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Dynamic susceptibility contrast-enhanced magnetic resonance imaging is an important

tool for evaluating intravascular indicator dynamics, which in turn is valuable for

understanding brain physiology and pathophysiology. This procedure usually involves

fitting a gamma-variate function to observed concentration-time curves in order to

eliminate undesired effects of recirculation and the leakage of contrast agents. Several

conventional curve-fitting approaches are routinely applied. The nonlinear optimization

methods typically are computationally expensive and require reliable initial values to

guarantee success, whereas a logarithmic linear least-squares (LL-LS) method is more

stable and efficient, and does not suffer from the initial-value problem, but it can show

degraded performance, especially when a few data or outliers are present. In this paper,

we demonstrate, that the original perfusion curve-fitting problem can be transformed

into a gamma-distribution-fitting problem by treating the concentration-time curves as a

random sample from a gamma distribution with time as the random variable. A robust

maximum-likelihood estimation (MLE) algorithm can then be readily adopted to solve

this problem. The performance of the proposed method is compared with the nonlinear

Levenberg-Marquardt (L-M) method and the LL-LS method using both synthetic and real

data. The results show that the performance of the proposed approach is far superior

to those of the other two methods, while keeping the advantages of the LL-LS method,

such as easy implementation, low computational load, and dispensing with the need to

guess the initial values. We argue that the proposed method represents an attractive

alternative option for assessing intravascular indicator dynamics in clinical applications.

Moreover, we also provide valuable suggestions on how to select valid data points and

set the initial values in the two traditional approaches (LL-LS and nonlinear L-M methods)

to achieve more reliable estimations.

Keywords: intravascular indicator dynamics, gamma-variate function, logarithm linear least square, maximum

likelihood estimation, contrast-enhanced MRI
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1. INTRODUCTION

Dynamic susceptibility contrast-enhanced magnetic resonance
imaging (DSC-MRI) is a useful tool for the quantitative
assessment of perfusion-related cerebrovascular parameters in
clinical applications (Kosior and Frayne, 2010; Emblem et al.,
2014; Arzanforoosh et al., 2021; Jin and Cho, 2021). It requires
the injection of a paramagnetic contrast agent. A bolus of the
intravascular contrast agent passing through the tissue of interest
produces local magnetic-field inhomogeneities that lead to a
reduction in the transverse relaxation time (T2*) of the bulk
tissue (Rosen et al., 1991; Li, 2014). This susceptibility effect
is then recorded in a series of rapidly obtained T2*-weighted
gradient-echo images. Converting the signal-time curves into
concentration-time (i.e., 1R2∗(t)) curves will yield vascular
information associated with tissue perfusion, such as the blood
volume, blood flow, and mean transit time (MTT).

However, the concentration-time curve is inevitably
contaminated by recirculation of the bolus into the region
of interest and residual contrast agent in capillaries. A gamma-
variate function has been used to model the first pass of the
1R2∗(t) curve to eliminate these undesired effects (Norman
et al., 1981; Davenport, 1983). The original motivation for
using this function as an empirical model was its heuristic
resemblance to the expected relaxation-rate time-course during
the first bolus passage (Thompson et al., 1964; Axel, 1980). The
underlying physical connection of the dilution process with
the gamma-variate expression has also been clarified in recent
studies (Davenport, 1983; Mischi et al., 2008). The selection of an
appropriate fitting method is therefore essential when analyzing
intravascular indicator dynamics (Perkiö et al., 2002; Pianykh,
2012; Romain et al., 2017; Quarles et al., 2019).

The nonlinear Levenberg-Marquardt (L-M) optimization
method is typically used to solve the fitting problem of gamma-
variate function since it provides superior accuracy (Benner
et al., 1997; Li et al., 2003). However, the use of a nonlinear
method requires reliable initial values to guarantee convergence:
a moderate deviation from the true values may cause the fit
to diverge, and in extreme cases, these errors might be even
higher when applying numerical integration over the sample
points (Benner et al., 1997).Moreover, nonlinearmethods usually
suffer from a high computational load. These reasons explain why
nonlinear fitting methods have not played a prominent role in
clinical applications. A logarithmic linear least-squares (LL-LS)
approach (Madsen, 1992; Chan and Nelson, 2004), on the other
hand, is more stable and efficient as well as not requiring the
initial values to be guessed. The LL-LS method uses a logarithm
operation to transforms the original gamma-variate function

into an equivalent, linear regression form. Standard linear least-
squares fitting is then applied. However, the logarithm operation
complicates the statistics of the data, and means that the noise

no longer conforms to a Gaussian distribution. As a result, the
LS estimator will be biased and the quality of the fitting will be

subject to limits imposed by the statistical nature of the data,
especially when there are few data or outliers are present.

In a recent study, we needed to determine the regional cerebral
blood volume (CBV) on a finer voxel scale throughout the brain

in order to produce a more accurate hemodynamic assimilation
(Hu et al., 2012; Zhang et al., 2016). Only five or six valid data
points were collected in the first-pass phase for perfusion-curve
fitting due to the sampling interval being longer than usual.
Since the existing two methods were found to perform poorly,
it was found to be necessary to develop an alternative approach
that combines the advantages of the two methods and still
exhibits satisfactory performance even when there are few data
points. In this paper, we present a novel statistical optimization
method that is well suited to such a real-world problem. We
demonstrate that the original perfusion curve-fitting problem can
be transformed into a gamma-distribution-fitting problem, by
treating the concentration-time curves as a random sample from
a gamma distribution with time as the random variable. A robust
maximum-likelihood estimation (MLE) algorithm can then be
readily applied to solve this problem. The proposed method was
evaluated in experiments using both synthetic and real data. Our
new method yields physiological information on cerebrovascular
dynamics that are more stable and accurate than those obtained
using a nonlinear method, while keeping the advantages of the
LL-LS method, such as low computational load, and without
requiring the initial values to be guessed.

2. DERIVATION OF THE RELATIVE CBV

DSC MR measures the regional CBV by analyzing changes in
the signal intensity after the first pass of a paramagnetic contrast
agent. A bolus of intravascular paramagnetic contrast agent
passing through the tissue of interest, produces local magnetic-
field inhomogeneities that lead to a reduction in the transverse
relaxation time T2* of the bulk tissue (Figure 1A) (Rosen et al.,
1991). This susceptibility effect is then recorded in a series of
rapidly obtained T2*-weighted gradient-echo images. There is an
exponential relationship between the relative signal attenuation
(S(t)/S0) and the local tissue concentration of contrast agent
(Ci(t)) (Rempp et al., 1994):

Ci(t) =
−k

TE
· ln

(

S(t)

S0

)

(1)

where k is an unknown proportionality factor, TE is the echo
time of the imaging sequences, S(t) is the MRI signal intensity
at time point t, and S0 is the baseline MRI signal intensity before
administering the contrast agent.

This relationship can be used to convert the observed signal-
intensity-vs.-time curves (S(t)) into concentration-time curves
(1R2∗(t)) on a voxel-by-voxel basis (Figure 1B). According to
the indicator dilution theory, the relative cerebral blood volume
(rCBV) is proportional to the area under the 1R2∗(t) curve
(Rempp et al., 1994):

rCBV = k

kr
· kH
ρ

·
∫

ln(S(t)/S0)dt
∫

ln(Sr(t)/Sr0)dt
· TE

TEr
(2)

where Sr(t)/Sr0 is the relative signal reduction in the reference
voxel, ρ = 1.04g/mL is the density of brain tissue, and correction
factor kH accounts for the difference in hematocrit between the
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FIGURE 1 | (A) The original DSC-MRI signal (S(t)) obtained from one voxel after administering contrast agent. The baseline signal S0, the first pass bolus and the

second pass bolus are illustrated by the arrow, respectively. (B) Concentration-time curves (1R2∗) for the same voxel. The 1R2∗ signal measured during the first bolus

pass are shown as filled circles, and other sample points are indicated hollow circles. The red area under the fitted 1R2∗ curves (red line) is the relative CBV (rCBV)

estimated. a.u., arbitrary unit.

voxel of interest and the reference voxel. For our calculations
of relative concentration values, these correction factors were
set as 1.0.

In practice, the concentration-time curves usually do not only
reflect the first bolus pass, but are also affected by a second bolus
pass starting 15–20 s after the first one due to the recirculation
of the contrast agent bolus. Additionally, residual contrast agent
often produces a gradually decreasing bias of the concentration-
time curve that is not as steep as the assumed hypothetical
exponential decay. For these reasons, the original concentration-
time curve can not be used directly for the calculation of vascular
parameters. The curve of interest is usually modeled with a
gamma-variate function to eliminate these undesired effects
(Norman et al., 1981; Davenport, 1983):

1R2∗(t) = y = A(t − t0)
αe−(t−t0)/β (3)

where t0 is the time when the contrast agent is applied in the
specified area, and A, α, and β are parameters that determine the
shape of the function. The rCBV value is proportional to the area
(F) under the concentration-time curve, and can be calculated as
follows (see Appendix A):

F =
∫ ∞

t0

Ci(t)dt = A · βα+1 · Ŵ(α + 1) (4)

3. NONLINEAR LEVENBERG-MARQUARDT
OPTIMIZATION METHOD

The Levenberg-Marquardt algorithm combines two numerical
minimization algorithms: the gradient descent method and the

Gauss-Newton method. Specifically, to fit a mode ŷ(t|p) of an
independent variable t and a vector of n parameters p to a set ofm
data points (ti, yi), the estimation of parameters p is customary to
minimize the sum of the weighted residuals between the known
data yi and the estimated fitting function ŷ(t|p).

χ2(p) =
m
∑

i=1

[
y(ti − ŷ(t|p))

σyi
]2 = (y− ŷ(p))T ·W · (y− ŷ(p) (5)

Where σyi denotes the measurement error of y(ti). The weighting
matrix W is diagonal with Wii = 1/σyi , or formally, it can be
set to the inverse of measurement error covariance matrix. More
generally, W can also be treated as an optimization parameter.
This goodness-of-fit measure is called the chi-squared error
criterion (Gavin, 2019). Immediately, the Levenberg-Marquardt
algorithm adaptively varies the parameter updates between the
gradient descent update and the Gauss-Newton update,

[WT · T · T + λ · I] = JT ·W · (y − ŷ) (6)

where J is the Jacobian matrix [∂ ŷ/∂p], λ is damping parameter,
the parameter update is h. Small values lead to a Gauss-Newton
update and large values result in a gradient descent update. In
Marquardt’s update research, the value of λ are normalized to the
values ofWT · T · T, thus,

[WT · T · T + λ · diag(WT · T · T)] = JT ·W · (y− ŷ) (7)

and many variations of the Levenberg-Marquardt method also
have been developed (Gavin, 2019). In this paper, the nonlinear
Levenberg-Marquardt algorithm was provided by MATLAB’s
own toolbox.
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4. LOGARITHMIC LINEAR
LEAST-SQUARES METHOD

Without loss of generality, we assume t0 = 0. Equation (3) can
then be simplified as

y(t) = Atαe−t/β (8)

To find time tmax at which the bolus signal peaks, we takes the
first derivative of Equation (8) and set it to 0:

y′(tmax) = Atα−1
max e

−tmax/β

(

α − tmax

β

)

= 0 (9)

which yields

tmax = αβ ⇒ β = tmax

α
. (10)

Substituting β into Equation (8) and letting t = tmax leads to,

ymax = A

(

tmax

e

)α

⇒ A = ymax

(

e

tmax

)α

(11)

Equation (8) can now be rewritten in terms of ymax, tmax, and α:

y(t/tmax) = ymaxe
α

(

t

tmax

)α

e−
t

tmax
α (12)

Taking the natural logarithm on both sides of Equation
(12) produces

log(y(t′)) = log(ymax)+ α(1+ log(t′)− t′) (13)

where t′ = t/tmax. This equation has the form y = C+ αx, when
t0 and tmax are known, ymax and α can be determined from the
linear regression of the natural logarithm of the observed values,
y(t′), with (1+ log(t′)− t′) as the independent variable.

As shown above, the LL-LS method requires additional
information about t0 and tmax to be obtained from the observed
data. In practice, t0 is usually estimated from the time prior to
tmax at which S(t) is within one standard deviation (SD) of the
initial baseline signal (Chan and Nelson, 2004), and the location
of tmax is found by calculating the centroid of the curve (Madsen,
1992). Although the LL-LS method provides a simplified way of
assessing rCBV while avoiding the initial-value problem, and it
has already been applied in several clinical applications (Chan
and Nelson, 2004; Wu et al., 2004), this method still performs
worse than the nonlinear method. This can be due to the
logarithm operation complicating the statistics of the recorded
data, resulting in the noise no longer conforming to a Gaussian
distribution. When sufficient data points are available, the noise
can still be treated as an approximate Gaussian distribution
(according to the Lévy-Lindeberg Central Limit Theory; see
Appendix B) (Casella and Berger, 2001). However, when only
a few data points are available or the data are contaminated
by outliers, the LS estimates become biased and are no longer
characterized by minimum variance. Moreover, the estimation of
tmax also introduces extra deviation.

5. PROPOSED STATISTICAL
OPTIMIZATION METHOD

Assuming t0 = 0, the first pass of the concentration–time course
1R2∗(t) is rewritten as follows:

y(t) = ArCBV
1

βαŴ(α)
tα−1e−t/β (14)

where ArCBV is the value of rCBV, Ŵ(α) =
∫∞
0 xα−1e−xdx is the

gamma function, t > 0, α > 0, and β > 0. Note that

f (t | α,β) = 1

βαŴ(α)
tα−1e−t/β (15)

is the probability density function (p.d.f.) of the gamma
distribution, and

∫ ∞

0
f (t | α,β)dt = 1. (16)

Let Y denotes the observed 1R2∗(t) data of the first bolus pass
Y = (y(t1), y(t2), . . . , y(tk), . . .), k = 1, . . . ,N that specifics a
gamma distribution f (t | α,β) with unknown parameters α, and
β . Suppose there is a discrete random sampleX = (x1, x2, . . . , xn)
of n independent and identically distributed (i.i.d.) observations,
which obey the given gamma distribution f (t | α,β). The random
variable x may only take N different values t1, t2, . . . , tN , and
y(tk) gives the number of variables obtained in time tk. In other
words, the concentration-time curve is considered to be the
frequency histogram of the random sample X with a gamma
distribution f (t | α,β), where the occurrence frequency of tk
in observation set X is proportional to y(tk) (Figure 2). This
transforms, the original perfusion curve-fitting problem into a
gamma-distribution-fitting problem. MLE is a popular choice
for estimating parameters of a gamma distribution due to its
optimal asymptotic properties (Gupta and Groll, 1961; Harter
and Moor, 1965), we therefore applied an MLE approach to solve
this problem (Myung, 2003).

Denote Y = (y(t1), y(t2), . . . , y(tk), . . .). The likelihood
function is defined as:

L(α,β)|Y) =
n
∏

k=1

f (y(ti)|α,β) (17)

Maximizing L(α,β|Y) with respect to (α,β) is equivalent to
minimizing the negative logarithm of L(α,β|Y), and hence,

log L(α,β) = −nα logβ − n logŴ(α)

+ (α − 1)
∑

log x− 1

β

n
∑

k=1

xk (18)

where the summation is over the n sample values.
Assuming that the log-likelihood function is differentiable, it

must satisfy the following partial differential equation














∂(log L(α,β))

∂α
= 0

∂(log L(α,β))

∂β
= 0

(19)
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FIGURE 2 | Schematic of the proposed approach. The concentration curve

1R2∗(t) is considered the frequency histogram of a random discrete sample

X = (x1, x2, . . . , xn) with a gamma distribution f (t | α,β) associated with the

1R2∗(t) data. The original perfusion curve fitting problem then can be

transformed to a gamma distribution fitting problem.

Differentiating Equation (18) we obtain the equations for
the MLE:

log β̂ + ∂

∂α̂
logŴ(α̂)− 1

n

n
∑

k=1

log xk = 0. (20)

α̂β̂ = 1

n

n
∑

k=1

xk (21)

Substituting β̂ in Equation (20) gives

logα − ψ(α) = log x̄− 1

n

n
∑

k=1

log xk (22)

where the digamma function ψ(α̂) = ∂
∂α̂

logŴ(α̂) is the
logarithmic derivative of Ŵ(α), and x̄ = 1/n

∑n
k=1 x(tk) denotes

the average of the given data. Equation (22) is implicit in α̂, and
it is neither possible to find an analytical expression for (α̂, β̂)
nor to use the Davis tables of ψ-functions directly (Davis, 1933).
Masuyama and Kuroiwa prepared tables of log α̂ − ψ(α̂) for the
likelihood solutions of the gamma distribution (Masuyama and
Kuroiwa, 1951; Greenwood, 1960).

Furthermore, the second derivatives of the log-likelihoods















∂2 log L(α,β)

∂α2
= ψ1(α̂) < 0

∂2 log L(α,β)

∂β2
= − x̄

β̂2
< 0

(23)

where ψ1(α̂) = ∂
∂α̂
ψ(α̂), are 1-digamma functions. The second

derivatives are negative, and ensure that the log-likelihood
function log L(α̂, β̂) is a maximum.

TABLE 1 | Errors for correcting the α estimate.

α̂ 1α̂ α̂ 1α̂ α̂ 1α̂

0.2 0.034 1.0 0.009 1.8 0.004

0.3 0.029 1.1 0.008 1.9 0.003

0.4 0.025 1.2 0.007 2.2 0.003

0.5 0.021 1.3 0.006 2.3 0.002

0.6 0.017 1.4 0.006 3.1 0.002

0.7 0.014 1.5 0.005 3.2 0.001

0.8 0.012 1.6 0.005 5.5 0.001

0.9 0.011 1.7 0.004 5.6 0

The value of 1α is subtracted from the value of α̂ obtained from Equation (29).

In order to obtain a numerical expression, Thom developed
an approximation to the solution (Thom, 1958). The digamma
function, ψ(α̂) has an asymptotic expansion

ψ(α) = logα − 1/(2α)−
m
∑

k=1

(−1)k−1Bk/(2kα
2k)+ Rm, (24)

where Bk is the Bernoulli number for B1 = 1/6,B2 = 1/30, . . .,
and Rm is the remainder afterm terms.

When α ≥ 1,

| Rm |≤ Bm+1

(2m+ 2)α2m+2
(25)

and can be neglected. The approximation is more accurate when
α is larger.

Form = 1 we have

ψ(α) = logα − 1/(2α)− 1/(12α2). (26)

Substituting in Equation (22) yields

12

(

log x̄− 1

n

n
∑

k=1

log xk

)

α̂2 − 6α̂ − 1 = 0 (27)

Simplifying by letting A = log x̄− 1
n

∑n
k=1 log xk produces

12Aα̂2 − 6α̂ − 1 = 0, (28)

which is a quadratic equation whose only pertinent root is

α̂ = 1+√
1+ 4A/3

4A
. (29)

Combining this with Equation (21) gives the MLE for the gamma
distribution. Thom provided an error table for correcting the
estimate obtained from Equation (29) in the case of a small α
(Thom, 1958), seen in Table 1.

Note that y(tk) is a scaled version of the occurrence frequency
of tk in observation set X. We have

x̄ =
∑N

k=1 yktk
∑N

k=1 yk
. (30)
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FIGURE 3 | Example of fitting curve obtained using the proposed method (red

line, αmle = 5.8943, βmle = 1.6095, Fmle = 2.4427), the LL-LS method (green

line, αls = 2.4364, βls = 5.6789, Fls = 3.0727), and the nonlinear method (blue

line, αnon = 6.0289, βnon = 1.7118, Fnon = 2.5780) for a single voxel. Filled

circles denote valid data points for perfusion-curve fitting; other points are

indicate by hollow circles.

To summarize, A, α, and β are expressed in terms of the
observation data yk and associated time tk as follows:























A = log

∑N
k=1 yktk
∑N

k=1 yk
−
∑N

k=1 yk log tk
∑N

k=1 yk

α̂β̂ =
∑N

k=1 yktk
∑N

k=1 yk

(31)

6. EXPERIMENTAL VALIDATION

In this section, we examine the effectiveness of the proposed
approach and compare the performances of the three fitting
algorithms based on the concentration-time curve. Because the
real values corresponding to the DSC MRI data are unknown,
numerical simulations were used to investigate the uncertainties
of the estimated cerebrovascular parameters (i.e., rCBV or F) for
the three fitting algorithms with different signal-to-noise ratios
(SNR) and time resolution (1t) values.

Two subjects participated in this study. Images were acquired
with a 1.5-tesla scanner (Signa Excite, GE). The CBV imaging
sequence consisted of 30 T2*-weighted images that were collected
using an echo-planar gradient-echo (GE) sequence with the
following parameters: repetition time = 3, 100 ms, echo time
= 80 ms, flip angle = 90◦, field of view = 240 × 240mm, matrix
size= 128× 128, and 0.1 mmol/kg Gd-DTPA administered with
a power injector. It should be noted that, in order to achieve a
sufficient SNR and coverage of the whole brain, the repetition
time was increased to be 3.1 s, since the typical value is about
1 s (Zhang et al., 2016).

Since our method is used to estimate the whole-brain rCBV,
involving tens of thousands of data points, we presented only

a few examples for a more detailed comparison. Thirty voxels
were chosen as the region of interest (ROI) from the two
subjects. They were picked from various areas, such as the
motor area, visual area, and the thalamus. The concentration-
time curves were created for each voxel using (Equation 1).
Fitting procedures were applied to these curves using three
fitting algorithms (nonlinear L-M method, LL-LS method, and
the proposed method), which produced a total of 90 parameter
sets {α,β}. Figure 3 gives examples of perfusion-curve fitting for
one voxel when using the threemethods. The figure demonstrates
that all of the parameter sets had a reasonable physiological
meaning, and so the threemethods could be compared fairly. The
ideal concentration-time curves as gamma-variate functions were
then generated from these sets with the model

1R2∗(t) = 1R2∗(t)+ K

∫ t

0
1R2∗(t′)dt (32)

where K = 0.02 is the recirculation weighting factor that
describes the recirculation and leakage during the recirculation
phase of the curve (Weisskoff et al., 1994). Gaussian-distributed
noise was added to 1R2∗(t) at different levels (SNR = 5, 10, 20,
50, and 100) with SNR defined as Chan and Nelson (2004)

SNR = ymax

σ
(33)

where ymax is the peak of the curves (see Equation 11), and σ is
the standard deviation of the added noise. The time resolution1t
was chosen to vary between 0.2 and 3.2 s in steps of 0.2 s. Then
the gamma-variate fitting was repeated using the three methods.
The onset of the bolus at t0 was determined by searching from
the time point of the maximum back to zero looking for two
successive values that were less than a threshold of 10% of the
maximum (Benner et al., 1997). The found time points were
additionally corrected according to the time resolution and were
identical for the three fitting algorithms. Moreover, the estimated
parameter {α,β} for the LL-LS method, except where indicated
otherwise, was also used as the initial value in the nonlinear fitting
procedure.

Two uncertainty values were calculated for the rCBV (i.e., the
area under the concentration-time curves) to evaluate the three
methods, Benner et al. (1997)

µi =
F̄ − Fi

Fi
· 100% (34)

and

σi =
σF

Fi
· 100% (35)

where F̄ and σF are the mean and standard-deviation values of
rCBV calculated from 250 synthetic curves with parameter set
{αi,βi}, and Fi is the real rCBV value calculated from Equation
(4). Taken overall 90 parameter sets {α,β},µ gives the percentage
of deviation from the correct value and is a measure of how
accurately the parameters calculated from the fit agree with the
correct ones, and σ is the coefficient of variation as a percentage
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FIGURE 4 | Uncertainty µ (left column) and σ (right column) values calculated using three fitting methods as functions of the time resolution for five SNR values. Note

that the ordinate scale is smaller for the proposed method than for other two methods for clarity. The fitting procedure was considered to have failed if the values of

the µ and σ uncertainties were larger than 50% of the correct values. From top to bottom: proposed method, LL-LS method, and nonlinear method. (A) Uncertainty

µ values calculated using the proposed method. (B) Uncertainty σ values calculated using the proposed method. (C) Uncertainty µ values calculated using LL-LS

method. (D) Uncertainty σ values calculated using LL-LS method. (E) Uncertainty µ values calculated using nonlinear method. (F) Uncertainty σ values calculated

using nonlinear method.
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FIGURE 5 | Failures of the fitting procedure with the LL-LS and nonlinear

methods as functions of the time resolution (1t) for SNR = 5. The fitting

procedure was considered to have failed if the algorithms did not converge or

the calculated values of parameters α and β were imaginary numbers. The

estimated parameter {α,β} obtained using the LL-LS method is used as the

initial value in the nonlinear fitting procedure. The number of failures of the

nonlinear method is thus equal to the number of failures of the LL-LS method

plus the number of times that the algorithm for the nonlinear diverged. The

number of failures consistently increased as the time resolution decreased.

However, there were no failures for the proposed method even for the highest

noise level.

of all values calculated for F and represents a measure of the
probability that a calculated value lies within a certain range of
the correct value (Benner et al., 1997).

Figure 4 shows the calculated uncertainty values for the three
fitting methods as functions of the time resolution for the five
SNR levels. In general, the quality of the fit depends on the
time resolution and the noise level, with the noise having a
greater impact on the fitting result when 1t is larger. For all
three methods, the uncertainties (µ and σ ) of the estimated
parameter increased with increasing 1t and with decreasing
SNR. The influence of SNR variation was stronger for σ (left
panels in Figure 4) than for µ (right panels in Figure 4). The
estimated parameter was more stable while 1t decreased and
SNR increased (right panels in Figure 4). These observations
can be explained by a smaller 1t and larger SNR resulting in
more usable sample points with less contamination by noise,
thereby achieving more reliable fitting. However, even for the
smallest 1t = 0.2 and the lowest noise level (SNR =
100), the estimated parameter deviated from the real values
by more than 10% (left panels in Figure 4). This inherent
deviation can contribute to the additional effect of contrast agent
recirculation in the simulation. In all situations, the nonlinear
method (Figures 4E,F) performed better than the LL-LS method
(Figures 4C,D), while the proposed approach (Figures 4A,B)
exhibited far superior stability and accuracy than the other two
methods. While both the conventional LL-LS and nonlinear
methods delivered decent estimates when the SNR was large
(Figure 4), they led to a failure of the calculated parameters

for the lowest SNR (SNR = 5) and the median 1t case
(1t > 1.6 s) where the uncertainties of the estimated parameter
were larger than 50% (blue lines in Figures 4C–F). In contrast,
the proposed approach generated significantly better results
for different time resolutions and noise levels, illustrating the
benefits of transforming the original curve-fitting problem into
a distribution-fitting problem. Moreover, the fitting procedure
for the LL-LS and nonlinear methods failed for the largest time
resolution (1t = 3.2 s) and the highest noise level (SNR =
5). Figure 5 shows the failure rate of the fitting procedure as
a function of the time resolution (1t). Not surprisingly, the
number of failures increased with increasing 1t, demonstrating
that obtaining more sample points during the first pass of the
contrast agent can help to build a more accurate view of the
vascular indicator dynamics (Lu and Monahan, 1993).

7. DISCUSSION AND CONCLUSION

Indicator dilution analysis involves computing perfusion-related
parameters (e.g., blood volume, blood flow, and mean transit
time) from the observed flow of a contrast agent passing through
the vascular system. This analysis method is applied in a diverse
range of medical fields. The measurements might yield valuable
diagnostic information for use in various applications, such as the
assessment of tissue perfusion, the detection of ischemic regions
and cancer hypervascularization (Ruediger et al., 1964; Eckersley
et al., 2002; Yang et al., 2003). The available measurement
methods extend beyond DSC-MRI, to include other bolus-
tracking imaging methods, such as contrast-enhanced computed
tomography (Pienn et al., 2013), contrast-enhanced ultrasound
imaging (Feinstein, 2004), and scintigraphy (Anger, 1964). In
this paper, we have proposed a novel statistical optimization
strategy for perfusion analysis, with the initial motivation being
that the voxel-wise evaluation of the rCBV information needs
to be performed from a series of DSC-MRI observations in
a real clinical application (Zhang et al., 2016). By designing
the concentration-time curves as a random sample from a
gamma distribution with time as the random variable, we have
transformed the original perfusion curve-fitting problem into
a gamma-distribution-fitting problem; MLE is then adopted to
solve this problem. Since real values from a real experiment
were not available, we used simulation experiments to compare
the proposed method with conventional methods. The obtained
simulation results have demonstrated that the proposed strategy
has the potential to provide a more stable and accurate perfusion
analysis than a conventional curve-fitting strategy for different
time resolutions and noise levels.

We consider that the improved performance of the proposed
method is attributable to the reasons given below. The LL-LS
method implicitly assumes that log y(t) conforms to a Gaussian
distribution with the right-hand side (RHS) of Equation (13)
as its mean and a constant variance. Hence, the small fitting
error near t = t0 (we assume t0 = 0), that is, at y(t0) = 0,
could cause a large error at log y(t0). Then, the large change
in the left-hand side (LHS) of Equation (13) results a larger
error in the estimation of α than for the LS solution based on
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FIGURE 6 | (A) Compared with Figure 3, when the first point near to t = t0 was excluded from the fitting, the three methods produced very similar results, illustrating

that this point have greater computational weight than other point in the LL-LS method (αmle = 6.9087, βmle = 1.3795, Fmle = 2.4313, αls = 5.5731, βls = 1.7838,

Fls = 2.5687, αnon = 6.0294, βnon = 1.7116, Fnon = 2.5780). (B) In comparison with the first point near to t = t0, including the additional last point hardly influenced

the results. The nonlinear method and the proposed method showed relatively stable performances for the choice of data points due to all observations being treated

in an equal manner (αmle = 5.8765, βmle = 1.7348, Fmle = 2.6190, αls = 4.4527, βls = 2.3626, Fls = 2.6610, αnon = 5.6077, βnon = 1.8767, Fnon = 2.6624). The

1R2∗ signal obtained during the first bolus pass is shown as filled circles, while the other sample points are indicated by hollow circles. The area under the fitted 1R2∗

curve corresponds to the estimated rCBV.

Equation (13). Unlike the LL-LS method, the proposed method
considers that all the observations y(tk), k = 1, . . .N are
independent samples from a gamma distribution (Equation 15)
with unknown parameters α and β . The MLE method estimates
those two parameters by maximizing the probability of obtaining
the observed data. Moreover, compared with the other two
methods, the LL-LS method requires additional information on
tmax that also increases the deviation.

Figure 6 provides a comparison of the three methods for
different data sets. When the data point near t = t0 was
excluded from the fitting, the LL-LS method obtained estimates
similar to those from the other two methods, illustrating the
great computational weight for this data point (compare green
lines in Figures 3, 6A). In contrast, including the data point
far from t = t0 had little influence on the results (compare
green lines in Figures 3, 6B). Because both the nonlinear and
proposed methods minimize the estimation error averaged
over all observations, they still show relatively stable estimates
irrespective of the choice of data points (Figure 6B). This is
particularly important for the voxel-wise analysis in the whole
brain where it is impossible to check all the data points. The width
of the first bolus pass shows a wide variation due to different
imaging regions and different molarity/dosages for the contrast
agents (Wirestam et al., 2009; Schmiedeskamp et al., 2013). This
situation may result in valuable data points being missed or extra
data points being included. Our algorithm exhibits more stable
and accurate performance in all simulation situations, and hence
it has the potential to cope better with undesirable aspects of the
image acquisition, such as the inclusion of improper data points,

unforeseen data errors, poor image alignment, and the use of new
protocols/tracers.

Our study also provides suggestions on how to achieve more
reliable estimates when using the two conventional methods in
practical applications. As discussed above, the data point near
t = t0 (we suggest t < 1 s) should be excluded from the fitting
when using the LL-LS method. Moreover, compared with the
previous empirical approach for the initial value in the nonlinear
method, using estimates from the LL-LS method as the initial
values in the nonlinear method can reduce the probability of
failure for the fitting procedure by about 10-fold (Benner et al.,
1997).

Different from a previous method (Scalzo and Liebeskind,
2016), the parameters were computed using a bolus tracking
method based on the deconvolution of the time-density curve
on a pixel-by-pixel basis. At first, our method was proposed
to be applied to the specific situation of estimating the whole
brain rCBV curve (Zhang et al., 2016), which means fitting
the perfusion curve by involving only a few data points. As
we mentioned above, in the case of a small sample, our
proposed strategy can also ensure a more accurate and stable
performance. On the other hand, for the parameter estimation,
although his paper uses the EM algorithm, which is based on
the MLE principle. But in their M-step, they adopt a numerical
optimization technique. This iterative strategy can approach the
optimal solution well, but it may increase the time cost. Then
they used the Bayesian Information Criterion (BIC) to determine
the optimal K. As we have known that BIC requires a certain
amount of data to ensure accuracy, and insufficient data points
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will lead to inaccurate estimation. Compared with this numerical
optimization, we adopt an approximate asymptotic expansion
to determine the optimal parameter. Specifically, according to
an approximation that Thom developed to the solution, the
digamma function, ψ(α̂) has an asymptotic expansion (Thom,
1958). Therefore, this approximate solution our proposal adopts
will allow us to quickly determine the parameters, greatly
saving the time cost, and there is no need to manually set the
solution procedures.

Furthermore, the proposed strategy could potentially be
improved by constructing several bias-correction forms of the
MLE estimator to improve the optimal properties of the original
MLE in the case of small samples (Choi and Wette, 1969;
Giles and Feng, 2009). Also, the strategy could be extended to
an estimation scheme containing location parameter t0 for the
three-parameter gamma distribution (Cohen and Whitten, 1982;
Anger, 1995). In addition, it is possible to accommodate other
mathematical models and include prior knowledge from other
modalities so as to further improve the performance (Wu et al.,
2004). While it is always possible to transform a distribution-
fitting problem into a curve-fitting problem by fitting a curve
to a histogram, it is rarely possible to perform the reverse
procedure. However, in this paper, we have presented such an
example. Despite its success, several questions related to the
mathematics underlying the approach still need to be clarified,
which will limit our proposal to some extent in explaining
the underlying mechanism, such as the optimal asymptotic
properties of the MLE estimator for discrete sampling, and the
relationship between time resolution and sample size.

In conclusion, the results reported here have demonstrated
that the proposed strategy exhibits attractive performance
relative to the conventional methods. The algorithm is easy to
implement, and it is equivalent to the LL-LS method in terms
of computational cost O(n), and it dispenses with the need to
guess the initial values. Our method involves transforming the
curve-fitting problem into the probability distribution fitting

problem, and the perfusion curve can be well fitted by the MLE
estimator. Thus, it is not only suitable for contrast-enhanced
MRI but also other methods of bolus-tracking perfusion imaging,
for example, X-rays, CT, PET, etc. We therefore suggest that
the proposed strategy could represent an alternative option for
assessing intravascular indicator dynamics from bolus-tracking
perfusion imaging. Currently, the method is successfully applied
to our study on hemodynamic assimilation (Zhang et al., 2016).
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APPENDIX

A. Calculating rCBV From Ŵ-Variate
Function
The area F under the concentration time curve is proportional to
the blood volume, and can be calculated as follows:

F =
∫ ∞

t0

Ci(t)dt

=
∫ ∞

t0

A · (t − t0)
αe−(t−t0)/βdt

=
∫ ∞

0
At′αe−t′/βdt′ (t′ = t − t0)

= A · βα+1

∫ ∞

0
(
t′

β
)αe−t′/βd(

t′

β
)

= A · βα+1 · Ŵ(α + 1) (A1)

B. Lévy-Lindberg Central Limit Theory
Let X1, X2, . . . be a sequence of iid random variables with
EXi = µ and 0< Var Xi = σ 2 < ∞. Define
X̄n = (1/n)

∑n
i=1 Xi. Let Gn(x) denote the cumulative

distribution function (cdf) of
√
n(X̄n − µ)/σ . Then, for any

x,−∞ < x <∞,

lim
n→∞

Gn(x) =
∫ x

−∞

1√
2π

e−y2/2dy; (B1)

that is,
√
n(X̄n−µ)/σ has a limiting standard normal distribution

(Casella and Berger, 2001).
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