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ABSTRACT False-susceptible phenotypic drug-susceptibility testing (DST) results for
pyrazinamide due to mutations with MICs close to the critical concentration (CC)
confound the classification of pncA resistance mutations, leading to an underesti-
mate of the specificity of genotypic DST. This could be minimized by basing treat-
ment decisions on well-understood mutations and by adopting an area of technical
uncertainty for phenotypic DST rather than only testing the CC, as is current practice
for the Mycobacterium tuberculosis complex.
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Pyrazinamide (PZA) is critical for the treatment of tuberculosis (TB) (1). Because the
Bactec MGIT system has a higher random rate of false resistance to PZA than to

other drugs, phenotypic drug-susceptibility testing (pDST) is not carried out at all in
many countries with a high incidence of TB (2, 3). Instead, WHO has concluded that
pncA sequencing may be the most reliable method for ruling in PZA resistance (2).
Because several targeted next-generation sequencing assays are being developed for
direct testing of clinical samples and may be used as reflex tests for resistant cases
diagnosed with point-of-care assays, pncA sequencing may soon become routine even
in high-incidence settings (4, 5). In this scenario, the question becomes how to interpret
these sequencing results and whether pDST is still needed. This is particularly chal-
lenging given that pncA is a nonessential gene, and there is no strong selection for
particular resistance mutations, which means that a large spectrum of resistance
variants is possible (e.g., 3,740 single nonsynonymous changes [6]).

We propose five groups of pncA mutations to inform the use of PZA and the role of
additional pDST (Table 1). Group A comprises variants for which sufficient evidence
exists to confidently classify them as associated with resistance and assumed to be
causative of resistance. Group E encompasses mutations that are confidently not
associated with resistance (i.e., neutral) (7). Routine pDST would not be needed to refine
the classification of mutations in these groups. Mutations in groups B and D are likely
only associated with resistance and likely neutral, respectively (i.e., additional evidence
is needed before they can be moved to group A or E). Finally, group C is reserved for
variants for which insufficient evidence exists.

In 2017, we published a systematic review that introduced a statistical approach
using so-called interpretative best-confidence values (iBCVs) that relied on likelihood
ratios to classify mutations based on categorical pDST data at the critical concentration
(CC) or results of the Wayne assay (6). We set out to explore the limitations of our
original approach in light of the most important studies in this area. In particular, we
aimed to increase the limited sensitivity by including types of data that were beyond
the scope of the original review (e.g., results from engineered strains, quantitative pDST
results, and interpretative approaches based on alternative statistical methods) and six
expert rules (see Supplementary methods in the supplemental material) (3, 8–14).
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Using this approach, the sensitivity of just 52% (95% confidence interval [CI], 50% to
54%) for group A and B mutations from the initial classification increased to 77% (95%
CI, 76% to 79%) for the final classification (Table 1). This came at an apparent decrease
in specificity from 97% (95% CI, 96% to 98%) to 91% (95% CI, 90% to 92%). However,
we believe that the latter figure is an underestimate of the true specificity.

First and foremost, 50% (95% CI, 44% to 56%) of the 257 phenotypically susceptible
strains with group A or B mutations harbored 1 of 18 mutations with MICs that were
likely close to the CC given that they displayed poor reproducibility for pDST (i.e., cutoff
errors). Notably, 55% (95% CI, 46% to 64%) of the 128 strains had 1 of 2 mutations that
were not associated with resistance based on their iBCV (i.e., group E mutations in the
initial classification [see Supplementary methods]). Among them was pncA T47A, which
is known to have arisen subsequent to the acquisition of isoniazid and rifampin
resistance in the progenitor of the Beijing-W clone responsible for a multidrug-resistant
(MDR) TB outbreak in New York in the 1990s (15). A total of 82 results were available
for this mutation, which was resistant in only 30% (95% CI, 21% to 42%) of cases. This
suggested that the mode of the MIC distribution for this mutation is likely identical to
or slightly below the CC, which is in line with the experimentally determined MICs (3,
8, 16). I31T, the second group E mutation in the initial classification, was resistant in
38% (95% CI, 18% to 62%) of cases. In accordance with the fourth expert rule that even
modest MIC should be considered clinically relevant, it was not only logical to upgrade
these 18 mutations to group A or B but also to consider all 128 pDST results to be false
susceptible. This increased the specificity to 95% (95% CI, 94% to 96%) (Table 1).

In fact, it is plausible that most if not all group A and B mutations are true markers
of resistance given that 14% (95% CI, 8% to 21%) of the 129 remaining strains tested
phenotypically susceptible despite having a loss-of-function (LoF) mutation, contrary to
the second expert rule. Assuming that these are false-susceptible results, as opposed to
sequencing errors (i.e., using a composite reference of pDST and all group A and B
mutations), this would increase the specificity to 100% with an associated sensitivity of
79% (95% CI, 78% to 81%) (Table 1).

Because of the possibility of cutoff errors (i.e., that mutations are misclassified as
neutral if only few pDST results are available), only 11 mutations met the criteria for
group D or E. It is, therefore, possible that some of the group C mutations are neutral.
Nevertheless, including all 122 group C mutations would increase the sensitivity to 85%
(95% CI, 84% to 86%) while reducing the specificity only marginally to 98% (95% CI,
97% to 99%) (Table 1). This supports earlier findings that the vast majority of nonsyn-
onymous mutations in pncA cause resistance (1, 17).

In summary, false resistance, alternative resistance mechanisms, and low-frequency
pncA mutations that are missed by standard Sanger sequencing have all been recog-
nized as challenges for DST for PZA (17, 18). In contrast, false-susceptible results due to
cutoff errors are understood less well. This is likely because laboratories in low-
incidence settings that routinely conduct pDST for PZA usually do not encounter the
same mutation sufficiently often to notice this phenomenon (the Beijing-W outbreak in
New York is a notable exception). To minimize this risk, we propose two measures that
would have to be tested in larger retrospective and prospective studies.

First, any new mutation within 40 bp upstream of pncA or nonsilent coding mutation
that does not already meet the criteria for one of the remaining groups (e.g., LoF mutations)
could be classified as a group C mutation and assumed to confer PZA resistance until
disproven (i.e., PZA could either be avoided or used but not counted as effective). In effect,
this would be similar to the recommendation by WHO to infer resistance to other drugs
using targeted genotypic DST (gDST) assays when they do not detect a specific resistance
mutation (e.g., when a wild-type probe for line probe assays [LPAs] does not bind [19, 20]).
As is the case with resistance-inferred results with LPAs, this policy for pncA will result in
poor positive predictive values (PPVs) in settings where strains with a neutral nonsilent
mutation are frequent. This could be minimized by monitoring the frequencies of muta-
tions and prioritizing pDST for dominant mutations when resources are limited (Table 1).

As a second measure, we propose that a CC of 100 �g/ml could be adopted as an
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area of technical uncertainty (ATU), as defined by the European Committee on Anti-
microbial Susceptibility Testing (EUCAST), by testing 50 �g/ml in addition to 100 �g/ml
(2, 21, 22). MICs of �50 �g/ml may be interpreted as susceptible, 100 �g/ml as
uncertain, and �100 �g/ml as resistant, depending on the pncA mutation (Table 1).

We note, however, that these proposals rest on two assumptions. First, it is not clear
whether the current CC of 100 �g/ml actually corresponds to the epidemiological
cutoff value (ECOFF) (8). Rather than addressing this question using the current MGIT
protocol, we recommend that, pending further head-to-head comparisons, one of the
protocols that have been shown to reduce the random false resistance rate be adopted
as the standard protocol for MGIT testing for PZA, which would be used to rigorously
define the ECOFF (3, 23–25). Indeed, it is possible that an optimized MGIT protocol may
reduce the degree of overlap between MIC distributions and, therefore, the need for an
ATU, as recently proposed for rifampin (26). Second, the current CC is used as a clinical
breakpoint, as defined by EUCAST, even though pharmacokinetic/pharmacodynamic
and clinical data have not been systematically assessed (e.g., it is possible that the
current dose of PZA is not optimal even for strains that do not have elevated MICs or
that a higher dose may compensate for modest MIC increases) (27, 28).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.7 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.3 MB.
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