBP structure are observed under molecular crowding conditions in vitro regardless of the
hydrodynamic dimensions and chemical nature of the model crowding agents. Differences in the
positions of the GGBP intrinsic fluorescence spectra in PEG, Ficoll-70, and Dextran-70 solutions indicate
that these conditions create different microenvironments for the GGBP tryptophan residues, and, likely,
induce different protein conformations. Compaction of the GGBP spatial stricture was observed in
all tested polymer solutions. We also show that the increase in the concentrations of all polymers in
tested solutions induces a noticeable shift in the GGBP unfolding transition toward higher GdnHCl
concentrations, suggesting a crowding-induced increase in protein stability. This stabilization can
be a result of the decrease in the total available volume in the considered systems. The shift of
unfolding curves did not significant depend on the hydrodynamic dimensions of crowding agents.
Crowded environment promoted aggregation of GGBP in the presence of 1.2–1.7 M GdnHCl and high
concentrations of PEG-4000, PEG-12000, and Ficoll-70. Refolding of GGBP in solutions of all crowding
agents used in this study was complicated by protein aggregation. These observations confirm the
necessity of chaperons and other cellular machinery for correct protein folding in vivo.
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