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Abstract

Background: Clustering plays a crucial role in several application domains, such as
bioinformatics. In bioinformatics, clustering has been extensively used as an approach
for detecting interesting patterns in genetic data. One application is population structure
analysis, which aims to group individuals into subpopulations based on shared genetic
variations, such as single nucleotide polymorphisms. Advances in DNA sequencing
technology have facilitated the obtainment of genetic datasets with exceptional
sizes. Genetic data usually contain hundreds of thousands of genetic markers genotyped
for thousands of individuals, making an efficient means for handling such data desirable.

Results: Random Forests (RFs) has emerged as an efficient algorithm capable of handling
high-dimensional data. RFs provides a proximity measure that can capture different levels
of co-occurring relationships between variables. RFs has been widely considered a
supervised learning method, although it can be converted into an unsupervised
learning method. Therefore, RF-derived proximity measure combined with a clustering
technique may be well suited for determining the underlying structure of unlabeled
data. This paper proposes, RFcluE, a cluster ensemble approach for determining the
underlying structure of genetic data based on RFs. The approach comprises a
cluster ensemble framework to combine multiple runs of RF clustering. Experiments
were conducted on high-dimensional, real genetic dataset to evaluate the
proposed approach. The experiments included an examination of the impact of
parameter changes, comparing RFcluE performance against other clustering
methods, and an assessment of the relationship between the diversity and quality
of the ensemble and its effect on RFcluE performance.

Conclusions: This paper proposes, RFcluE, a cluster ensemble approach based on RF
clustering to address the problem of population structure analysis and demonstrate the
effectiveness of the approach. The paper also illustrates that applying a cluster ensemble
approach, combining multiple RF clusterings, produces more robust and higher-quality
results as a consequence of feeding the ensemble with diverse views of high-dimensional
genetic data obtained through bagging and random subspace, the two key
features of the RF algorithm.

Keywords: Cluster ensemble, Random Forests, Genetic population, Population structure
analysis, Random Forest proximity, High-dimensional data, Ensemble diversity,
Single nucleotide polymorphism, Normalized mutual information
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Background
Clustering is an unsupervised learning technique aimed at uncovering the underlying natural

structure of data. In data analysis, clustering is the process of partitioning objects into groups

based on their similarities, where objects in the same group are more similar to one another

than to objects in different groups. Clustering plays an essential role in several application

domains, such as text mining, image segmentation, and bioinformatics. In bioinformatics,

clustering has been extensively used as an approach for detecting interesting patterns in gen-

etic data. Such an approach is formally used to find the underlying population substructure

from genetic data without considering prior information. The analysis of population structures

is a crucial prerequisite for any further analysis of genetic data, such as genome-wide associ-

ation mapping [1] for reducing false positive rates, and forensics [2] for developing reference

panels to provide information on an individual’s ancestry. This kind of analysis aims to group

individuals into subpopulations based on shared genetic variations. Single nucleotide polymor-

phisms (SNPs) are the most common type of genetic variation used to infer population struc-

ture. SNPs occur when a single nucleotide from a DNA sequence differs at the same position

between individuals. An SNP has three categories: homozygous with the common allele

(genotype AA), heterozygous (genotype AB), and homozygous with the rare allele (genotype

BB). Advances in DNA sequencing technology have facilitated the attainment of genetic data-

sets with exceptional sizes. Genetic data usually contain hundreds of thousands of genetic

markers genotyped for thousands of individuals. Thus, an efficient means for handling such

high-dimensional data is desirable.

Two major clustering approaches have been developed to infer the structure of

populations from genetic data: distance-based and dimension reduction-based ap-

proaches. AWclust [3] is a distance-based approach that consists of constructing

an allele-sharing distance (ASD) matrix between all pairs of individuals in the gen-

etic data. It then applies hierarchical clustering to infer clusters of individuals from

the ASD matrix using Ward’s algorithm. PCAclust [4] is a dimension reduction-

based clustering approach that involves applying principal component analysis

(PCA) to reduce the dimensions of the genetic data. It then applies a model-based

clustering algorithm (i.e., a Gaussian mixture model clustering) to the set of rele-

vant principal components.

Inferring population structures from genetic data can be defined as a problem of

determining how to assign N individuals using l genetic markers to K subpopula-

tions. This paper proposes a new approach for inferring population structures from

genetic data. The proposed approach is based on Random Forests (RFs). Our mo-

tivation for using RFs is twofold: First, its capability of handling high-dimensional

data of thousands of individuals and hundreds of thousands of markers, which

makes it a suitable solution for the problem of population structure analysis. Sec-

ond, RFs provides a natural method for measuring proximities between individuals;

this measure weighs the co-occurrence between markers such that the more corre-

lated a marker is with other markers, the more it will affect the proximity between

individuals. Therefore, it can handle the linkage nature among genetic markers. In

genetics, linkage refers to a correlation between types of an allele that appear at

different loci, especially when a genome is densely genotyped due to linkage dis-

equilibrium (LD) [5]. LD refers to the non-random association of particular alleles,

which plays a major role in discovering population structures from genetic data.
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RF clustering, in which RF-derived proximity is combined with a clustering tech-

nique, is well suited for discovering the underlying structure of unlabeled data [6,

7]. However, the main concern underlying the RF algorithm is that, for each run, a

different proximity matrix is generated due to its random nature, therefore produ-

cing a different clustering result each time. Thus, this paper proposes a Random

Forest cluster Ensemble (RFcluE) approach to discover the underlying structure of

genetic data. Within this approach, a cluster ensemble framework is utilized to

combine the results of multiple runs of RF clustering toward obtaining a more reli-

able and robust clustering result than a single run of RF clustering.

Methods
Random Forests

Random Forests (RFs) has emerged as an efficient algorithm capable of handling high-

dimensional data [8]. RFs was formally developed by Leo Breiman [8] as a classification

and regression ensemble learning method. This method is based on a combination of

bagging [9] and random subspace [10]. Bagging is the process of aggregating the results

of multiple trees, where each tree is grown on a bootstrap sample of the objects. A

bootstrap sample of a specified size is drawn with replacement from the original data.

Random subspace refers to the selection of a random subset of variables as candidates

for splitting at each node. Rather than considering all variables as candidates for split-

ting, RFs considers only a subset of variables, thus reducing the correlation between

trees.

In the context of population structure analysis, individuals are the objects, while SNP

markers are the variables. Thus, in RFs, a forest is constructed by building multiple de-

cision trees. To build a tree, the algorithm first creates a root node containing a boot-

strap sample of the individuals. Then, at each node, the algorithm selects a random

subset of the markers to search over, and subsequently determines the best split

markers based on a splitting criterion. A splitting criterion usually maximizes some

measure of node purity, which means the degree to which individuals of a node belong

to one class. In RFs, the Gini index [11] is used as a splitting criterion to select the best

split at each node. The Gini index measures how well a potential split of a node is in

separating the individuals into two known classes. Consequently, the Gini index at

node n is defined as:

Gini nð Þ ¼
XC
c¼1

p̂n
c 1 − p̂n

c

� � ð1Þ

where p̂n
c ¼ nc

n is the proportion of individuals that are of class c at node n. The Gini

index is minimized when all individuals in the node are of the same class, increasing as

the individuals in the node are spread more evenly among different classes. The gain

for splitting node n based on marker xi, Gain (xi, n), is defined as the difference be-

tween the impurity at node n and the weighted average of impurities at each child node

of n. That is,

Gain xi; nð Þ ¼ Gini xi; nð Þ−wLGini xi; n
L

� �
−wRGini xi; n

R
� � ð2Þ

where nL and nR are the left and right child nodes of the parent node n, respectively, and wL
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and wR are the proportions of individuals assigned to the left and right child nodes. Based on

the gain value, the marker xi with the lowest impurity is selected to split individuals at node n.

This process of splitting is repeated until an unpruned tree is formed. The generated

forest contains a significant amount of information about the relationship between the

markers and the individuals that can be used for prediction, variable importance, prox-

imity calculation, missing data imputation, and outlier detection. RF-derived proximity,

a byproduct of a random forest, is defined based on similar individuals ending up in

the same leaf node more often than dissimilar individuals. This proximity can capture

different levels of co-occurring relationships between markers.

RFs is widely considered a supervised learning method, although it can be adapted as

an unsupervised learning method to derive proximity matrix from unlabeled data [6].

Recently, unsupervised RFs has been successfully applied in a wide variety of domains,

including bioinformatics [6, 12], image and document analysis [13–15], networking

[16], cloud computing [17, 18], manufacturing [19], remote sensing [20], and chemo-

metrics [21].

To use RFs for unsupervised learning, the RF algorithm must first randomly generate

synthetic data based on the original dataset, in which a random forest is built to distin-

guish the original data from the synthetic data. One approach for generating the syn-

thetic data is to randomly draw synthetic individuals from marginal distributions of

each observed marker in the original data [4]. Hence, the synthetic class has a distribu-

tion of independent random markers, where each marker follows the same distribution

as the corresponding marker in the original data.

Cluster ensemble

A cluster ensemble is an effective approach for combining different clusterings of the

same dataset into a more robust and higher-quality clustering than any individual clus-

tering. A cluster ensemble typically consists of two components: an ensemble con-

structor and a consensus function. An ensemble constructor generates a set of different

partitions of the dataset, which is referred to as “base clusterings” or “ensemble mem-

bers.” On the other hand, a consensus function combines the base clusterings of the

ensemble and produces a single clustering as the ultimate output of the cluster

ensemble.

Regarding the ensemble constructor, several methods have been proposed to obtain

ensemble members, including applying different clustering algorithms [22, 23], applying

the same clustering algorithm with random parameter initializations [24–26], project-

ing data onto different subspaces [26–28], and data subsampling [25, 29, 30].

The consensus function is critical in the cluster ensemble for performing the combin-

ation task. Different approaches have been proposed, including feature-based, graph-

based, and pairwise-based approaches. The feature-based approach deals with the prob-

lem of cluster ensemble as the clustering of categorical data [31, 32]. Specifically, each

ensemble member provides a cluster label as a new feature describing each object.

Thus, any categorical clustering can be exploited to find the consensus clustering. The

graph-based approach represents the cluster ensemble as a graph, which is then divided

into a number of clusters using graph partition technique [26, 28]. Lastly, the pairwise-

based approach represents the information from multiple base clusterings as a co-

association matrix that contains co-occurrence relationships between all pairs of
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objects, which can be used as an input to any similarity-based clustering to derive the

final partition [23, 25, 27, 33, 34].

Cluster ensemble based on Random Forests

The proposed approach, the Random Forest cluster Ensemble (RFcluE), is based on the

concept of a cluster ensemble, where RF clustering is used as a base clustering method.

The general framework for the RFcluE approach is shown in Fig. 1. The RFcluE ap-

proach has two stages: The first stage is ensemble construction, followed by the con-

sensus function stage. The first stage takes a genetic dataset as an input and then

outputs a set of partitions. The second stage takes the set of partitions as an input and

produces a final clustering result as an output.

Let G = {g1, g2,…, gN} represent a set of N individuals, where gi is a genotype pro-

file of individual i that consists of l genetic markers. A cluster ensemble first con-

structs a set of partitions (i.e., ensemble members), P = {P1, P2,…, PM}, by applying

the base clustering method M times. Each run of the base clustering method

returns a set of clusters, Pi ¼ C1
i ;C

2
i ;…:;Cki

i

n o
; such that ⋃kij¼1C

j
i ¼ G , where ki is

the number of clusters in the ith clustering and Cj
i is the jth cluster of the ith parti-

tion, for i = 1, 2, …, M. Then, the consensus function is applied to the set of gen-

erated partitions, P, in order to find a new partition, P∗, that better represents the

properties of each partition in P of the cluster ensemble.

Ensemble construction

The ensemble construction based on RFs is used to create the base clusterings. Cluster-

ing using RFs is generally composed of three steps:

(i) Constructing a forest in an unsupervised fashion.

(ii)Parsing the constructed forest to compute the proximities between individuals.

(iii)Applying a clustering technique on the resulting proximity matrix.

Fig. 1 Random Forest cluster Ensemble (RFcluE) approach
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The input of the ensemble constructor is a genetic dataset, G ЄRN × l, where N is the

number of individuals and l is the number of genetic markers; and four parameters,

specifically the number of trees (ntrees), the tree size controlled by specifying the max-

imum number of leaf nodes (MN), the number of clusters in each partition (k), and the

ensemble size (M).

Since the base clustering method of the ensemble is RF clustering, the ensemble

constructor first computes the RF-derived proximity matrix. The algorithm that

builds a random forest, RF, of size ntrees trees, where each tree has a maximum

of MN leaf nodes in the unsupervised mode, is described in Algorithm 1. Based

on the constructed forest, the RF-derived proximity matrix, which denotes the

similarity between each pair of individuals of size N ×N, is calculated. Then, the

proximity matrix S is converted to a dissimilarity matrix, D, by using D ¼ ffiffiffiffiffiffiffiffiffiffiffi
1−sð Þp

.

Lastly, the method applies K-means on this dissimilarity, after transforming it to

Euclidean space using multidimensional scaling (MDS) [35], to partition the indi-

viduals into k clusters. The MDS technique used is classical scaling, where a N ×

N distance matrix is converted into a N × p configuration matrix. The configur-

ation matrix contains the coordinates of N individuals in p-dimensional space,

where p <N; p is determined such that the dimension of the smallest space in

which N individuals can be embedded, given D that contains the inter-distances

between individuals.

The output of the base clustering, RF clustering, is a single partition of the data. To

construct a cluster ensemble of size M partitions, the base clustering method is re-

peated M times and, for each run, a different partition of data is generated such that

the cluster ensemble is P = {P1, P2,…, PM}. The pseudo-code of the ensemble construc-

tion of RFcluE is outlined in Algorithm 2.
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Consensus function

Given a cluster ensemble P, P contains a set of M partitions,P = {P1, P2,…, PM}, produced

by the ensemble construction. Each partition Pi returns a set of clusters such that Pi

¼ C1
i ;C

2
i ;…:;Cki

i

n o
, where ki is the number of clusters in Pi. Each partition Pi contains

the cluster labels of N individuals, such that c(n) denotes the cluster label to which the in-

dividual n belongs. The goal of the consensus function is to find a new partition, P∗,that

combines the information from the cluster ensemble P. The pseudo-code of the consen-

sus function of RFcluE is outlined in Algorithm 3. It works as follows. First, the consensus

function calculates the co-association matrix (CO). CO summarizes the information in

the ensemble P as the N × N matrix. This matrix denotes the similarity between any pair

of N individuals as a proportion of M partitions in the ensemble P, in which they are

assigned to the same cluster. Then, the consensus function applies agglomerative hier-

archical clustering based on Ward’s minimum variance algorithm [36, 37] on the CO

matrix to obtain the final partition, P∗. Ward’s algorithm is utilized because the inference

of population structure needs an algorithm that minimizes the increase of within-cluster

variance each time an individual is added to a cluster.

Datasets

The performance of the RFcluE approach was empirically evaluated on three

well-known real datasets, namely a human genotype dataset from the Pan-Asian

database [38], worldwide human genotype data from the HapMap project [39],

and the worldwide human SNP dataset provided by Prof. Mark D. Shriver and

described in [40, 41]. The population (i.e., truth label) that an individual belongs

to is known for all individuals in all datasets. Table 1 describes the used datasets

in terms of the number of individuals, the number of SNPs, and the number of

populations.
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Evaluation metrics

Many experiments were conducted to investigate the performance of the RFcluE ap-

proach. The performance evaluation comprised an assessment of the quality of the final

clustering result of the approach. Besides, an assessment of the quality and diversity of

the base clusterings, which are generated by the ensemble constructor, was conducted

in order to study their impact on performance. Both quality and diversity were evalu-

ated based on normalized mutual information (NMI).

NMI is a measure of agreement between two partitions based on information theory

[28]. It treats the two partitions as nominal random variables. The NMI score between

two partitions, A and B, is computed as:

NMI A;Bð Þ ¼ MI A;Bð Þ
H Að Þ þH Bð Þð Þ=2 ð3Þ

MI(A, B) is the mutual information between two partitions, A and B, calculated as

follows:

MI A;Bð Þ ¼
XkA
i¼1

XkB
j¼1

Nij

N
log

Nij N

Ni: N:j

� �
ð4Þ

H(A) and H(B) are the entropy of partition A and partition B, respectively, and are

calculated as:

H Að Þ ¼ −
XkA
i¼1

Ni:

N
log

Ni:

N

� �
ð5Þ

Table 1 The description of real genetic datasets

Dataset Number of Individuals Number of SNPs Number of Populations

HapMap 762 46,256 11

Pan-Asian 443 54,794 10

Shriver’s 274 10,805 12
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H Bð Þ ¼ −
XkB
j¼1

N:j

N
log

N:j

N

� �
ð6Þ

where kA is the number of clusters in partition A, kB is the number of clusters in parti-

tion B, Ni is the number of individuals in cluster i (Ci) of partition A, Nj is the number

of individuals in cluster j (Cj) of partition B, and Nij is the number of shared individuals

between cluster i of partition A and cluster j of partition B (Ci ∈ A and Cj ∈ B).
Therefore, the NMI score becomes:

NMI A;Bð Þ ¼
−2

PkA
i¼1

PkB
j¼1Nij log

Nij N
Ni: N:j

� �
PkA

i¼1Ni: log
Ni:
N

� �þPkB
j¼1N:j log

N:j

N

� � ð7Þ

Note that 0 ≤NMI (A, B) ≤ 1 , so it takes its maximum value if partitions A and B are

identical, and its minimum value if partitions A and B are independent.

Let P represent a cluster ensemble that contains a set of generated M base parti-

tions P = {P1, P2,…, PM}, P
∗ is the final clustering result of the cluster ensemble ap-

proach, and L is the truth population labels of individuals.

Based on NMI, the quality of the final clustering result P∗ of an ensemble P is calcu-

lated as follows:

Q P�ð Þ ¼ NMI P�; Lð Þ ð8Þ

The diversity between two partitions, Pi, Pj,is denoted as (1 −NMI(Pi, Pj ) ). There-

fore, the diversity of an ensemble P is the average of all pairwise diversities among all

pairs of partitions—Pi, Pj ∈ P—and can be calculated as follows:

DS Pð Þ ¼ 2
M M−1ð Þ

XM−1

i¼1

XM
j¼iþ1

1−NMI Pi; Pj
� �� � ð9Þ

where the higher the DS(P) value, the more diverse the ensemble.

The quality of cluster ensemble P is the average quality of all partitions, Pi ∈ P, and
can be calculated as follows:

Q Pð Þ ¼ 1
M

XM
i¼1

NMI Pi; Lð Þ ð10Þ

In the comparison study, the adjusted Rand index (ARI) and accuracy (AC) were

used, in addition to NMI.

The ARI [42] is a variation of the Rand index [43] that measures how often similar

individuals are assigned to the same cluster and dissimilar individuals to different clus-

ters. Given two partitions, A and B, the ARI between A and B is calculated as follows:

ARI A;Bð Þ ¼
PkA

i¼1

PkB
j¼1

Nij

2

� �
−

2
PkA

i¼1

Ni:

2

� �PkB
j¼1

N :j

2

� �

N N−1ð Þ

1
2

PkA
i¼1

Ni:

2

� �
þPkB

j¼1
N :j

2

� �� �
−

2
PkA

i¼1

Ni:

2

� �PkB
j¼1

N :j

2

� �

N N−1ð Þ

ð11Þ

where kA and kB are the number of clusters in A and B, repectively. Nij is the number
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of individuals in both cluster i of partition A and cluster j in partition B; Ni. is the num-

ber of individuals in cluster i of partition A; and N.j is the number of individuals in

cluster j in partition B. Obtaining a higher value of ARI is better, while random parti-

tions yield values close to zero.

AC is used to measure the purity of the resulting clusters. To compute AC, each

cluster is first assigned to the population label that is most frequent in that cluster.

Then, AC is computed by counting the number of correctly assigned individuals and

dividing the sum by the total number of individuals, N, as follows:

AC ¼
X
i¼1

k ðni−miÞ
N

ð12Þ

where N is the number of individuals, k is the number of clusters, ni is the number of

individuals in cluster i, and mi is the number of individuals with the majority popula-

tion label in cluster i.

Since each run of ensemble clustering would generate different results, all the metrics

are reported as an average value of 20 random runs.

Results and discussion
Many experiments were conducted on the real genetic datasets described previously to

assess the RFcluE approach in clustering high-dimensional genetic data to infer popula-

tion structure, including parameter analysis, consensus function, comparison study, and

diversity and quality analysis.

Parameter analysis

The objective of the parameter analysis was to study the impact of the change in the

parameters on RFcluE performance. In this analysis, both the diversity and quality of

the ensemble (i.e., base clusterings), in addition to the quality of the final clustering,

were considered. Running RFcluE involves the choice of two RF parameters, the num-

ber of trees in the forest (ntrees), and the tree size by specifying the maximum number

of leaf nodes (MN). In addition to RF parameters, there is the ensemble size M, which

is the number of times the base clustering method is executed. The last parameter is

the number of clusters, k, as an input to the base clustering method. For the consensus

function, the only parameter to be specified is the number of clusters for the final clus-

tering result. To eliminate its effect in evaluation, the consensus function is forced to

divide the individuals into K clusters, where K is the number of the true populations

for the examined datasets. Therefore, the final clustering result can be evaluated against

the corresponding truth population labels for the dataset.

Figure 2 plots the values of the diversity and quality of the ensemble as well as the qual-

ity of the ensemble’s final clustering to show the impact of the change in RF parameters.

For each dataset, we tested these values (ntrees = {1000, 4000, 7000, 10000}, MN

¼ ffiffiffiffiffiffi
N ;

p 3
2

ffiffiffiffi
N

p
; 2

ffiffiffiffi
N

p
; 100

	 

, M = 40, and k ¼ ffiffiffiffi

N
p

), where N is the number of individuals

in the examined dataset. From the plots, we were able to observe the insignificant impact

of tree size on the quality of the ensemble’s final clustering of Pan-Asian and HapMap

datasets. For Shriver’s dataset, the MN parameter had a minor impact, with lower values

performing better than higher values. Consequently, we can conclude that the smallest
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value of the maximum number of leaf nodes, MN ¼ ffiffiffiffi
N

p
, is empirically sufficient to con-

trol the tree size in the forest. This value is also more efficient as it takes less time to run

the RF algorithm. Additionally, the plots show that an increase in the number of trees is

associated with a decrease in the diversity and an increase in the quality of the base clus-

terings, as well as an increase in the quality of the ensemble’s final clustering. These trends

varied for each dataset. For the Pan-Asian dataset, there was a positive correlation be-

tween the performance improvement of the ensemble clustering and the number of trees,

where a significant improvement was seen when the number of trees increased from 1000

to 4000. For the HapMap dataset, we observed similar, albeit minor, improvements as the

number of trees increased. For Shriver’s dataset, the performance gain was negligible as

the number of trees increased. From these observations, we can conclude that the number

of trees is dataset-dependent and must be sufficient to uncover the structure of the exam-

ined dataset.

Figure 3 shows the impact of ensemble size on the performance of ensemble cluster-

ing, considering both ensemble size and the number of trees. In this figure, the plots

report the values of the diversity and quality of the ensemble as well as the quality of

the final clustering, where the parameters are: (M = {10, 20, 30, 40, 50}, ntrees = {1000,

4000, 7000, 10000}, MN ¼ ffiffiffiffi
N

p
, and k ¼ ffiffiffiffi

N
p

). In general, we can see that the diversity

and quality of the ensemble are similar across the five different ensemble sizes for all

datasets. However, the quality of the ensemble’s final clustering improves as the ensem-

ble size increases. The improvement in overall performance is dependent on the exam-

ined dataset, with the Pan-Asian dataset demonstrating the most significant

improvement. We can also see that the impact of the ensemble size parameter is

diminished as the number of trees in the forest is increased. On the other hand, for

Shriver’s dataset, we can see stable performance despite a change in the number of

trees and only slight improvement when increasing the ensemble size.

The last parameter is the number of clusters, k, as an input to the base clustering method.

In order to study the impact of this parameter, three schemes were defined to determine the

number of clusters, namely TrueK, FixedK, and RandomK. Specifically, let K and N represent

the number of true clusters and the number of individuals in the examined dataset, respect-

ively. The number of clusters for TrueK is k=K; for FixedK, the number of clusters is k

¼ ffiffiffiffi
N

p
, while for RandomK the number is random, selected such that k � 2;

ffiffiffiffi
N

p� �
for each

run of the base clustering method. To compare the performance of the three schemes, an ex-

periment was conducted using these parameters (M ={10, 20, 30, 40, 50}, ntrees= 10000, MN

¼ ffiffiffiffiffiffi
N

p
). Fig. 4 shows, for each dataset, a bar plot of the NMI values of the three schemes

across five ensemble sizes. Regardless of ensemble size, the FixedK scheme had higher NMI

than the other two schemes for the HapMap and Shriver datasets. As for the Pan-Asian data-

set, no significant difference was observed between the three schemes. This observation thus

confirms the performance gain of the ensemble’s final clustering when the number of clusters

in base clusterings is overproduced. Likewise, this observation also supports the recommenda-

tion that the value of k be set to greater than the expected number of clusters [44–46].

Consensus function

The consensus function of RFcluE, as presented previously, is composed of calculating the

co-association matrix and then applying Ward’s agglomerative clustering. This consensus
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b Pan-Asian Dataset

a HapMap Dataset

c Shriver’s Dataset

Fig. 2 The impact of the change of RF parameters on the performance of the RFcluE approach. The figure
shows the impact of the number of trees (ntrees) and the tree size controlled by the maximum number of
leaf nodes (MN) on the performance of the RFcluE approach measured using the diversity and quality of the
base clusterings along with the quality of the ensemble’s final clustering, where M = 40. a HapMap Dataset.
b Pan-Asian Dataset. c Shriver’s Dataset
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a HapMap Dataset

b Pan-Asian Dataset

c Shriver’s Dataset

Fig. 3 The impact of ensemble size on the performance of the RFcluE approach. The figure shows the impact
of the ensemble size (M) on the performance of the RFcluE approach, across a different number of trees(ntrees),
measured using the diversity and quality of the base clusterings along with the quality of the ensemble’s final

clustering, where MN =
ffiffiffi
N

p
. a HapMap Dataset. b Pan-Asian Dataset. c Shriver’s Dataset
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function performs effectively by exploiting the co-association between individuals in the en-

semble. However, the ensemble can be explored by considering the association between clus-

ters within different partitions in addition to the association between individuals. Link-based

similarity measures were proposed in [47] to improve the performance of CO by considering

the association between clusters. These measures include connected triple-based similarity

(CTS), SimRank-based similarity (SRS) and, finally, the approximate SimRank-based similar-

ity (ASRS), which was introduced as an efficient variation of the SRS. Therefore, an experi-

ment was conducted to study the impact of these measures on RFcluE performance when

utilizing those measures in the consensus function instead of CO. Fig. 5 shows the NMI of

applying CO, CTS, SRS, and ASRS to measure the similarity between different partitions of

data in the consensus function. The consensus function was applied to the same ensemble,

a

b

c

Fig. 4 Performance of three schemes for selecting the number of clusters produced by the base clustering method
of RFcluE. The figure shows a plot that compares the performance of three schemes—FixedK, RandomK, and
TrueK—for selecting the number of clusters produced by the base clustering method in the RFcluE approach

over different ensemble sizes, where ntrees = 10,000 and MN =
ffiffiffi
N

p
. a HapMap Dataset. b Pan-Asian Dataset.

c Shriver’s Dataset
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which was generated using this parameter settings (ntrees= 10000, MN ¼ ffiffiffiffi
N

p
, and k

¼ ffiffiffiffi
N

p
). For all datasets, CO, CTS, and SRS demonstrated comparable performance, while

ASRS provided the worst performance compared with other measures for the Pan-Asian data-

set. However, ASRS provided the best performance for Shriver’s dataset when the ensemble

size was greater than 30. However, the difference in performance between these measures was

not statistically significant, with a p-value < 0.05.

CO used in the consensus function of RFcluE, represents a similarity matrix in which any

similarity-based clustering can be applied to obtain the final clustering result. In RFcluE, we

applied Ward’s agglomerative hierarchical clustering. However, different clustering techniques

can be applied to the CO, such as K-means and spectral clustering. Therefore, another ex-

periment was conducted wherein these clustering techniques were applied to the CO to

examine their impact on the performance of RFcluE. Fig. 6 shows the NMI of the three clus-

tering techniques—Ward’s, K-means, and spectral clustering—when applied to the same

ensemble. The parameter settings used for the base clustering method were (M = {10, 20, 30,

a

b

c

Fig. 5 The impact of utilizing different association measures in the consensus function on the performance
of the RFcluE. The figures show the NMI of RFcluE when the similarity between partitions is measured using
CO, CTS, SRS, and ASRS in the consensus function. a HapMap Dataset. b Pan-Asian Dataset. c Shriver’s Dataset
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40, 50}, ntrees = 10000,MN ¼ ffiffiffiffi
N

p
, and k ¼ ffiffiffiffi

N
p

). We can see that Ward’s clustering, ap-

plied with RFcluE, has the best performance compared with K-means and spectral

clustering across all the examined datasets, demonstrating statistically significant

performance, with a p-value < 0.05.

Comparison study

A comparison study was conducted to assess the performance of the proposed ap-

proach, RFcluE, against AWclust [48] and PCAclust [4], the two most popular methods

for population structure analysis. Moreover, the performance of the RFcluE approach

was compared against RFclust. Table 2 and Fig. 7 present the performance of PCAclust,

AWclust, RFclust, and RFcluE on the real datasets evaluated using ARI, AC, and NMI.

In RFcluE, the clustering result is based on combining multiple runs of RF clustering

using a cluster ensemble framework, while RFclust is a clustering method that calcu-

lates the average of proximities derived from multiple runs of the RF algorithm and

then applies Ward’s agglomerative hierarchical clustering. For RFcluE, the ensemble

size M = 40 and FixedK scheme were used. For RFclust, the number of forests was

equal to the ensemble size. For both RFcluE and RFclust, the RF parameters were set

a

b

c

Fig. 6 The impact of utilizing different clustering techniques in the consensus function on the performance
of the RFcluE. The figure shows the NMI of the RFcluE when applying K-means, spectral clustering, and Ward’s
algorithm in the consensus function. a HapMap Dataset. b Pan-Asian Dataset. c Shriver’s Dataset
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such that ntrees = 10000 and MN ¼ ffiffiffiffi
N

p
. All the compared methods were forced to

divide the data into the real number of clusters in the examined dataset. Below, a dis-

cussion of the performance of RFcluE, AWclust, and PCAclust is presented, followed

by a detailed comparison between RFcluE and RFclust under the same RF parameter

settings.

RFcluE, AWclust, and PCAclust

The performance of the RFcluE, AWclust, and PCAclust approaches, based on ARI,

AC, and NMI measures, on three real datasets is compared in Table 2. Fig. 7 shows

that RFcluE generally outperforms PCAclust and AWclust over the three datasets. The

bar plot for the Pan-Asian dataset indicates that RFcluE yields a superior clustering re-

sult when compared to the other approaches based on ARI, AC, and NMI. For the

HapMap dataset, PCAclust had the worst performance, while RFcluE had the best per-

formance. For Shriver’s dataset, all approaches had comparable performance, while

RFcluE performed better than the other approaches considering all measures.

RFcluE versus RFclust

First, the effect of RF parameters was compared for both RFclust and RFcluE. As shown

in Fig. 8, when RFclust is used, its performance is in most cases slightly changed as the

tree size increases. An exception is HapMap, which shows a slight degradation in per-

formance as the tree size increases. This confirms that, like RFcluE, building trees with

MN ¼ ffiffiffiffi
N

p
is always sufficient for any dataset. On the other hand, RFclust performance

was not affected by changing the number of trees per forest nor the number of forests, as

shown in Fig. 9. However, its performance was slightly improved with HapMap when in-

creasing the number of trees in the forest from 1000 to 4000, and was slightly improved

thereafter. Overall, RFclust exhibited stable performance across different values of the

number of trees per forest and the number of forests. In addition, small tree sizes are

always efficient to provide robust results.

Table 2 A performance comparison between PCAclust, AWclust, RFclust, and RFcluE

Dataset Measure Methods

PCAclust AWclust RFclust RFcluE

HapMap ARI 0.5453 0.8135 0.8065 0.8282

NMI 0.7963 0.9277 0.9388 0.9353

AC 0.6326 0.8412 0.8365 0.882

AVG 0.6581 0.8608 0.8606 0.8818

Pan-Asian ARI 0.6668 0.4631 0.4766 0.9644

NMI 0.8483 0.7663 0.749 0.962

AC 0.7314 0.6366 0.6363 0.9745

AVG 0.7488 0.622 0.6206 0.9669

Shriver’s ARI 0.7502 0.7952 0.7795 0.8184

NMI 0.8914 0.9121 0.8758 0.9204

AC 0.8267 0.8448 0.8388 0.8989

AVG 0.8228 0.8507 0.8314 0.8792

The table shows the performance of PCAclust, AWclust, RFclust, and RFcluE across the real datasets evaluated using ARI,
AC, and NMI, along with an average of these three measures (AVG)
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The plots in Fig. 8 show that when comparing the performance of RFcluE with that of

RFclust under the same RF parameters, RFcluE performs significantly better for all param-

eter settings, especially for Pan-Asian datasets. Another parameter is the number of for-

ests to be constructed, which represents the ensemble size within the RFcluE approach.

Unlike RFclust performance, RFcluE performance was improved when increasing the

number of forests (M), especially when using a smaller number of trees. As shown in Fig.

9, the performance of RFcluE was improved over that of RFclust as the number of trees

was increased over different numbers of forests (M). One exception was that RFcluE per-

formance for HapMap became similar to that of RFclust when increasing the number of

trees from 1000 to 4000, and subsequently stabilized for both approaches. However, the

performance of RFcluE was much better than that of RFclust over different numbers of

a

b

c

Fig. 7 Performance of PCAclust, AWclust, RFclust, and RFcluE evaluated using ARI, AC, and NMI. The figure
shows a plot that compares the performance of PCAclust, AWclust, RFclust, and RFcluE, measured using three
measures—ARI, AC, and NMI—along with the average of these measures. a HapMap Dataset. b Pan-Asian Dataset.
c Shriver’s Dataset
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trees for the Pan-Asian dataset. A similar observation can also be made for Shriver’s data-

set, except that the performance of both approaches did not change much across different

numbers of trees. This observation indicates that multiple forests with 1000 trees each

were enough to discover the structure of Shriver’s dataset.

Overall, we can conclude that it is both crucial and more efficient to use RF cluster-

ing as a base clustering method within a cluster ensemble framework instead of aver-

aging the proximities of several forests and then applying clustering. RFcluE exhibited

a

b

c

Fig. 8 The impact of the change of RF parameters on the performance of RFclust vs. RFcluE. The figure shows
the impact of the number of trees (ntrees) and the tree size controlled by the maximum number of leaf nodes
(MN) om the performance of RFclust and RFcluE measured using NMI. a HapMap Dataset. b Pan-Asian Dataset.
c Shriver’s Dataset
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better performance than RFclust, especially for clustering in the Pan-Asian dataset.

One important observation was that the clustering performance of RFcluE was signifi-

cantly improved by increasing the number of forests and the number of trees per forest;

unlike RFclust, where these parameters became irrelative. Moreover, the performance

of RFcluE was more robust than that of RFclust with respect to tree size as long as suf-

ficient trees per forest were constructed.

a

b

c

Fig. 9 The impact of the change of the number of forests on the performance of RFclust vs. RFcluE. The figure
shows the impact of the number of forests (nforests) on the performance of RFclust and RFcluE, which represents
the ensemble size in RFcluE, measured using NMI across different numbers of trees (ntrees). a HapMap Dataset.
b Pan-Asian Dataset. c Shriver’s Dataset
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Diversity and quality analysis

The final experiment was conducted to assess the relationship between the diversity

and quality of the generated ensemble and its influence on the quality of the ensemble’s

final clustering. The diversity of base clusterings is a major factor that could affect the

performance of the cluster ensemble approach. On the other hand, the evaluation of

the quality of base clusterings is necessary to determine improvements in the quality of

the final clustering of the cluster ensemble approach. To perform this experiment, the

diversity and quality of base clusterings, as well as the quality of the ensemble’s final

clustering, were calculated by applying Eq. (9), Eq. (10), and Eq. (8), respectively.

One source of diversity in base clustering is the number of clusters as an input to the

base clustering method. TrueK, FixedK, and RandomK schemes, identified earlier, could

generate different levels of diversity among base clusterings. Consequently, an experi-

ment was conducted in order to study the diversity and quality of base clusterings gen-

erated by these different schemes with the following parameters: (

M ¼ 40; ntrees ¼ 10000; MN ¼ ffiffiffiffi
N

p
). Table 3 reports the diversity and quality of

base clusterings, as well as the quality of the ensemble’s final clustering over the three

datasets. Based on this table, we can observe that the TrueK scheme has the least

Table 4 The diversity and quality analysis of the three ensemble-based methods

Dataset Method DS(P) Q(P) Q(P*) Q(P*)-Q(P)

HapMap AWcluE 0.1912 0.8139 0.9148 0.1009

PCAcluE 0.1429 0.7078 0.7510 0.0432

RFcluE 0.2697 0.7823 0.9353 0.1529

Pan-Asian AWcluE 0.1802 0.8356 0.9497 0.1141

PCAcluE 0.0801 0.8427 0.8933 0.0506

RFcluE 0.2800 0.7794 0.9620 0.1826

Shriver’s AWcluE 0.1164 0.8804 0.8879 0.0074

PCAcluE 0.0896 0.8236 0.8351 0.0115

RFcluE 0.1543 0.8592 0.9204 0.0612

The table shows the diversity and quality of the base clusterings (denoted by DS (P) and Q (P), respectively) along with
the quality of the ensemble’s final clustering, Q (P∗), for three datasets using the three ensemble-based clustering
methods: PCAcluE, AWcluE, and RFcluE

Table 3 The diversity and quality analysis of the three schemes

Dataset Scheme DS(P) Q(P) Q(P*) Q(P*)-Q(P)

HapMap FixedK 0.2697 0.7823 0.9353 0.1529

RandomK 0.2614 0.7909 0.9208 0.1299

TrueK 0.1542 0.8453 0.9057 0.0604

Pan-Asian FixedK 0.2800 0.7794 0.9620 0.1826

RandomK 0.3204 0.7727 0.9701 0.1974

TrueK 0.1438 0.8799 0.9669 0.0870

Shriver’s FixedK 0.1543 0.8592 0.9204 0.0612

RandomK 0.2555 0.7680 0.8958 0.1279

TrueK 0.1435 0.8530 0.8898 0.0368

The table shows the diversity and quality of the base clusterings (denoted by DS (P) and Q (P), respectively) along with
the quality of the ensemble’s final clustering, Q (P*), for three datasets using the three different schemes: FixedK,
RandomK, and TrueK
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diversity and the best quality of base clusterings; however, it produces the lowest qual-

ity of the ensemble’s final clustering. FixedK produces the highest quality of the final

clustering among the three schemes for all datasets. This result confirms that selecting

a greater number of clusters for base clustering methods than expected would intro-

duce diversity within the ensemble. Thus, higher diversity could lead to more signifi-

cant improvement in the quality of the ensemble’s final clustering. To this end, we can

conclude that the quality of the base clusterings is not correlated with the quality of

the cluster ensemble approach based on RFs, while combining base clusterings could

produce a higher-quality final clustering result due to their diversity.

The other sources of diversity are bagging, random subspace, and synthetic data generation

applied within unsupervised RF algorithms. Therefore, AWcluE and PCAcluE were developed

as an ensemble version of the two single clustering methods, PCAclust and AWclust, to dem-

onstrate how the diversity and quality of the base clustering method influence the perform-

ance of the entire ensemble, especially RF clustering as a base clustering method of RFcluE.

Accordingly, PCAcluE and AWcluE are defined as ensemble-based clustering methods that

apply different base clustering methods but utilize the same consensus function of RFcluE. On

the one hand, PCAcluE applies PCA and then K-means as a base clustering method. On the

other hand, AWcluE calculates ASD and then applies K-means as a base clustering method.

For both methods, K-means with a random initialization is considered as a source of diversity

that can produce different partitions of the data with varying accuracy.

Table 4 reports the results for each ensemble method over the three datasets using the

same parameters (M = 40, k ¼ ffiffiffiffi
N

p
). By comparing the diversity and quality between the

three ensemble-based clustering methods, we can see that RFcluE has the most diverse

ensemble across the three datasets with moderate quality. However, it achieves the best

performance and exhibits greater improvements in the quality of the ensemble’s final clus-

tering over that of base clusterings. From this experimental result, we conjecture that the

RF clustering method is most beneficial when applied within a cluster ensemble frame-

work. Computing the RF proximity enables viewing high-dimensional genetic data from

different angles via bagging and random subspace, thus contributing to a more diverse en-

semble than the two other ensemble-clustering methods. Thus, combining multiple RF

clustering results using an ensemble approach produces better clustering result than a sin-

gle RF clustering.

Conclusions
This paper has presented RFcluE, a cluster ensemble approach based on an RF algo-

rithm, to address the problem of population structure analysis. This approach is com-

posed of two stages: ensemble construction, in which an RF-based clustering method is

applied to generate a set of clusterings for the same dataset; and consensus function,

which integrates all the clusterings to produce a final data clustering. Many experi-

ments were conducted to empirically investigate the potential of the RFcluE approach

on real genetic datasets in order to uncover the substructure of populations. In

addition, a comparison study was carried out to compare RFcluE performance against

existing, popular clustering methods for population structure analysis. The experimen-

tal results illustrated that the proposed approach, RFcluE, outperformed the other clus-

tering approaches, providing more accurate results. Moreover, the experimental results
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indicated that combining multiple clusterings, generated based on RFs, within a cluster

ensemble produces high quality and robust clustering results in comparison to a single

run of RF clustering. This improvement in performance is a consequence of feeding the

ensemble with diverse views of high-dimensional genetic data obtained through bag-

ging and random subspace, the two key features of the RF algorithm. To conclude, the

major contributions of this paper are proposing and evaluating a cluster ensemble

approach based on RFs and demonstrating its effectiveness for high-dimensional, real

genetic data. The paper also illustrated that applying a cluster ensemble approach to

combine multiple RF clusterings produces more robust and high-quality clustering re-

sults than clustering based on averaging the proximities derived from multiple forests.

Future work should include the application of the RFcluE approach to other high-

dimensional biological data.
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