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ABSTRACT Burkholderia infections can result in serious diseases with high mortality,
such as melioidosis, and they are difficult to treat with antibiotics. Innate immunity
is critical for cell-autonomous clearance of intracellular pathogens like Burkholderia
by regulating programmed cell death. Inflammasome-dependent inflammatory cyto-
kine release and cell death contribute to host protection against Burkholderia pseu-
domallei and Burkholderia thailandensis; however, the contribution of apoptosis and
necroptosis to protection is not known. Here, we found that bone marrow-derived
macrophages (BMDMs) lacking key components of pyroptosis died via apoptosis dur-
ing infection. BMDMs lacking molecules required for pyroptosis, apoptosis, and nec-
roptosis (PANoptosis), however, were significantly resistant to B. thailandensis-
induced cell death until later stages of infection. Consequently, PANoptosis-deficient
BMDMs failed to limit B. thailandensis-induced cell-cell fusion, which permits
increased intercellular spread and replication compared to wild-type or pyroptosis-
deficient BMDMs. Respiratory B. thailandensis infection resulted in higher mortality in
PANoptosis-deficient mice than in pyroptosis-deficient mice, indicating that, in the
absence of pyroptosis, apoptosis is essential for efficient control of infection in vivo.
Together, these findings suggest both pyroptosis and apoptosis are necessary for
host-mediated control of Burkholderia infection.

IMPORTANCE Burkholderia infections result in a high degree of mortality when left
untreated; therefore, understanding the host immune response required to control
infection is critical. In this study, we found a hierarchical cell death program utilized
by infected cells to disrupt the intracellular niche of Burkholderia thailandensis, which
limits bacterial intercellular spread, host cell-cell fusion, and bacterial replication. In
macrophages, combined loss of key PANoptosis components results in extensive B.
thailandensis infection-induced cell-cell fusion, bacterial replication, and increased cell
death at later stages of infection compared with both wild-type (WT) and pyroptosis-
deficient cells. During respiratory infection, mortality was increased in PANoptosis-
deficient mice compared to pyroptosis-deficient mice, identifying an essential role for
multiple cell death pathways in controlling B. thailandensis infection. These findings
advance our understanding of the physiological role of programmed cell death in con-
trolling Burkholderia infection.
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Infection with Burkholderia pseudomallei causes the disease melioidosis, which affects
patients in Southeast Asia and Northern Australia and can infect multiple other ani-

mal species (1). Similarly, Burkholderia mallei causes glanders, a rare disease contracted
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from infected horses. The severe diseases caused by B. mallei and B. pseudomallei,
which, if left untreated, cause mortality in roughly 50% of patients, has led to their clas-
sification as potential bioweapons (2). Burkholderia spp. are also inherently antibiotic
resistant, which has spurred interest in studying their virulence mechanisms to develop
alternative treatments for infection. Additionally, the intracellular bacterium B. thailan-
densis is a closely related model for the more virulent B. pseudomallei and B. mallei and
is important for studying Burkholderia virulence mechanisms (3–5).

Innate immune signaling and inflammatory cytokines are critical for controlling
Burkholderia infection, but how these inflammatory pathways provide protection dur-
ing infection is not well understood (6, 7). Programmed cell death pathways, which are
critically regulated by these innate immune pathways, have emerged as an important
potential mechanism for limiting Burkholderia infections.

Programmed cell death is important for normal organismal development, as well as
clearance of intracellular pathogens from infected cells (8). Pyroptosis is an inflamma-
tory form of lytic cell death which is initiated by host sensing of conserved microbial
ligands or cellular danger signals (9). Activation of cytosolic inflammasome sensors by
these ligands leads to the activation of caspase-1, which cleaves substrates interleukin
1b (IL-1b), IL-18, and the pore-forming executioner molecule gasdermin D (GSDMD)
into their active forms, thereby driving pyroptosis (10–17). GSDMD can also be acti-
vated by caspase-11-dependent sensing of intracellular lipopolysaccharide (LPS),
resulting in GSDMD-dependent pyroptosis (18–21). Necroptosis is another form of lytic
cell death, mediated by RIPK1, TRIF, or ZBP1-dependent activation of RIPK3, which
then phosphorylates the pore-forming executioner molecule MLKL (22–26). This pro-
cess largely occurs in cells where caspase-8 activity is inhibited, as caspase-8 activity
limits RIPK1 and RIPK3 under homeostatic conditions (25–31). Apoptosis involves initia-
tor caspases (caspase-8 and caspase-9), which cleave and activate executioner cas-
pases-3, -7, and -6 that then cleave downstream substrates, resulting in the characteris-
tic features of apoptosis, including membrane blebbing, disruption of the nucleus, and
cell shrinkage (32). Phagocytes recognize and clear apoptotic cells by phagocytosis,
which limits the release of inflammatory intracellular components (33), and has led to
apoptosis being historically considered a minimally inflammatory cell death process.
More recent studies, however, have shown that under certain conditions, cross talk
between pyroptotic and apoptotic pathways can promote inflammation (34–38). In
addition, necroptosis has been shown to activate pyroptosis (39). This extensive cross
talk between cell death pathways has led to the development of the concept of
PANoptosis, which is defined as a unique, physiologically relevant, inflammatory pro-
grammed cell death pathway activated by specific triggers and regulated by the
PANoptosome complex (40–42). The PANoptosome provides a molecular scaffold for
contemporaneous engagement of key shared components of the pyroptosis, apopto-
sis, and necroptosis pathways (23, 43–46). The ability of these molecules to interact
allows for intricate coregulation between the cell death pathways that had previously
been thought to be independent. PANoptosis has been implicated in infectious and
autoinflammatory diseases, cancer, and beyond (23, 35, 37, 43–51), and the molecular
details and phenotypic outcomes of the cross talk and coregulation among pyroptosis,
apoptosis, and necroptosis are dependent on the stimulus provided.

Understanding the role of cell death pathways during Burkholderia infection is criti-
cal to identifying ways to counteract these pathogens. Previous studies have estab-
lished an important role for pyroptosis in the control of B. thailandensis (52–58). The
role of apoptosis and necroptosis in B. thailandensis infection, however, is not well
understood. In this study, we identified a critical role for both pyroptosis and apoptosis
in restricting B. thailandensis intracellular replication, which was significantly impaired
by deletion of key components of PANoptosis. Consequently, macrophages deficient
in PANoptotic molecules were unable to limit the cell-cell fusion and intercellular
spread of B. thailandensis, which permitted dramatically increased bacterial replication.
Loss of PANoptosis similarly rendered mice highly susceptible to B. thailandensis
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respiratory infection. Together, these findings suggest a key role for multiple pro-
grammed cell death pathways in restricting Burkholderia-induced cell-cell fusion, bac-
terial infection, and infection-induced mortality.

RESULTS
B. thailandensis infection-induced cell death is delayed but ultimately increases in

Casp8/Ripk3/Casp1/112/2 BMDMs.Macrophages infected with B. thailandensis undergo
NLRP3-, NLRC4-, caspase-1-, caspase-11-, and GSDMD-dependent pyroptosis (52–60),
but the role of other cell death pathways during infection is poorly understood. We
therefore assessed B. thailandensis infection in BMDMs that lacked critical components
of cell death pathways. Deletion of caspase-8 from mice results in embryonic lethality
due to spontaneous activation of necroptosis mediated by RIPK3 and MLKL; this lethal-
ity can be rescued by concurrent deletion of caspase-8 and either RIPK3 or MLKL (61,
62). Casp8/Ripk32/2 mice can then be used to study the combined role of the apoptotic
and necroptotic pathways during infection with B. thailandensis. Additionally, Casp8/
Ripk3/Casp1/112/2 mice, which are deficient in PANoptosis, allow the study of the com-
bined roles of pyroptosis, caspase-8-dependent apoptosis, and necroptosis during
infection (43, 49). To determine the contribution of pyroptosis, apoptosis, and necrop-
tosis, BMDMs deficient in key components of pyroptosis (Casp1/112/2 or Gsdmd2/2),
apoptosis/necroptosis (Casp8/Ripk32/2), necroptosis (Ripk32/2 or Mlkl2/2), pyroptosis/
necroptosis (Gsdmd/Mlkl2/2), or PANoptosis (Casp8/Ripk3/Casp1/112/2) were infected
with B. thailandensis. At 24 h postinfection, there was no difference between cell death
in WT cells and cells deficient in necroptosis, a moderate increase in cell death in
pyroptosis-deficient cells, and a further increased number of dead PANoptosis-defi-
cient cells (Fig. 1A to D). The kinetics of cell death suggest that pyroptosis-competent
BMDMs (WT, Ripk32/2, Casp8/Ripk32/2, and Mlkl2/2) rapidly undergo pyroptosis
(Fig. 1B). The moderate increase in cell death observed in cells lacking pyroptosis mole-
cules (GSDMD and caspase-1/11) at later time points is likely due to a delay in cell
death, which permits increased time for B. thailandensis-induced intercellular spread
via cell-cell fusion (Fig. 1A and D). The cell death observed in BMDMs lacking key com-
ponents of pyroptosis also suggested that additional cell death pathways are second-
arily activated by B. thailandensis infection. Consistent with this observation,
PANoptosis-deficient BMDMs undergo further delayed cell death compared with both
WT cells and BMDMs lacking key pyroptosis machinery (GSDMD or caspase-1/11)
(Fig. 1A, C, and D). Together, these findings suggest hierarchical activation of pyropto-
sis and apoptosis is required for activation of macrophage cell death during B. thailan-
densis infection. We further observed that BMDMs deficient in key components of
PANoptosis formed significantly larger multinucleated giant cells (MNGCs) compared
to infected WT BMDMs (Fig. 1D, Video S1 and S2 in the supplemental material).
Together, these data suggest that macrophages utilize both pyroptosis and apoptosis
cell death pathways to limit B. thailandensis infection.

B. thailandensis infection induces pyroptotic and apoptotic cell death in BMDMs.
Given our observation that PANoptosis-deficient BMDMs (Casp8/Ripk3/Casp1/112/2)
displayed distinct cell death activation kinetics during B. thailandensis infection, we
biochemically examined the activation of pyroptotic, apoptotic, and necroptotic path-
ways at 24 h of infection. Consistent with previous studies (53, 55–57, 59, 60), B. thai-
landensis infection in WT BMDMs activated caspase-1 and GSDMD (Fig. 2A, Fig. S1A). In
B. thailandensis-infected WT BMDMs, apoptotic caspases were also slightly activated
(Fig. 2B, Fig. S1B), suggesting apoptotic pathways may also regulate cell death during
infection. In pyroptosis-deficient Casp1/112/2 or Gsdmd2/2 BMDMs, caspase-8 and cas-
pases-3/7 were activated to a greater extent than in WT, suggesting that macrophages
lacking the machinery for pyroptosis can compensate by activating apoptosis to kill
infected macrophages (Fig. 2B). Our data indicated that BMDMs lacking necroptosis
components (RIPK3 or MLKL) underwent similar cell death compared with WT BMDMs
(Fig. 1B and D), which is consistent with the observed activation of caspase-1, GSDMD,
and apoptotic caspases in these cells (Fig. 2A and B). Phosphorylation of RIPK3 and
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MLKL was not observed during infection at the multiplicity of infection (MOI) and time
points used (Fig. 2C, Fig. S1C), suggesting necroptosis is not induced by B. thailandensis
under these conditions. Cell death in pyroptosis-deficient macrophages also reduced
the amount of total protein compared to WT, likely via apoptotic caspase-mediated
cleavage (Fig. 2C).

While Casp8/Ripk3/Casp1/112/2 BMDMs were protected from cell death in the early
stage of infection with B. thailandensis, this delay in cell death resulted in increased for-
mation of MNGCs via cell-cell fusion (Fig. 1D). At later stages of infection, these MNGCs

FIG 1 B. thailandensis infection-induced cell death is delayed but ultimately increases in Casp8/Ripk3/Casp1/112/2

BMDMs. Bone marrow-derived macrophages (BMDMs) were infected with B. thailandensis (MOI 5) and cell death was
tracked in the indicated WT or knockout cells deficient in components of pyroptosis (Casp1/112/2, Gsdmd2/2),
necroptosis (Ripk32/2, Mlkl2/2), apoptosis/necroptosis (Casp8/Ripk32/2), pyroptosis/necroptosis (Gsdmd/Mlkl2/2), or
PANoptosis (Casp8/Ripk3/Casp1/112/2). (A to C) Quantification of propidium iodide (PI)1 nuclei over 24 h of infection in
the indicated BMDM genotypes with (D) representative images from 24 h postinfection showing PI1 nuclei (red object
mask). Scale bars (black) indicate 50mm. Significance was determined by two-way ANOVA with Tukey’s multiple-
comparison test: *, #0.05; **, #0.01; ***, #0.001; ****, #0.0001; n.s., not significant. Data are representative of one of
at least three independent biological replicate experiments where at least four replicate wells, with nine images per
well, were quantified to determine the average nuclei count per well.
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underwent focal, synchronized cell death (Video S1 and S2). Consistent with this find-
ing, the initiator caspase-9 and executioner caspases-3/7 were activated in Casp8/
Ripk3/Casp1/112/2 BMDMs at 24 h postinfection (Fig. 2B, Fig. S1B), suggesting intrinsic
apoptosis is ultimately activated in these MNGCs. Together, these data indicate that
pyroptosis and caspase-8-dependent apoptosis predominantly initiate rapid cell death
during B. thailandensis infection to limit the bacterial intracellular niche.

Casp8/Ripk3/Casp1/112/2 BMDMs fail to restrict B. thailandensis cell-cell fusion
and replication. The significantly delayed cell death and extensive cell-cell fusion
observed in B. thailandensis-infected Casp8/Ripk3/Casp1/112/2 BMDMs suggested that

FIG 2 B. thailandensis infection induces pyroptotic and apoptotic cell death in BMDMs. (A to C) Bone
marrow-derived macrophages (BMDMs) were infected with B. thailandensis and combined cell and
supernatant lysates (for caspase and gasdermin D [GSDMD] blots) or cell lysates were collected at 24
h postinfection. Immunoblots were performed to detect pyroptosis activation, indicated by cleavage
of caspase-1 (CASP1) and GSDMD (A), apoptosis activation, indicated by cleavage of caspase-8
(CASP8), caspase-9 (CASP9), caspase-3 (CASP3), and caspase-7 (CASP7) (B), or necroptosis activation,
indicated by phosphorylation of RIPK3 (p-RIPK3) and MLKL (p-MLKL) (C). Data are representative of
one of at least three independent biological experiments, and BMDMs used to generate data in Fig. 2
were also used to generate data presented in Fig. S1 in the supplemental material and Fig. 3B to D.
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bacterial infection is poorly controlled in these cells compared to WT. The physiological
importance of cell-cell fusion in the infectious process of B. thailandensis, B. pseudomal-
lei, B. mallei, and Burkholderia oklahomensis is still poorly understood, but is thought to
contribute to intercellular spread and promote bacterial replication. To determine the
impact of deleting key PANoptosis components, we first examined cell-cell fusion and
the bacterial burden of BMDMs by confocal microscopy. As expected, cell-cell fusion
and the intracellular bacterial burden were notably increased in Casp8/Ripk3/Casp1/
112/2 BMDMs compared to WT (Fig. 3A), indicating that delayed cell death in Casp8/
Ripk3/Casp1/112/2 BMDMs allows for increased cell-cell fusion and B. thailandensis
intercellular spread to neighboring cells.

B. thailandensis, B. pseudomallei, B. mallei, and B. oklahomensis possess a unique
type six secretion system (T6SS) effector protein, VgrG5, which is required for infection-
induced host cell-cell fusion, formation of MNGCs, and intercellular spread (63–66). To
distinguish between the role of bacterial-mediated cell-cell fusion and host-mediated
cell death in regulating bacterial replication, we utilized WT B. thailandensis and a mu-
tant strain of B. thailandensis vgrG5DCTD (indicated as BtDCTD) lacking the C-terminal
domain of VgrG5 that is required for inducing eukaryotic cell-cell fusion (65). We first
determined that cell-cell fusion in B. thailandensis-infected Casp8/Ripk3/Casp1/112/2

BMDMs required VgrG5 (Fig. 3B). To quantify intracellular bacterial replication, BMDMs
lacking executioners of pyroptosis/necroptosis (Gsdmd/Mlkl2/2) or PANoptosis (Casp8/
Ripk3/Casp1/112/2) were infected, and intracellular bacterial CFU counts were deter-
mined after 24 h. BMDMs deficient in the pyroptosis and necroptosis executioners
GSDMD and MLKL were largely able to restrict intracellular bacterial replication, sug-
gesting that apoptosis limited the intracellular replication of B. thailandensis (Fig. 3B
and C). In contrast, significantly increased bacterial replication was observed in Casp8/
Ripk3/Casp1/112/2 BMDMs compared to WT (Fig. 3B and D). These findings indicate
that the delayed cell death observed in Casp8/Ripk3/Casp1/112/2 BMDMs results in fail-
ure to restrict intracellular replication and cell-to-cell spread of B. thailandensis (Fig. 3B
and D). B. thailandensis lacking VgrG5 cell-cell fusion activity also replicated intracellu-
larly to a higher degree in Casp8/Ripk3/Casp1/112/2 BMDMs than in WT (Fig. 3D), but
loss of cell-cell fusion limited the overall replicative capacity, reinforcing the impor-
tance of cell-cell fusion and intercellular spread to the pathogenesis of the B. thailan-
densis. These data, together with the observation that pyroptosis is the primary cell
death pathway activated in WT BMDMs (Fig. 2), suggest that intracellular replication
and spread of B. thailandensis is restricted by pyroptosis but, in the absence of pyrop-
tosis, caspase-8-dependent apoptosis compensates to mediate intracellular clearance.

Casp8/Ripk3/Casp1/112/2 mice fail to limit respiratory B. thailandensis infection.
The failure of Casp8/Ripk3/Casp1/112/2 BMDMs to restrict B. thailandensis intercellular
spread via cell-cell fusion and intracellular replication suggested that Casp8/Ripk3/Casp1/
112/2 mice would be highly susceptible to severe lethal infection. To determine whether
PANoptosis-deficient mice are more susceptible to lethality following B. thailandensis
infection, mice were inoculated intranasally with 5� 104 B. thailandensis. Casp8/Ripk3/
Casp1/112/2 mice were significantly more susceptible to lethal infection with WT B. thai-
landensis than were WT mice (Fig. 4A). Previous studies have found that B. thailandensis
vgrG5DCTD infection is attenuated compared to WT B. thailandensis in WT mice (59, 65),
but whether cell-cell fusion is important for virulence in the absence of cell death is
unknown. Because B. thailandensis vgrG5DCTD was not efficiently cleared from Casp8/
Ripk3/Casp1/112/2 BMDMs (Fig. 3D), we hypothesized that Casp8/Ripk3/Casp1/112/2 mice
may be more susceptible to infection than WT mice. Contrary to our hypothesis, Casp8/
Ripk3/Casp1/112/2 mice infected with B. thailandensis vgrG5DCTD survived challenge, sug-
gesting that bacterial-mediated cell-cell fusion is necessary for full virulence and that loss
of cell-cell fusion may result in a self-limiting infection, even in the absence of PANoptosis
(Fig. 4A). Consistent with previous studies, caspase-1/11 and GSDMD were required for
host protection against infection at this infectious dose (Fig. 4B) (58). Similar to the phe-
notype observed in Casp8/Ripk3/Casp1/112/2 mice, B. thailandensis vgrG5DCTD infection
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FIG 3 Casp8/Ripk3/Casp1/112/2 BMDMs fail to restrict B. thailandensis cell-cell fusion and replication. Bone marrow-derived
macrophages (BMDMs) were infected with B. thailandensis (GFP1) and fixed at 24 h postinfection. (A) The indicated BMDMs were
stained for F-actin (white) and nuclei (blue), and bacteria were visualized by bacterial green fluorescent protein (GFP) expression
(green); images were collected by confocal microscopy. (B) Representative images of B. thailandensis-infected BMDMs at 24 h
postinfection with SYTOX Green-stained nuclei (red). (C and D) Intracellular CFU at 24 h postinfection were quantified from WT
(n= 4) and pyroptosis/necroptosis-deficient (Gsdmd/Mlkl2/2) BMDMs (n= 8) (C) or PANoptosis-deficient (Casp8/Ripk3/Casp1/112/2)
BMDMs (n= 4) infected with WT B. thailandensis (Bt) or the vgrG5DCTD mutant (BtDCTD) (D). Scale bars indicate (white) 20mm,
(white, inset) 3.3mm, or (black) 25mm. Yellow-dotted line (B) indicates the boundary of multinucleated giant cells (MNGCs).
Significance was determined by one-way ANOVA with Holm-Sidak’s multiple-comparison test: *, #0.05; **, #0.01; ***, #0.001; ****,
#0.0001; n.d., not detected. Data are representative of at least two independent biological experiments, and BMDMs used to
generate data in Fig. 3B to D were also used to generate data presented in Fig. 2.
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FIG 4 Casp8/Ripk3/Casp1/112/2 mice fail to limit respiratory B. thailandensis infection. Mice were intranasally infected
with WT (Bt) or vgrG5DCTD (indicated as BtDCTD) B. thailandensis. (A to C) Survival of infected mice (5� 104 dose) was
monitored in WT and PANoptosis-deficient Casp8/Ripk3/Casp1/112/2 (A), pyroptosis-deficient (Casp1/112/2 or Gsdmd2/2)
(B), or necroptosis-deficient (Ripk32/2 or Mlkl2/2) mice (C). (D) At day 2 postinoculation, CFU counts were determined
from lungs of infected mice (WT 1 Bt [n=7]; WT 1 BtDCTD [n=5]; Casp8/Ripk3/Casp1/112/2 1 Bt [n=13]; Casp8/Ripk3/
Casp1/112/2 1 BtDCTD [n=6]). (E) Representative histological images from infected (5� 104 dose) lungs at day 2
postinoculation, at 4� and 20� magnification, of each condition are shown and were collected by a veterinary
pathologist (P.V.). (F) Survival of infected mice (5� 102 dose) was monitored. (G and H) At day 3 postinoculation, CFU
counts were determined from lungs (G) or spleens (H) of infected mice (WT 1 Bt, [n=20]; Gsdmd2/2 1 Bt [n=11];
Casp1/112/2 1 Bt [n=10]; Casp8/Ripk3/Casp1/112/2 1 Bt [n=22]). Significance was determined by the log rank test (A to
C, F), one-way ANOVA with Holm-Sidak’s multiple-comparison test (D), or one-way ANOVA with Dunn’s multiple-
comparison test (G and H): *, #0.05; **, #0.01; ***, #0.001; ****, #0.0001, ND, not detected. Data are pooled from at
least two independent experiments (A to D), one experiment (E), or at least two experiments (G and H).
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was also attenuated in mice lacking caspase-1/11 or GSDMD (Fig. S2A). Mice lacking nec-
roptosis components RIPK3 or MLKL survived similarly to WT mice during infection with
B. thailandensis, suggesting necroptosis is not required to control B. thailandensis (Fig. 4C).
Mice lacking both GSDMD and MLKL (pyroptosis/necroptosis) were similarly susceptible
to lethal infection as Gsdmd2/2 mice (Fig. S2B). Mice lacking caspase-8, RIPK3, and RIPK1
(apoptosis/necroptosis) survived infection similarly to mice lacking either RIPK3 or MLKL,
suggesting pyroptosis primarily protects against B. thailandensis in pyroptosis-competent
mice (Fig. S2C). To determine whether bacterial replication was regulated in mice similarly
to what we observed in BMDMs (Fig. 3C and D), bacterial CFU counts were determined in
lung tissues collected at day 2 postinoculation. Consistent with the increased bacterial
replication observed in Casp8/Ripk3/Casp1/112/2 BMDMs, Casp8/Ripk3/Casp1/112/2 mice
permitted increased replication of B. thailandensis compared to WT mice (Fig. 4D). A trend
toward increased bacterial burden was also observed during infection with the B. thailan-
densis vgrG5DCTD strain in PANoptosis-deficient mice compared to WT mice (Fig. 4D).
Consistent with the mouse survival data, Casp8/Ripk3/Casp1/112/2 mice, which suc-
cumbed to WT B. thailandensis infection, exhibited increased lung tissue damage at day 2
postinoculation (Fig. 4E, Fig. S3A to E). Notably, Casp8/Ripk3/Casp1/112/2 mice had signifi-
cantly increased accumulations of degenerating/necrotic polymorphonuclear leukocytes
(PMNs) that plugged terminal airways and were associated with necrosis of pulmonary
parenchyma. In contrast, pulmonary lesions in WT mice infected with WT B. thailandensis
were smaller, more clearly defined, and consisted of accumulations of intact PMNs and
macrophages, with no blocking of terminal airways or notable damage to alveolar walls
(Fig. S3A to E).

To determine whether PANoptosis-deficient mice were more susceptible to lethal
infection than pyroptosis-deficient mice, mice were challenged with a lower dose of B.
thailandensis (500 CFU) and monitored daily. Mice lacking GSDMD survived infection
similarly to WT mice (Fig. 4F). Mice lacking the pyroptotic caspases-1/11 were more
susceptible to lethal B. thailandensis infection than both WT and Gsdmd2/2 mice
(Fig. 4F). However, mice deficient in PANoptosis were more susceptible to lethal infec-
tion than either Gsdmd2/2 or Casp1/112/2 mice, suggesting that pyroptosis and apo-
ptosis both mediate protection during B. thailandensis infection (Fig. 4F). These data
also suggest that caspase-1/11 activity, independent from GSDMD cleavage, is impor-
tant for limiting infection, likely due to cleavage of additional host proteins.
PANoptosis-deficient mice also failed to control B. thailandensis bacterial replication in
the lung and spleen during infection (Fig. 4G and H). Consistent with mouse survival
during infection, WT and Gsdmd2/2 mice harbored less B. thailandensis, while Casp1/
112/2 and Casp8/Ripk3/Casp1/112/2 mice harbored increased bacteria. Together, these
data highlight the important role both pyroptosis and apoptosis play in restricting re-
spiratory infection by B. thailandensis and further our understanding of the physiologi-
cal role of Burkholderia-mediated cell-cell fusion in infection.

DISCUSSION

In this study, we found that pyroptosis and apoptosis both regulate cell death dur-
ing intracellular infection by B. thailandensis (Fig. 5). These programmed cell death
pathways are necessary for the host to restrict the intracellular replication of B. thailan-
densis. Pyroptosis is largely responsible for promoting intracellular clearance of B. thai-
landensis in WT BMDMs, but in BMDMs lacking critical pyroptotic machinery, cells
undergo robust apoptotic cell death. Previous studies identified a critical role for
pyroptotic cell death molecules in restricting B. thailandensis but the role of apoptotic
caspases and necroptosis has not been examined (52–58). Pyroptosis alone carries out
multiple distinct functions in mediating protection during Burkholderia infections. In
lung epithelial cells, caspase-11 is required for host protection, while macrophages
require caspase-1, suggesting important tissue-specific roles for cell death (60). In
mice, caspase-1-dependent pyroptosis is required for the production of the cytokines
IL-18 and IL-1b . IL-18-dependent production of gamma interferon (IFN-g) in mice is
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required for the control of B. thailandensis and B. pseudomallei, while the release of IL-
1b is responsible for lethal inflammatory pathology (52, 54), indicating that cell death
must be carefully balanced by the host during Burkholderia infection.

Here, we found that macrophages lacking key components of PANoptosis were re-
sistant to infection-induced cell death until a later stage of B. thailandensis infection,
resulting in extensive cell-cell fusion, MNGC formation, and increased intracellular bac-
terial replication. In the later stages of infection, macrophages underwent caspase-8-in-
dependent apoptosis characterized by activation of caspase-9 and caspase-3/7, sug-
gesting intrinsic apoptosis can also be activated during B. thailandensis infection,
consistent with previous reports (53). As a result of the defective activation of cell
death in BMDMs lacking components of PANoptosis, intracellular B. thailandensis are
able to persist for an extended period of time, allowing for increased infection-induced
cell-cell fusion. The dramatic increase in cell-cell fusion in these cells is likely a result of
the extended cell survival time, which increases the amount of time for intracellular
bacteria to both replicate and form protrusions that increase contacts between cell
membranes necessary for cell-cell fusion. These data also suggest that the eventual
activation of caspase-9-dependent intrinsic apoptosis is insufficient to mediate protec-
tion from infection. These findings imply that infected macrophages are highly adapta-
ble in activating programmed cell death pathways to clear intracellular pathogens, but
also highlight the important role that pyroptosis and caspase-8-dependent apoptosis
play in rapidly limiting B. thailandensis replication. In addition to the role cell death
plays in controlling Burkholderia infection, questions remain as to why B. thailandensis,
B. pseudomallei, B. mallei, and B. oklahomensis possess a unique VgrG5 C-terminal do-
main found only in Burkholderia spp., which is required for cell-cell fusion and virulence
(64–67). Our data suggest that this unique virulence strategy is required to counter
host-mediated restriction of bacterial intracellular replication.

Previous work has identified a critical role for cross talk between cell death path-
ways in regulating cell death during bacterial and viral infections with Salmonella enter-
ica serovar Typhimurium, Listeria monocytogenes, influenza A virus (IAV), and vesicular

FIG 5 Graphical model for the roles of cell death pathways in B. thailandensis infection. The
schematic summarizes the activation of cell death pathways in WT BMDMs or in knockouts of key
components of pyroptosis (GSDMD or caspase-1/11) or PANoptosis (caspase-1/11, caspase-8, RIPK3)
and the relative contribution of these cell death pathways during respiratory infection in mice.
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stomatitis virus (VSV) (43). The involvement of pyroptosis, apoptosis, and necroptosis
acting together established the concept of PANoptosis. Initial studies identified that
activation of ZBP1-dependent PANoptosis is important for the control of IAV infection
(23, 68). Similarly, RIPK1-dependent PANoptosis was identified in macrophages lacking
TAK1, which undergo spontaneous PANoptosis (45, 48). Other studies found that
Yersinia pestis, which secretes the T3SS effector protein YopJ, inhibits TAK1-dependent
inflammatory signaling and consequently results in TAK1 inhibition-mediated inflam-
matory cell death (69, 70). Additionally, Shigella flexneri utilizes T3SS effectors OspC1
and OspD3 to inhibit caspase-8 and RIPK1/RIPK3, respectively (71), further showing
how bacterial pathogens can modulate cell death effectors. The evolutionary arms race
between host cell death pathways and pathogen-mediated inhibition of various cell
death components highlights the importance of studying the molecular host-patho-
gen interactions of multiple pathogens (40). While B. thailandensis predominantly acti-
vated pyroptosis and apoptosis during infection, it may possess a virulence factor that
inhibits necroptosis, and other Burkholderia species may have unique abilities to modu-
late these programmed cell death pathways. Inflammatory cytokines or cell-mediated
immunity may also change the cell death pathways engaged in B. thailandensis-
infected cells. Furthermore, dysfunction of these cell death responses may be impor-
tant to permit the chronic infections sometimes observed during B. pseudomallei infec-
tion in humans (72). Overall, these studies suggest a critical role for cell death and
PANoptosis in limiting infection by many distinct microbial pathogens and highlight
the role that pathogens themselves can play in dictating the cell death outcome (40,
42, 43).

Using genetic mouse models deficient in key components of individual or multiple
cell death pathways, we have now established a critical role for pyroptosis and apoptosis
in controlling B. thailandensis infection (Fig. S4). Loss of these pathways rendered macro-
phages and mice highly susceptible to lethal infection by permitting unrestricted intracel-
lular bacterial replication and intercellular spread by cell-cell fusion. Understanding these
processes in the context of infection by fusogenic B. thailandensis, B. pseudomallei, B. mal-
lei, and B. oklahomensismay have important implications for treating infections caused by
these bacteria. The roles for programmed cell death in mediating protection against the
more evolutionarily distant, nonfusogenic Burkholderia spp., including Burkholderia cepa-
cia and Burkholderia cenocepacia, are likely distinct. Understanding the host immune
response and virulence mechanisms of Burkholderia spp. is also necessary to improve
treatment strategies, because Burkholderia spp. are inherently highly antibiotic resistant.
Our data suggest more broadly that the cross talk between programmed cell death path-
ways may be important to restrict multiple other microbial pathogens by limiting their in-
tracellular niche. Targeting programmed cell death pathways for therapeutic intervention
needs to be carefully considered, as inhibitors may result in alternative and unfavorable
forms of cell death during infection. This functional redundancy of cell death pathways
also has important implications for treating other diseases ranging from cancer to autoim-
munity. Despite the difficulty in targeting these highly interconnected cell death path-
ways, understanding the mechanisms by which these pathways are coordinated may
identify new therapeutic targets which could benefit patients with acute or chronic infec-
tions that are currently difficult to treat.

MATERIALS ANDMETHODS
Mice.Wild type (C57BL6/J), Casp1/112/2 (19), Gsdmd2/2 (55), Ripk32/2 (73), Casp8/Ripk32/2 (74), Mlkl2/2

(75), Gsdmd/Mlkl2/2 (43), Casp8/Ripk3/Casp1/112/2 (generated by crossing Casp8/Ripk32/2 and Casp1/112/2)
(35, 43), or Casp8/Ripk3/Ripk12/2 (generated by crossing Casp8/Ripk32/2 and Ripk11/2) (76) mice have been
described previously. Male and female mice between 6 and 8weeks old were used in this study. Mice were
bred at St. Jude Children’s Research Hospital, and studies were conducted under protocols approved by St.
Jude Children’s Research Hospital Institutional Committee on the Use and Care of Animals.

Bone marrow-derived macrophage cultures. Primary bone marrow-derived macrophages (BMDMs)
were grown for 6 days in Iscove’s modified Dulbecco’s medium (IMDM) (12440053, Thermo Fisher
Scientific, Waltham, MA) supplemented with 10% fetal bovine serum (FBS) (TMS-013-B, Millipore,
Billerica, MA or S1620, BioWest, Riverside, MO), 30% L929-conditioned medium, and 1� penicillin-strep-
tomycin (15070063, Thermo Fisher Scientific). BMDMs were seeded at a concentration of 1� 106 cells
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onto 12-well plates or 1� 105 cells onto 96-well plates and incubated overnight. Cells were washed and
cultured in antibiotic-free Dulbecco’s modified Eagle medium (DMEM) (11995065, Thermo Fisher
Scientific, Waltham, MA) with 10% FBS before stimulations or infections.

Bacterial culture. B. thailandensis strain E264 (green fluorescent protein [GFP]1) and B. thailandensis
vgrG5DCTD (vgrG5 lacking the C-terminal domain required for fusion activity) (65), provided by Joseph
Mougous (University of Washington, Seattle, WA), were cultured in LB broth (3002-031, MP Biomedicals,
Santa Ana, CA) overnight and subcultured into fresh LB medium for 3 h at 37°C to generate log-phase
cultures.

Mouse infections. B. thailandensis was grown as described above. For mouse infection experiments,
quantified frozen aliquots of B. thailandensis were diluted in phosphate-buffered saline (PBS) before
infection to inoculate 5� 104 or 5� 102 bacteria per mouse. Mice were anesthetized with isoflurane and
administered B. thailandensis in a 50 ml PBS suspension via the nares. After 2 days of infection, lungs
were harvested for histology (tissues fixed in formalin and processed by the St. Jude Children’s Research
Hospital Veterinary Pathology Core) or CFU analysis. Histological scoring was performed by a board-cer-
tified veterinary pathologist (author P.V.) and assigned a semiquantitative score based on the severity
grades 0 = within normal limits; 1 = minimal: rare or inconspicuous lesions; 2 = mild: multifocal or small,
focal, or widely separated, but conspicuous lesions; 3 = moderate: multifocal, prominent lesions; 4 =
marked: extensive to coalescing lesions or areas of inflammation with some loss of structure; 5 = severe:
diffuse lesion with effacement of normal structure. Severity grades were converted to semiquantitative
scores with the following criteria: 0 = 0; 1 = 1; 1.5 = 8; 2 = 15; 2.5 = 25; 3 = 40; 3.5 = 60; 4 = 80; 4.5 = 90;
5 = 100. CFU were determined by homogenizing tissue in PBS in Lysing Matrix C tubes on a FastPrep ho-
mogenizer (1169120050, MP Biomedicals) and plating on LB agar plates, then incubated overnight at
37°C.

Bone marrow-derived macrophage stimulations. BMDMs were differentiated as described above.
Prior to stimulation, cells were washed with PBS, and PBS was replaced with fresh antibiotic-free DMEM
containing 10% FBS. B. thailandensis (MOI 5) was pelleted onto cells at 300� g for 5min; cells were
washed after 1 h, incubated with DMEM containing 1,000mg/ml kanamycin for 1 h to kill remaining
extracellular B. thailandensis, washed, and finally incubated in DMEM containing 250mg/ml kanamycin
for the remainder of the experiment to restrict extracellular growth of B. thailandensis. After the final
wash, SYTOX Green (25 nM, S7020, Thermo Fisher Scientific) or propidium iodide (PI) (250 ng/ml, P3566,
Thermo Fisher Scientific) was added to media for IncuCyte experiments. To determine intracellular CFU
counts, cells were washed with PBS, lysed with PBS containing 0.01% Triton X-100, serially diluted in
PBS, and plated on LB agar plates, then incubated at 37°C.

Microscopy methods. For fluorescence microscopy experiments, BMDMs (0.5� 106) were seeded in
a 4-chamber m-slide (80426, Ibidi). Chambers were infected as described above. Wells were aspirated
and fixed in 4% paraformaldehyde (PFA), washed with PBS, permeabilized with 0.1% Triton X-100, and
stained with phalloidin-iFluor647 (ab176759, Abcam), and DAPI (49,6-diamidino-2-phenylindole). For
confocal images, a Nikon C2 microscope was used as previously described (59). Quantitative cell death
measurements by SYTOX Green or PI uptake counts were collected hourly on an IncuCyte S3 system
(Essen BioScience). Within each replicate well (on a 96-well plate), nine images were collected, and cell
death was quantified using the Basic Analyzer software of the IncuCyte S3 and exported as “object count
per well,” which extrapolates the “object count” from the average count across images to the total well
area. At least four replicate wells were included for each experiment, and these replicate wells were
used to determine statistical significance between treatment conditions.

Immunoblotting analysis. For signaling blots, the supernatant was removed, and cells were lysed in
radioimmunoprecipitation assay (RIPA) buffer containing protease and phosphatase inhibitors plus 4�
Laemmli sample buffer. Caspase and GSDMD cleavage were measured from the combined cell lysate and
supernatants. Proteins were separated via SDS-PAGE with 8 to 12% polyacrylamide gels, transferred to poly-
vinylidene difluoride (PVDF) membranes (IPVH00010, Millipore), and blocked with 5% nonfat dry milk.
Primary antibodies against caspase-1 (AG-20B-0042-C100, Adipogen), caspase-3/cleaved-caspase-3 (9662
and 9661, CST), caspase-7/cleaved-caspase-7 (9492 and 9491, CST), caspase-8/cleaved-caspase-8 (4927, CST
and AG-20T-0138-C100, Adipogen), caspase-9 (9504, CST), GSDMD (ab209845, Abcam), p-RIPK3 (91702, CST),
RIPK3 (2283, ProSci), p-MLKL/MLKL (37333 and 37705, CST), and b-actin (4970, CST) were incubated over-
night at 4°C followed by appropriate secondary antibodies conjugated with horseradish peroxidase (HRP)
incubated for 1 h at room temperature (Jackson ImmunoResearch, West Grove, PA). Membranes were visual-
ized using Luminata Forte Chemiluminescence substrate (WBLUF0500, Millipore) or SuperSignal West Femto
substrate (34096, Thermo Fisher Scientific) on a Bio-Rad ChemiDoc.

Quantification and statistical analysis. GraphPad Prism 6.0 software was used for data analysis.
Data are shown as mean 6 standard error of the mean (SEM). Statistical significance was determined by
one-way or two-way ANOVA with the Dunn’s, Tukey, or Holm-Sidak multiple-comparison test. The spe-
cific statistical testing for each experiment is indicated in the figure legends. Survival curves were com-
pared using the log-rank test. P, 0.05 was considered statistically significant.

Data availability. Further information and requests for resources and reagents should be
directed to and will be fulfilled by the corresponding author, Thirumala-Devi Kanneganti
(thirumala-devi.kanneganti@stjude.org).
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