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Abstract: The field of biosecurity has greatly benefited from the widespread adoption of high-
throughput sequencing technologies, for its ability to deeply query plant and animal samples for
pathogens for which no tests exist. However, the bioinformatics analysis tools designed for rapid
analysis of these sequencing datasets are not developed with this application in mind, limiting the
ability of diagnosticians to standardise their workflows using published tool kits. We sought to assess
previously published bioinformatic tools for their ability to identify plant- and animal-infecting
viruses while distinguishing from the host genetic material. We discovered that many of the current
generation of virus-detection pipelines are not adequate for this task, being outperformed by more
generic classification tools. We created synthetic MinION and HiSeq libraries simulating plant and
animal infections of economically important viruses and assessed a series of tools for their suitability
for rapid and accurate detection of infection, and further tested the top performing tools against the
VIROMOCK Challenge dataset to ensure that our findings were reproducible when compared with
international standards. Our work demonstrated that several methods provide sensitive and specific
detection of agriculturally important viruses in a timely manner and provides a key piece of ground
truthing for method development in this space.

Keywords: biosecurity; virology; bioinformatics; high-throughput sequencing; Oxford Nanopore;
Illumina; DNA; RNA

1. Introduction

The New Zealand (NZ) export market is dominated by high quality agricultural
products, with six of the ten top annual exports in 2021 coming from primary industries [1].
Over NZD 47 billion worth of exports, from a total of NZD 63.3 billion, in 2021 came from
primary production after a significant growth in many of the major export commodities
such as dairy products, meat, and wood [1,2]. In 2021 (the year to 30 June 2022) the NZ
dairy sector generated NZD 19.1 billion in export revenue, roughly equal to that revenue
of meat and wool ($10.4 billion NZD) and horticulture (NZD 6.6 billion) exports. NZ is
currently free from many of the plant and animal viruses which compromise production
and export value. In a country whose economy is so tightly linked to primary production,
employing effective biosecurity measures to maintain this state is greatly desired amongst
growers and exporters [3]. Safeguarding these industries is therefore a top priority for the
Ministry for Primary Industries, to maintain and expand the productivity of NZ.

The introduction of exotic pathogens is a constant concern for NZ as international trade,
while such an integral part of the economy, is also a major pathway for the introduction of
economically significant viruses [4]. Incursion and subsequent establishment of regulated
viruses would result in a decline of yield and quality of domestically grown, high-value
products. Beyond the obvious reduction in marketable value for lost or disfigured crops
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and animals, invasions carry implications for trade agreements, as preferential access to
international markets is often contingent upon the absence of specific pathogens. For example,
an outbreak of Foot-and-mouth disease (FMD) could freeze NZ meat exports for months,
resulting in billions of dollars of lost export value [5]. Similar consequences may occur with
the introduction of the viruses responsible for African swine fever and Lumpy skin disease—
losses of production and export value, as well as eradication, compensation, and surveillance
costs may have considerable economic impact on primary industries [6,7]. Although these
viruses are currently absent from NZ there are increasing concerns for their introduction
into Australia, a major trading partner of NZ [8–11]. To address the ever-increasing risk
of virus incursions, high-throughput sequencing (HTS) is now becoming routine within
the NZ biosecurity sector, particularly when performing plant virus diagnostics [12]. The
benefits of HTS as a diagnostic tool are widely acknowledged [13–18] and this approach
has gained favour within NZ primarily for its broad target range when compared with
traditional diagnostic techniques.

The use of HTS platforms for the sequencing of shotgun metagenomic (and meta-
transcriptomic) libraries is a technique commonly applied to the study of microorgan-
isms [19,20], particularly in instances where cultivation of microorganisms is challenging.
The applicability of high-throughput shotgun sequencing to biosecurity has long been
recognised [13] and there are now numerous examples of this technology being used in
surveillance and diagnostic settings [15,21–27]. Unlike traditional diagnostic techniques,
such as ELISA and PCR, there is currently little standardisation of HTS laboratory methods
and bioinformatic analyses when they are applied to pathogen diagnostics. This is particu-
larly true when an HTS approach is used in the absence of prior knowledge of virus identity
and simply mapping reads to a reference genome is not appropriate. For example, of the
exemplar references above, each of those published since 2018 performed significantly
different techniques for classifying sequence reads and obtaining a final diagnosis.

The variety of analysis methods and classification databases provides flexibility when
performing analyses, allowing diagnosticians to customise their approach to specific
pathogens of interest. However, this lack of standardisation results in a fragmentation
of practices and workflows between institutions and countries, despite efforts to create
harmonized approaches [28]. While efforts have been made to develop tools to automate
the detection of viral sequences from HTS libraries, such tools often perform poorly when
applied beyond their intended use. In a recent literature review, Nooij and colleagues [29]
compared performance reports for 25 virus detection workflows and reported an aver-
age sensitivity of just 0.67 across all tools and datasets evaluated. Superior results are
reported when general-purpose metagenome classifier tools have been applied to virus
detection in clinical samples [30–32]. Owing to such observations, when performing virus
discovery in plant HTS libraries there remains an overwhelming bias towards the use
of virus-agnostic analysis pipelines. For example, from 71 HTS-based virus detections
summarised by Ibaba and Gubba [33], 65 performed their main detection of viral sequences
using short-read assembly, BLASTn or BLASTx queries to the NCBI GenBank database, and
screening for viral proteins using Kaiju [34]. Similarly, a 2017 review of HTS applications
in plant diagnostics highlighted seven instances of virus identification being performed
by HTS, all of which relied on a manuscript-specific BLAST-based approach rather than
a published virus pipeline [35]. Consequently, HTS-based initiatives focusing on virus
discovery still favour alignment-based search tools or protein fold models for performing
initial detections [36–38].

The discrepancy between the performance of custom-built virus detection tools and
the more generic forms of sequence annotation may be explained by the observation that
sequence databases are dominated by particular lineages, which likely results in bias.
Many recently developed tools are not specifically calibrated on pathogens or risk organ-
isms [39–44] and the datasets used in training are often rich in phage sequence [45–49]
which contribute towards global sensitivity and specificity measures without being rel-
evant to diagnoses in eukaryotes. We have previously reported the development of an



Viruses 2022, 14, 2163 3 of 23

in-house laboratory protocol for sequencing viruses using the Oxford Nanopore Technolo-
gies (ONT) MinION device, which allows us to generate cDNA libraries from infected
plant material without the need for polyadenylated RNA capture [12]. However, with
uncertainty surrounding the efficacy of existing high-throughput analysis pipelines, the sub-
sequent bioinformatic workflow relied on a BLASTn query against the full NCBI nucleotide
database. While undoubtedly thorough, this approach requires significant computational
resources, can potentially require days of computation time to generate initial findings, and
is not appropriate for samples sequenced using short read technologies without some form
of genomic assembly to reduce the number of query sequences to be examined.

As biosecurity diagnoses are performed within tight reporting timeframes, the long
classification times, coupled with the inherent uncertainty around the run time of any
specific BLAST job led us to explore alternative methods for generating sensitive and
accurate classifications with more timely and predictable results. We sought to identify
tools which could perform tasks such as short-read assembly and prediction of protein
coding regions quickly and robustly, so that an end-to-end diagnostic pipeline could be
constructed to reliably screen sequence libraries from a range of hosts to provide timely
indications of virus presence in samples. We identified a variety of existing tools and
classification databases with the express purpose of detecting virus sequences in HTS
libraries while assessing both their ability to identify plant and vertebrate viruses, and
their specificity against host or other sequence contaminants. We constructed candidate
analysis workflows from the best-performing tools and then tested said workflows against
165 synthetic libraries. Each synthetic library consisted of a plant or animal sample spiked
with a virus of interest to the NZ agricultural or horticultural sector, and sequences were
simulated for both Oxford Nanopore and Illumina sequencing platforms. In addition, we
applied our methods to 18 samples available through the VIROMOCK Challenge [50] a
recognised international platform to benchmark bioinformatic pipelines for virus detection.

2. Materials and Methods
2.1. Data Collection and Creation of Test Data

Viral genomes were downloaded from the NCBI RefSeq and GenBank database on
the 9th of April 2020. Downloads from RefSeq were performed by iterating through the
contents of the ‘ftp.ncbi.nih.gov://genomes/refseq/viral/’ and downloading each species
entry via rsync. For each species record downloaded, genome sequence files and GenBank
files were preferentially selected from the ‘latest_assembly_versions/’ folder if present, or
the ‘all_assembly_versions/’ folder if the first option was empty. Genome records marked
as ‘suppressed’ were ignored along with any GenBank records which had a corresponding
RefSeq version of the assembly. Viral species were matched to a broad host lineage using
the information available at the NCBI assembly reports. In the case of 3709 entries a host
record was not provided but could be inferred from the virus name. These genomes are
collectively referred to as the ‘target’ dataset.

To test the specificity of databases and analysis pipelines, genomes from the fungus,
invertebrate, plant, protozoan, vertebrate_mammalian, and vertebrate_other locations in
the NCBI FTP server were downloaded and parsed in the same manner. The sequence data
for each lineage was additionally screened to remove identical contigs between records. A
dereplicated set of prokaryotic (bacterial and archaeal) genomes were obtained from the
Genome Taxonomy Database (release 95) [51,52]. These genomes are collectively referred
to as the ‘non-target’ dataset. Protein sequences obtained from the non-target dataset were
further dereplicated by clustering of protein sequences using the ‘linclust’ function of
MMSeqs2 (version 12.113e3) [53]. Clustering was performed using 80% sequence similarity
for the prokaryote lineage, and 95% sequence similarity for the remaining non-target
datasets, to reduce the number of queries submitted for profiling tools.

ftp.ncbi.nih.gov://genomes/refseq/viral/
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2.2. Creation of Custom Viral Sequence Databases

To achieve faster classification rates than that achieved with BLAST queries against the
NCBI nt and nr databases, we constructed virus-specific databases from the viral genomes
and gene predictions obtained when constructing the target dataset. As there are many
viral sequences for which a full genome are not yet available additional sequences were
obtained by extracting all viral sequences from the NCBI nt and nr databases (July 2021
release) then dereplicating the results to a more manageable size. For nucleotide data, the nt
sequences were grouped according to NCBI species name and clustering with vsearch. We
initially performed grouping by NCBI species name and clustered intra-species sequences
at 90% sequence identity, then also created datasets by truncating species names at the key
words ‘virus’, ’viroid’, and ’phage’ to produce broader groupings, followed by intra-species
sequence clustering with 90%, 97%, and 99% sequence identity thresholds.

When performing nucleotide clustering, two lineages were removed from the input
data as they comprised a disproportionately large percentage of reads in the raw data. The
first of these corresponded to the SARS-CoV-2 lineage from which genomes have been
sequenced at a disproportionately high rate in the last two years. In this instance, we
inserted a single representative sequence (NC_045512.2) to represent this lineage. Cluster-
ing was also impeded by a large grouping of unclassified viruses belonging to the family
Myoviridae. In this instance, the cluster was removed from the database as; (a) viruses of
the family Myoviridae infect bacteria and are therefore unlikely to be relevant to the aims
of this work, and (b) there were many named isolates of this virus in the database, so the
loss of this particular lineage was not deemed detrimental to the taxonomic coverage of the
clustered sequence set. Protein clustering was performed by filtering protein sequences
fewer than 25 amino acid residues in length, then grouping by either species name or
truncated species name grouping and clustering proteins at 90% sequence identity using
usearch (11.0.667) [54].

2.3. Creation of Custom Viral HMM Databases

There are numerous high-quality HMM databases of viral protein clusters currently
available, however, many are rarely updated and several of the more recent databases
comprise tens of thousands of models, making annotation a slow process. We sought to
improve upon these resources by producing a database which could compete in terms of
specificity and sensitivity while minimising the time required to classify proteins. Protein
sequences were extracted from GenBank record files downloaded for the target dataset
and identical proteins were removed using seqmagick. The dereplicated proteins were
then purged of polyprotein sequences using an all-against-all BLASTP search with DIA-
MOND (version 0.9.32) [55]. Results were filtered to remove self-hits, and polyproteins
were identified using the working definition of the vFAM database project, namely that
a polyprotein is one in which greater than 70% of the protein sequence is covered by two
or more non-overlapping shorter protein sequences. From an input set of 686,558 unique
protein sequences, 33,562 were identified as polyproteins by this workflow and removed
from the dataset.

Protein clusters were produced using multiple methods, based on either static of
dynamic cluster definitions. Clustering was initially performed with usearch, clustering
proteins into groups using identity thresholds of 50%, 60%, 70%, 80%, and 90%. A parallel
clustering effort was performed using mcl (version 14.137) [56] to cluster the results of an
all-against-all DIAMOND BLASTp query. Inflation values of 1.2, 1.4, 2.0, 4.0, and 6.0 were
used to cluster the output using the ‘–stream-neg-log10′ parameter and transformation
function ‘-stream-tf ‘ceil(200)” to convert e-values into edge weights for the input graph.
Inspection of the outputs using the ‘clm dist’ and ‘clm info’ tools was performed and from
the initial clustering results, a value of 4.0 was selected to define protein clusters. A hybrid
clustering method was also applied, in which the proteins not successfully clustered by
usearch at each identity threshold were then clustered by mcl. The resulting protein clusters
were appended to the original usearch result as supplemental protein clusters.
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To reduce the number of candidate protein clusters required to produce a compre-
hensive sampling of diagnostically relevant viral proteins, the output of each clustering
iteration was evaluated. Protein clusters were scored in terms of their coverage of viral fam-
ilies and subfamilies using a modified scoring metric developed by Bobay and Ochman [57].
For every (sub)family grouping, each protein cluster was scored according to how many
members of the grouping had contributed a protein into the cluster. If a cluster covered a
sufficient portion of any (sub)family grouping it was retained as a sufficiently conserved
for diagnostic purposes. The threshold for retention was set as:

min
(

0.85
1− 1

n

)
Thus, for large groupings the coverage requirement was 85%. For groupings with

fewer than 7 genomes, it is not possible to score greater than 85% unless all members con-
tribute to the cluster, so the threshold was set to retain clusters which were not represented
by a single genome in a grouping. A multiple sequence alignment was performed on each
remaining cluster using a range of tools, as there is no single alignment tool which con-
sistently outperforms all others [58]. MAFFT (version 7.310) [59,60], MAFFT-L-INS-I [61],
Clustal-Omega (version 1.2.4) [62], ClustalW2 (version 2.1) [63], and MUSCLE (version
3.8.31) [64] were applied to each cluster and the alignment which introduced the fewest
gaps was selected as the representative alignment. Each sequence alignment was then
converted to an HMM profile using hmmbuild (version 3.2.1) [65,66].

The target and non-target protein sequences were classified against each database using
hmmsearch. For comparative purposes, we downloaded and tested the following publicly
available databases using the same datasets; pVOGs [67] (June 2017 release), VOGDB (https://
vogdb.org/, release 99), RVDB (version 18.0) [68], vFAM-A and vFAM-B [69]
(February 2014 release), and EggNOG [70] (viral OGs, October 2015 release). We also down-
loaded the classification databases used in viral detection tools IMG/VR (version 3.0) [71],
CheckV, (version 0.6) [72], and VirTool (https://www.virtool.ca/, November 2017 release).
Hits were filtered to retain matches with a sequence-level e-value of≤0.001 for all databases
except for CheckV, for which we applied the cluster-specific bitscore thresholds specified in
the documentation.

2.4. Testing of Sequence-Based Classification Tools

The dereplicated nucleotide and protein databases were tested for sensitivity and
specificity. We defined sensitivity as the proportion of viral sequences which were correctly
identified as such, and specificity as the proportion of the nontarget sequences correctly
rejected by the classifier following appropriate filtering for each nontarget lineage (Table 1).
For alignment-based, nucleotide/nucleotide classification we tested BLASTn (version
2.10.0) [73,74], usearch, vsearch (version 2.15.1) [75], and MMSeqs2 (version 12.113e3).
Nucleotide/protein (translated) searches were performed using DIAMOND and MMSeqs2,
and protein/protein searching was performed using BLASTp, DIAMOND, MMSeqs2,
and usearch with both the usearch_global and ublast algorithms. Nucleotide/nucleotide
and protein/protein searches required 70% identity over 50% of the query length and
an e-value of less than 0.001 to be accepted as valid matches. Translated searches were
performed using the same identity and e-value requirements, but without a minimum
coverage value to account for instances in which open reading frames may be identified
within a subset of a nucleotide sequence (i.e., where a read spans the start or stop boundary
of the transcript). For nucleotide/nucleotide searches, query contigs were broken on poly-N
scaffolding regions to prevent the interference of artificially induced ambiguous regions on
alignment scores.

Nucleotide classification via k-mer frequency profiles was performed using Kraken2
(version 2.1.1) [76], KrakenUniq (version 0.5.7) [77], CLARK (version 1.2.6.1) [78], Meta-
Cache (version 1.1.1) [79], and ganon (version 0.3.4) [80]. For Kraken2 the pre-formatted
k2_standard_20201202 and k2_viral_20201202 databases were downloaded for classifi-

https://vogdb.org/
https://vogdb.org/
https://www.virtool.ca/
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cation. For all other tools, the tool-specific database creation commands were used to
build the databases. Downloads for database construction commenced on the 23rd of
December 2020, corresponding to release 203 of GenBank.

Pipelines and software suites developed for the detection of viral sequences in HTS
libraries were identified through a literature review and tested against the target dataset.
The tools installed were as follows: MiCOP (unversioned) [41], FastViromeExplorer (un-
versioned) [40], ViromeScan (not versioned) [39], VirFinder (version 1.1) [48], VirSorter
(version 1.0.6) [46], VirSorter2 (version 2.1) [47], VirTool (https://www.virtool.ca/, version
3.9.6), and DeepVirFinder (version 1.0) [49]. All software was downloaded from the respec-
tive sources in January 2021, so for tools which do not publish with version information
the current release at that time point is the version used in this analysis.

Each tool was used to classify the target and non-target datasets using their default
detection thresholds. When no score cut-off was specified, the highest ranked hit per
query sequence was retained as the result of classification. Multiple testing correction
was not performed DeepVirFinder predictions, as the target dataset is exclusively viral
sequences and correcting for multiple testing would suppress legitimate identifications.
For nucleotide analysis with VirTool, mapping was performed using bwa (version 0.7.17)
with the ‘-x intractg’ flag because long read mapping is not recommended by bowtie2, the
tool used internally by the VirTool workflow.

2.5. Construction of Mock Libraries for Workflow Evaluation

A selection of plant and vertebrate viruses deemed of high importance to the NZ
agricultural and horticultural sectors were identified. A total of 156 viruses comprising
both RNA and DNA genomes were selected, and genomes from 16 host species were
downloaded to simulate libraries of infected host material (Table S1). To model the skew of
transcript abundance observed in RNA sequencing data, a negative binomial distribution of
transcript abundance was produced by mapping ONT sequence data obtained during diag-
nostic sequencing against the NCBI tomato transcript reference (version GCF_000188115.4).
The reference transcriptome was clustered using CD-HIT-EST (version 4.8.1) [81] with the
parameters ‘-c 0.95 -n 10 -d 0 -T 10’ then ONT sequencing data produced from a previously
published library preparation technique [12] were then mapped to the transcript reference
using minimap2 (version 2.18) [82] using the ‘map-ont’ method. A negative binomial
distribution of transcript coverage was estimated using maximum likelihood estimate of
parameters (n = 0.052, p = 0.011) with the SciPy statistical package [83]. To create simulated
libraries, the transcriptome reference sequences were obtained for each host species which
were similarly dereplicated using CD-HIT-EST. Five randomly sampled transcript abun-
dance libraries were created using the negative binomial model, and randomly assigned to
each virus of that host.

Mock sequencing libraries were constructed to mimic the results of the ONT MinION
sequencing platform using BadRead (version 0.2.0) [84] with the ‘nanopore2020′ error and
q-score models. For DNA viruses and host genomes, libraries were simulated using default
parameters. For RNA viruses and transcriptomes, one of the five transcript abundance
libraries were sampled at random and BadReads were run using the parameters ‘–chimeras
0 –length 250,180′. Length parameters correspond to the mean and standard deviation of
sequence lengths in the tomato sample used in mapping above. All libraries were simulated
to produce at least 1 million host reads and 10,000 virus reads. Illumina HiSeq library
simulation was performed using the same reference data as for ONT, using InSilicoSeq
(version 1.5.2) [85] with the default HiSeq error model to produce 100 million paired end
reads per host and 50,000 per virus.

For each virus/host pairing, the ONT library size was set as 400,000 sequence reads,
approximately equivalent to the result of a 24 h ONT Flongle run [12]. For each ONT library
the composition of viral reads was randomly sampled as an absolute value from a normal
distribution with a mean of 0.06 and standard deviation of 1.1. These parameters were
obtained by fitting a distribution to the percentage of viral reads identified in virus-positive

https://www.virtool.ca/
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plant material diagnosed at the Plant Health and Environment Laboratory during 2021
with the method described by Liefting et al. (2021). For HiSeq libraries, a sequencing depth
of 40 million paired-end reads was selected. The same distribution was used to generate
viral abundances, but values were reduced by a factor of 10 to simulate a lower viral titre.
As an additional means of comparison, 18 datasets from the publicly available VIROMOCK
challenge (https://gitlab.com/ilvo/VIROMOCKchallenge, accessed 05/08/2021) were
downloaded and tested to assess the robustness of the workflows.

2.6. Application of a Diagnostic Workflows to Mock Libraries

The top performing classification tools were selected from the results of sensitivity
and specificity testing based upon these two factors, and their average run duration.
This selection of tools comprised BLASTn for nucleotide alignment search, DIAMOND
(BLASTx) for translated nucleotide alignment search, DIAMOND (BLASTp) and usearch
(usearch_global) for protein alignment search, and Kraken2 for k-mer frequency profiling.
None of the virus detection pipelines performed sufficiently well to be considered for
further testing (see Results below). To simulate a complete diagnostic event, a series of
analysis options for each library were arranged to perform the following steps upon the raw
libraries: quality filtering and adapter removal (mandatory), host mapping and removal of
host reads (optional), assembly (Illumina only), and protein coding sequence prediction
prior to classification of reads (Figure 1).
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and screened for the virus of interest. Each traversal from raw sequences to a set of nucleotide and
protein sequences is referred to as an analysis iteration.
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When working with ONT sequence data, quality filtering was performed with NanoFilt
(version 2.6.0) [86] and adapter removal with Porechop (version 0.2.4) [87]. Sequences
were mapped to the host genome using minimap2 (version 2.20) with the ‘map-ont’ or
‘splice’ settings for DNA and RNA libraries, respectively. For predicting protein coding
regions for protein annotation, the tools prodigal (version 2.6.3) [88] and TransDecoder
(https://github.com/TransDecoder, version 5.5.0) were tested. Prodigal was run using
anonymous (metagenomic) mode, to avoid training sample-specific gene models. TransDe-
coder was applied in two ways, using the basic pairing of the TransDecoder.LongOrfs and
TransDecoder.Predict functions (hereafter referred to as TransDecoder Base) and with the
use of homology searches to guide ORF retention between the LongOrfs and Predict func-
tions (TransDecoder Guided). For guided prediction, the initial set of candidate peptides
identified by TransDecoder.LongOrfs were annotated using hmmsearch (v3.3) against the
Pfam (version 32.0) [89] database and DIAMOND BLASTp (v2.0.6) against the SwissProt
(release 2020_06) [90] database prior to prediction.

Quality filtering and adapter removal were performed for simulated HiSeq and VIRO-
MOCK libraries using fastp (version 0.20.0) [91]. Host sequence removal was performed
by mapping reads to the reference genome using bowtie2 (version 2.4.4) for DNA and
HISAT2 (version 2.2.1) for RNA libraries [92,93]. Successfully mapped reads were iden-
tified and removed using samtools (version 1.12). Assembly was performed with three
different assembly tools for each library type, selected for their documented strengths when
assembling metagenomic datasets [94]. DNA libraries were assembled using MegaHIT
(version 1.1.4) [95], and the metaSPAdes and metaviralSPAdes routines from the SPAdes
assembler (version 3.15.0) [96–98]. For RNA libraries MegaHIT, rnaSPAdes [99], and rnavi-
ralSPAdes [100] were applied. Gene prediction was performed using the same tools and
parameters as the ONT libraries.

Each traversal from raw sequence to results (Figure 1) is hereafter referred to as an
analysis iteration. Each analysis iteration was assessed in terms of each tools ability to
recover the exact strain and species of the virus spiked into each library.

3. Results and Discussion
3.1. Creation of Target and Non-Target Datasets for Tool Testing

A total of 26,206 viral genomes were obtained from NCBI, consisting of 9011 from RefSeq
and 17,195 from GenBank. When accounting for entries which were duplicated between
repositories, a final count of 17,876 genomes from 17,231 viral species were obtained, which
included 47 viroid genomes. Host information from NCBI was used to organise the viruses and
viroids into broad host categories; 1992 plant, 2494 vertebrate, 1931 invertebrate, 313 fungus,
72 protozoan viruses, and 47 plant viroids. The remaining genomes were collapsed to the
category of ‘other’ host consisting of viruses infecting algae, diatoms, prokaryotes, and viruses
for which host information could not be established. From these viruses, 27,340 contigs were
extracted and dereplicated into 27,029 unique sequences with seqmagick (https://fhcrc.github.
io/seqmagick/, version 0.7.0). Protein coding sequences were extracted from the GenBank
files to produce an initial dataset of 1,088,425 amino acid sequences which were similarly
dereplicated to 686,559 unique sequences. Nucleotide sequences for the non-target dataset were
extracted and reduced to unique contigs, and non-target protein sequences were dereplicated
by clustering with the MMSeqs2 ‘linclust’ function using thresholds of 80% identity over 90%
alignment coverage for prokaryotic proteins, and 95% identity for all other lineages (Table 1).

Table 1. A summary of the number of genomes, unique nucleotide contigs, and representative protein
coding sequences present in each of the non-target lineages.

Lineage Genomes Unique Contigs Representative Proteins

Fungus 2523 14,840,506 8,485,622
Invertebrate 1137 136,042,698 5,593,319

Plant 769 100,686,597 6,412,958
Protozoa 465 4,690,439 1,701,139

https://github.com/TransDecoder
https://fhcrc.github.io/seqmagick/
https://fhcrc.github.io/seqmagick/
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Table 1. Cont.

Lineage Genomes Unique Contigs Representative Proteins

Vertebrate (mammal) 536 198,838,325 3,611,964
Vertebrate (other) 793 52,609,300 5,459,166

Prokaryote 31,910 3,357,372 63,089,651

3.2. Creation of Custom Sequence Databases

In addition to the genomes obtained when constructing the target dataset, a total of
3,308,823 viral nucleic acid sequences were obtained from the NCBI nt database, along
with 8,160,005 protein sequences from nr. These reference sets of viruses were filtered
and dereplicated into candidate classification databases. The number of lineage clusters
and representative sequences for each database and the working title for each candidate
database can be found in Table 2.

Table 2. Summary statistics for the candidate nucleotide and protein sequence databases constructed
for testing.

Sequence Type Clustering Method Lineage Groups Sequences Database Name

Nucleotide (genome) Unique contigs 17,231 27,029 genome_nt
Nucleotide (nt) Species, 90% 40,114 181,612 nt_derep1

Truncated species, 90% 14,630 157,271 nt_derep2
Truncated species, 97% 14,630 559,726 nt_derep3
Truncated species, 99% 14,630 1,076,325 nt_derep4

Protein (genome) Unique sequences 17,231 686,559 genome_prot
Protein (nr) Species, 90% 38,457 2,924,049 nr_derep1

Truncated species, 90% 14,542 2,198,163 nr_derep2

3.3. Creation and Assessment of Custom Viral HMM Databases

A total of 12 candidate viral HMM databases were created from the target dataset.
Following deduplication and removal of polyprotein sequences, 652,996 sequences remained
for cluster generation. Clustering of these sequences was performed using usearch (50% to 90%
identity thresholds, 10% increments) and mcl (inflation parameter 1.4 and 4.0). Five additional
cluster sets were created by combining these techniques, applying mcl clustering (I = 4.0) to
the proteins which were not clustered in each usearch iteration. Clustering methods yielded
between 130,000 and 550,000 sequence clusters depending on the method used, although once
singleton clusters and clusters with insufficient viral coverage (see Section 2.3) were removed
from the result this number was significantly reduced (Table 3).

Table 3. Number of protein clusters yielded by each method following the removal of duplicate
and polyprotein sequences. The final, filtered count of sequences was obtained by removing protein
clusters whose membership did not sufficiently cover at least one viral subfamily (see methods for
how coverage was assessed). Family and subfamily classifications were exported from the NCBI
taxonomy record for each virus species.

Method Database Name Initial Clusters Non-Singleton
Clusters Filtered Clusters

usearch (50%) usearch_50 253,379 90,165 6612
usearch (60%) usearch_60 283,612 93,286 6802
usearch (70%) usearch_70 315,140 94,825 7310
usearch (80%) usearch_80 350,574 94,751 6514
usearch (90%) usearch_90 400,303 91,950 5918
mcl (I = 1.4) * mcl_1.4 135,206 58,272 397 *
mcl (I = 4.0) mcl_4.0 154,114 77,032 5950

Mixed (usearch 50%) mixed_50 361,297 110,525 8569
Mixed (usearch 60%) mixed_60 396,879 119,293 9468
Mixed (usearch 70%) mixed_70 433,833 126,782 10,283
Mixed (usearch 80%) mixed_80 475,194 133,293 10,519
Mixed (usearch 90%) mixed_90 532,477 139,738 9498

Asterisk (*) denotes where clustering was filtered at the family level rather than subfamily.
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For each cluster which passed coverage filtering, a multiple sequence alignment was
performed using four different tools, with two alignment algorithms applied using MAFFT.
The alignment which introduced the fewest gaps per cluster was selected as the ‘optimal’
alignment and an HMM profile was generated from the alignment using hmmbuild. The
complete set of HMMs for each clustering approach were then pooled and a complete
database produced using the hmmpress. To assess the sensitivity of each method, the
target dataset was classified using each candidate HMM database. As the cluster selection
method deliberately discarded many clusters of viral protein, sensitivity was scored at the
genome level rather than the level of protein. Specifically, we counted the number of viral
genomes from which at least one protein was identified (Table S2).

Raw sensitivity values were highest across mcl and mixed clustering methods but
promising from all approaches. Four candidate databases were selected for further
evaluation—usearch_50, mcl_1.4, mcl_4.0, and mixed_90. Specificity scores were assessed
at the level of protein coverage, rather than genome coverage, and results were lower than
the sensitivity scores across all databases (Table S2). This finding is not surprising, as the
HMM approach is a method aimed at recovering ancestral relationships which can capture
protein motifs and signatures which are distantly related through evolutionary time or may
have been the result of convergent evolution. This functionality is desirable in the context of
our workflow, as we envision HMM searching as a secondary means of analysis to identity
uncharacterised and new-to-science viral proteins rather than a means for obtaining exact
matches to characterised pathogens.

Between the four candidates there was no clearly superior clustering method for
producing the final classification database. Each technique produced variable results
in terms of sensitivity and specificity, but not surprisingly these values were negatively
correlated—clusters which were able to capture a larger variety of viral proteins produced
a greater number of false positive hits amongst non-target proteins. We ultimately favoured
databases with higher sensitivity as results of these searches would always be validated,
whereas poor sensitivity will result in false negative results which are unlikely to be
further investigated. Between the options tested both the mixed_90 and mcl_4.0 databases
demonstrated the highest sensitivity for plant and vertebrate viruses (Table 4). Between
these two options, average sensitivity was equivalent when e-value filtering was applied to
the results and we selected the mcl_4.0 database due to its slightly higher specificity and
drastically shorter run times.

Table 4. Sensitivity, specificity, and average scoring values for the four top performing candidate
databases after e-value filtering (0.001) of hits.

Database Plant
Sensitivity Specificity F1 Score Animal

Sensitivity Specificity F1 Score Average
Sensitivity Specificity

usearch_50 0.9795 0.8895 0.9323 0.9401 0.8869 0.9127 0.9598 0.8882
mcl_1.4 0.949 0.9285 0.9386 0.8464 0.9022 0.8734 0.8977 0.9153
mcl_4.0 0.9822 0.8679 0.9215 0.9905 0.8541 0.9172 0.9864 0.861

mixed_90 0.9824 0.8468 0.9096 0.9903 0.8152 0.8943 0.9864 0.831

3.4. Classification and Database Profiling

Classification of nucleotide sequence data was performed using alignment-based and
k-mer frequency profiling tools, as well as a set of software tools designed specifically
for identifying viral sequences in metagenomic datasets. The sensitivity of each tool was
tested against the target dataset and specificity was assessed using the non-target data
(Figure 2, Table S3). For the alignment-based tools, the BLASTn tool provided the greatest
sensitivity and specificity, returning near-perfect coverage of the test datasets. A strong
result was also observed with the MMSeqs2 easy-search functionality. Classifications with
both usearch and vsearch were unable to complete, as run times when classifying with
these tools were so prohibitively long that it was not deemed feasible to utilise them in
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a practical setting. We speculate that the reason for these poor times is a consequence
of the indexing process performed by these tools, as both were originally developed for
working with amplicon sequencing datasets in which databases are generally smaller and
much more homogeneous. We did observe that usearch performed extremely well when
classifying protein sequence classifications, where a more heterogeneous population of
target sequences would be expected. Classification of plant virus sequences using k-mer
profiling tools was generally successful across all tools tested, with a median sensitivity of
0.9584. However, sensitivity towards vertebrate viruses was notably lower, ranging from
0.753 to 0.866 (Figure 2). Specificity values were more variable, but Kraken2 was a clear
leader with an average specificity score of 0.9996 when using the standard database against
both plant and vertebrate viruses (Figure 2, Table S3).
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Figure 2. Sensitivity for detection of plant- and vertebrate-infecting viruses, and specificity against
plant and vertebrate sequences, using nucleotide classification methods. (Top) BLASTn and MMSeqs2
classifications against each of the in-house nucleotide databases, after filtering for results with at least
70% identity over 50% of the query length and an e-value of less than 0.001. (Bottom) Classification
using k-mer profiling tools after result filtering with the appropriate classification threshold for each
tool. Classification was performed against a single database, except for Kraken2, in which case both
the standard and viral databases were tested.

For the sequence alignment and k-mer tools the time needed to complete analysis
was also considered. Although time is not necessarily the most important factor when
performing an analysis, it is still a consideration due to reporting windows. Run times
were low for most k-mer classification tools, typically requiring less than 1 min to classify
the target dataset (Table S4). Surprisingly, BLASTn proved quicker in performing clas-
sification than MMSeqs2, requiring as little as half the time to classify the target dataset
(Table S4). Both usearch and vsearch performed so poorly under the time metric that they
were discarded from the nucleotide classification section of our analysis as they would not
be feasible in a real diagnostic setting.

In addition to standalone classification tools, a series of software pipelines designed
for the identification of viral sequences from HTS libraries were trialled. Across the board,
these tools performed poorly for sensitivity of plant and animal viruses, with only five
out of 13 tool/database combinations scoring a sensitivity greater than 0.8 for either plant
or vertebrate viruses (Table 5). We believe that this poor sensitivity is a consequence
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of the large number of phage sequences used in their development, either by design or
as a consequence of NCBI database skew. For example, DeepVirFinder achieved high
sensitivity for the ‘other’ group (Table 5) which included prokaryote-infecting viruses
despite performing poorly in other lineages.

Table 5. Detection sensitivity for nucleotide sequences using virus detection pipelines. Note that the
sensitivity of VirTool was assessed using only the sequence mapping portion of the workflow—the
VirTool HMM database was assessed as part of the HMM testing later in this manuscript.

Tool Database Plant Vertebrate Invertebrate Other

DeepVirFinder - 0.6654 0.6039 0.7223 0.9104
FastViromeExplorer eukvir 0.0279 0.0102 0.0064 0.0030

gov 0.0000 0.0000 0.0011 0.0002
imgvr 0.0000 0.0000 0.0000 0.0000
ncbi 0.0401 0.0138 0.0070 0.0115

MiCOP - 0.8875 0.7458 0.8947 0.8073
VirFinder default 0.4442 0.3654 0.4629 0.8437

modEPV 0.9149 0.8083 0.8668 0.8539
ViromeScan - 0.9149 0.8699 0.5994 0.7890

VirSorter db1 0.0098 0.0978 0.0199 0.7397
db2 0.0098 0.0943 0.0199 0.7316

VirSorter2 - 0.8664 0.9411 0.9635 0.9843
VirTool - 0.8855 0.0063 0.0086 0.0093

Protein classification was performed using both alignment-based search tools and
HMM searches using hmmer. Sensitivity of all alignment-based search tools was high,
with over 98% of viral proteins correctly identified as viral across all host types (Figure 3,
Table S3). Translated searches were slightly less sensitive when considering plant viruses
but performed equally well as protein/protein searches for vertebrate viruses.
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Figure 3. Sensitivity for detection of plant- and vertebrate-infecting viruses, and specificity against the
plant and vertebrate sequences, using protein annotation methods. Databases used for classification
are provided under each tool name. (Top) BLASTp, DIAMOND BLASTp, MMSeqs2, and usearch
(ublast and usearch_global methods), after filtering for results with at least 70% identity over 50% of
the query length and an e-value of less than 0.001. (Bottom, left) Nucleotide/protein translated
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searches using DIAMOND BLASTx and MMSeqs2. (Bottom, right) Classification according to HMM
searches against candidate profile databases. For translated searches and HMM profile searches
filtering was performed specifying an e-value of less than 0.001. Arrows denote instances where
classification was successful, but at a rate too low to be visible in the y-axis. Due to impractical
run time requirements, BLASTp and translational MMSeqs2 approaches could not be assessed
for specificity.

Based on these findings we identified a trusted set of tools and databases which
provided the best trade-off between sensitivity, specificity, and computational run time. We
then sought to test these tools against noisier datasets, representative of what would likely
be encountered during real diagnostic settings.

3.5. Recovery of Nucleotide and Gene Sequences from Simulated Libraries

Mock infections were simulated for 24 DNA virus infections (20 vertebrate, 4 plant)
and 141 RNA virus infections (46 vertebrate, 95 plant). The selection of viruses was chosen
to include viruses which are routinely identified in the Ministry for Primary Industries
virology laboratories and emerging viruses which may prove to be of economic importance
in the future. For each infection, sequences representing the outcome of Oxford Nanopore
Technologies MinION and Illumina HiSeq platform were simulated. Mock ONT libraries
were created at a depth of 400,000 sequences, mainly from the host organisms, and HiSeq
libraries contained 40 million sequences, with a viral load approximately 10% that of the
ONT libraries. These values were selected to reflect our current practice of performing
ONT sequencing exclusively on symptomatic plant material, whereas Illumina sequencing
is favoured when virus symptoms are not always apparent.

Each mock library was analysed through a variety of analysis pathways (Figure 1)
which comprised the removal of low-quality sequences, followed by optional removal of
host sequences using a workflow appropriate for the library. For HiSeq libraries, assembly
was performed using MegaHIT and SPAdes [94]. DNA libraries were assembled using
the metaSPAdes and metaviralSPAdes routines, and RNA libraries were assembled using
rnaSPAdes and rnaviralSPAdes. When working with VIROMOCK libraries, the Illumina
workflow was followed without host removal, as not all samples in the dataset contain
host sequence. Assembly was not performed with ONT libraries as, to our knowledge,
there is currently no de novo metatranscriptome assembler available. While we have
successfully assembled cDNA Oxford Nanopore datasets to produce viral genomes [12] the
performance of any given tool is variable when working with such data, and this instability
does not lend itself well to a hands-off approach. As the primary objective of this work is
to identify methods for the identification of viral sequences, not to produce representative
genomes, we opted to skip a general-purpose assembly step for the ONT libraries. For
these samples, fasta sequences were produced directly from the quality-filtered sequences
using seqmagick.

To perform protein sequence analysis, prediction of open reading frames in nucleic acid
sequences and subsequent translation into an amino acid sequence is required. However,
in a diagnostic setting the organism to be detected is not known in advance and therefore a
tailored gene prediction model cannot be applied to the data. While much work has been
done to address this issue in the field of environmental metagenomics and prediction of
coding sequences in prokaryotic lineages, viruses exhibit features not always encountered in
prokaryotes, such as non-canonical start codons, readthrough transcription, leaky-scanning,
and in some cases gene splicing [101–107]. We therefore compared prodigal, a tool designed
for ab initio prediction of coding sequence in metagenomic datasets, with TransDecoder,
designed for prediction of coding sequences with RNA-Seq data (Figure 1).

When assessing the results of the HiSeq libraries, it was quickly apparent that not all
assembly options were equally robust against variations in the input data. The SPAdes
assembler occasionally failed to produce an assembly, but this was particularly noticeable in
the case of the metaviral assembly routine, which did not produce a successful assembly for
DNA viruses when the host sequence was removed prior to assembly (Table 6). Similarly,
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protein coding prediction was not equally robust across all methods as only prodigal was
able to produce protein coding sequence predictions from all input libraries (Table 6). We
observed that prediction of protein coding sequences by TransDecoder suffered when host
sequences were removed from Illumina assemblies. We attribute this observation to the
TransDecoder algorithm attempting to generate a training model from the input data [108],
as it is likely that when there is insufficient sequence data to produce initial models the
subsequent prediction will suffer. In instances where assembly and gene calling were
successful the results were still evaluated, but the less reliable performance of these tools
meant that results were primarily focused on the prodigal predictions.

Table 6. The number of successfully completed assemblies for each assembler and subsequent coding
region predictions with each approach. The number of samples processed were 24 for DNA and 141
for RNA libraries.

Host Library Type Platform Assembler Prodigal TransDecoder TransDecoder
(Guided)

Retained DNA ONT - 24 14 24
HiSeq MegaHIT 24 24 24

SPAdes (meta) 21 21 17
SPAdes (metaviral) 24 24 24

RNA ONT - 141 141 140
HiSeq MegaHIT 141 141 141

SPAdes (rna) 141 141 141
SPAdes (rnaviral) 141 141 141

Removed DNA ONT - 24 24 24
HiSeq MegaHIT 24 14 14

SPAdes (meta) 24 17 17
SPAdes (metaviral) 0 - -

RNA ONT - 141 113 113
HiSeq MegaHIT 141 130 130

SPAdes (rna) 141 140 140
SPAdes (rnaviral) 141 133 133

3.6. Performance of Nucleotide-Based Classification Approaches

Following the analysis of each mock infection through each analysis pathway the
results were screened to determine whether sequences from the library were correctly
identified as belonging to the strain and species of the spiked virus. Classification of
the nucleotide sequences was performed using BLASTn with each database described in
Table 2, Kraken2 with both databases, and DIAMOND BLASTx using the protein databases
tested in Table 2.

Amongst nucleotide classification methods we noted that performance across the
five in-house databases was not equal. For the ONT dataset, the nt_derep4 candidate
database correctly identified all DNA viruses and 138 of 141 RNA viruses at the strain level
but at the species level, the nt_derep1, nt_derep2, and nt_derep3 databases all achieved
100% sensitivity across RNA virus samples. The sensitivity of the ONT method was not
affected by removal of host sequences but amongst the HiSeq libraries performance was
variable and clearly influenced by host removal. Despite its superior performance in terms
of completing assemblies, MegaHIT performed slightly poorer than SPAdes when run in
RNA mode for identifying the exact strain of virus, although for species-level identification
both tools performed equally well. MegaHIT performed marginally better than SPAdes
(metagenomic mode) when assessing DNA samples at the strain level but following the
removal of host sequences this result was reversed and metaSPAdes was able to perform
equally well or better depending on the taxonomic resolution (Figure 4). We therefore
tentatively conclude that for assessing DNA viruses MegaHIT is the superior option, as
is SPAdes in transcriptomic mode for RNA viruses, but the performance of both tools is
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extremely close, and the effect of database and classification tool plays a far greater role in
determining sensitivity.
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analysis options for nucleic acid classification tool. Sequence sensitivity for each tool and database
combination is reported as the proportion of successful identification events across all samples for
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K-mer profiling classification did not perform as well in simulated data as the initial
comparisons against the target dataset would suggest. Across all library combinations,
Kraken2 demonstrated a median sensitivity of 81.7% for strain-level and 89.6% for species-
level detections (Figure 4). These values were comparable to the classification sensitivity
of the BLASTn genome_nt database (81.2% and 91.0%, respectively) but inferior to results
obtained by the more comprehensive versions derived from the NCBI nt database. This
lower sensitivity may be a consequence of the Kraken2 and genome_nt databases only
including representative genome sequences, as new and emerging sequences are typically
first detected as amplicons and partial sequences.

Translated protein queries, performed via the DIAMOND BLASTx method, demon-
strated variable performance for DNA virus samples when compared with direct nucleotide
classification. Again, regardless of host sequence retention MegaHIT yielded slightly higher
sensitivity than metaSPAdes assemblies, but differences were overall minor and more fre-
quent in strain than species matching. For assessing RNA viruses, we first discounted
two samples which were spiked with the viroids Peach latent mosaic viroid (PLMVd)
and Hop stunt viroid (HSVd) as these entities do not encode protein sequences and there-
fore could not be detected with protein matching searches. The median sensitivity for
nucleic acid databases ranged from 81.6% to 98.9% for strain matches and 91.0% to 99.6%
for species-level matches (Figure 4). By comparison, after accounting for the viroid sam-
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ples, strain-level sensitivity for BLASTx searches was 81.4% for the genome_prot database
and 90.9% for nr_derep1 and nr_derep2 for strain matches, and 90.9%, 99.6%, and 98.9%
for species matching (Figure 4). We attribute the finding of equivalent species sensitiv-
ity but inferior strain sensitivity to the wider range of target sequences reported by the
BLASTx search, which likely fulfilled the maximum target sequence requirement of the
BLASTx search before the correct strain targets could be encountered.

3.7. Performance of Protein–Protein Classification Approaches

Instead of BLASTx searching, an alternative method for acquiring rigorous protein
annotations is to perform the translation step independently of the classification process
to make more explicit use of the known features of protein-coding regions to refine the
query sequences. Initial comparison between prodigal and TransDecoder revealed that a
more stable gene prediction outcome across samples was produced by prodigal (Table 6).
Protein classification was performed for each set of predicted proteins using usearch and
DIAMOND BLASTp against the protein databases (Table 2), and HMM searching was
performed against the mcl_4.0 database.

At the species level, protein predictions from DNA and RNA viruses (excluding
viroids) were sufficient to produce 100% sensitivity under most assembly and host removal
conditions (Figure 5). We observed slightly greater sensitivity when using DIAMOND
compared with usearch for DNA virus classification, but results were identical for RNA
viruses. Sensitivities were poorer when examining the predictions made by TransDecoder
even when accounting for the number of samples from which protein-coding sequences
were successfully produced (Tables S5 and S6).
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and database combination is reported as the proportion of successful identification events across all
samples for the given sequencing platform, as assessed at strain- or species-level resolution.



Viruses 2022, 14, 2163 17 of 23

HMM searches against the mcl_4.0 database yielded strong detection sensitivity, espe-
cially when considering that the protein models were produced from only the genome_prot
sequences and lacks most of the sequences in the nr_derep1 and nr_derep2 databases
(Table 2). The mcl_4.0 database outperformed all other protein databases at the strain level
(Figure 5) and performed markedly better than the genome_prot database, from which
it was generated, at the species level (median sensitivity 98.2% versus ~90.5%). At the
resolution of species, the nr_derep1 and nr_derep2 databases both outperformed mcl_4.0
by a small margin, with a sensitivity of 99.3%. However, it is worth noting that the mcl_4.0
database alone cannot predict the species of the proteins detected by the models and a
secondary BLASTp was required to assign taxonomy to the proteins identified by the HMM
approach. Due to the need for this secondary step, we do not believe that the HMM ap-
proach would be ideal for routine diagnostic cases, but it’s superior ability to capture viral
protein sequences which are not already present in the database, as shown by the improved
sensitivity when compared with the genome_prot database (Figure 5), demonstrates the
utility of this approach for detection of novel viral sequences.

3.8. Performance of Analysis Workflows against VIROMOCK Data

To further validate our results, we obtained 18 datasets from the VIROMOCK chal-
lenge (https://gitlab.com/ilvo/VIROMOCKchallenge, accessed 05/08/2021). These data
comprise a mixture of real, synthetic, and artificially spiked sequence libraries to provide an
independent test panel for the development of bioinformatic pipelines for virus detection.
All datasets were downloaded, quality-filtered, and assembled using MegaHIT, SPAdes,
and the appropriate viral SPAdes workflow for the viruses in the dataset. This yielded three
assemblies for each dataset, except for dataset 4 which contains a mixture of DNA and RNA
viruses, so was assembled using MegaHIT, metaSPAdes, rnaSPAdes, and rnaviralSPAdes.
Each set of assembled contigs were then classified using all nucleic acid methods, and
coding sequence predictions were made with prodigal for protein annotation. Detection of
the expected viruses was achieved in most cases for at least one assembly option (Table S7)
although as with the simulated libraries, there was no clearly superior assembly tool, with
both MegaHIT and rnaSPAdes achieving greater sensitivity in different datasets.

With the previously noted exception of the protein annotation methods being unable
to detect viroid sequences, there were only two instances where a detection could not
be made. In the case of dataset 1, we were unable to identify Apple hammerhead viroid
(AHVd) sequences in any assembly with any classification tool (Table S7). However, we
note that the documentation for this dataset contains a disclaimer that the presence of
this viroid could not be validated by qPCR and therefore may be the result of contam-
ination. Investigation of the unassembled reads revealed just a single read pair which
could be classified as AHVd. Due to this finding, and the fact that this dataset is from
Citrus × sinensis and AHVd has an extremely limited host range [109,110], we deem this
unlikely to be a true instance of the viroid. For dataset 9 we were unable to produce a
strain-level match for the Pistacia emaravirus B, but we did identify sequences classifying
to the genus Emaravirus within our assemblies. Under standard diagnostic settings such a
finding would prompt further investigation, so we considered this a successful detection
event although it did not meet the exact requirement of the challenge.

3.9. Challenges in Creating a Stand-Alone Analysis Pipeline

Despite its clear value in the field of biosecurity, there are still no internationally
standardised pipelines for the detection of viruses using high-throughput sequencing. This
challenge stems primarily from the difficulty in determining a ‘best’ tool for each stage of
analysis. Variation is one of the foundational concepts of biology and a consequence of
genetic variation within and between species means that there is typically no single best
tool for a job, but a set of tools which outperform each other under different conditions. We
therefore considered not only the ability of our selected tools to achieve accurate results, but
also how robust they were to different starting libraries to ensure that our final workflow

https://gitlab.com/ilvo/VIROMOCKchallenge
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could be universally applied to diagnostic samples without the need to customise analysis
parameters or repeat analysis steps due to computational crashes.

There is also a need to validate HTS-based detections, as false-positive results are
possible when such large numbers of sequence data are surveyed, particularly when using
reduced-representation classification approaches. Within our workflow there was no need
for performing downstream validation as the viral species within each sample was known
in advance. In application, however, some form of verification would be required following
from the initial detection, either purely bioinformatic (i.e., recovering a complete genome)
or using traditional diagnostic assays to provide an independent observation of the virus
in question.

4. Conclusions

We assessed a total of 60 tool and database combinations, either sourced from the
published literature or developed in house, for their efficacy as methods for the detection
of plant and animal viruses. Despite the development of a plethora of tools for the express
purpose of recovering viral sequences from metagenomic and RNAseq datasets we found
that more generic alignment and k-mer based classification approaches provided superior
sensitivity. We attempted to improve upon the speed required for classification with
these tools by creating more streamlined virus databases for classification. To benchmark
the performance of candidate databases and classification approaches we tested nearly
350 mock datasets using a combination of assembly, gene prediction, and classification
approaches to establish an end-to-end analysis workflow which is rapid to run and robust
across library preparations. Our work provides a strong foundation for the creation of
an automated analysis pipeline and will be of value as HTS-based diagnostics become
increasingly common in the biosecurity field.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14102163/s1, Table S1: Host genome identity and virus sequence(s)
used to construct simulated mock libraries for Oxford Nanopore Technology and Illumina HiSeq
sequencing. Table S2: Sensitivity values for each candidate database, as determined by their coverage
of the target dataset genomes. Table S3: Sensitivity scores for viruses infecting plant, vertebrate,
invertebrate, and other (protozoa, fungi, prokaryote) organisms, and specificity scores for plant-
and vertebrate-infecting viruses. Table S4: Time required to complete classification of the target
(viral) dataset for each tool using 10 threads for analysis. Table S5: Successful identifications of
spiked viral species in mock libraries when TransDecoder is used to perform protein prediction.
Table S6: Successful identifications of spiked viral species in mock libraries when TransDecoder
was used to perform protein prediction with Pfam and UniProt annotation of long ORFs was used
to guide the prediction process. Table S7: Detection results for each dataset in the VIROMOCK
Challenge repository.
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