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Abstract

Cutibacterium acnes is a pathogenic bacterium that cause inflammatory diseases of the

skin and intervertebral discs. The immune activation induced by C. acnes requires multiple

cellular responses in the host. Silkworm, an invertebrate, generates melanin by phenoloxi-

dase upon recognizing bacterial or fungal components. Therefore, the melanization reaction

can be used as an indicator of innate immune activation. A silkworm infection model was

developed for evaluating the virulence of C. acnes, but a system for evaluating the induction

of innate immunity by C. acnes using melanization as an indicator has not yet been estab-

lished. Here we demonstrated that C. acnes rapidly causes melanization of the silkworm

hemolymph. On the other hand, Staphylococcus aureus, a gram-positive bacterium identi-

cal to C. acnes, does not cause immediate melanization. Even injection of heat-killed C.

acnes cells caused melanization of the silkworm hemolymph. DNase, RNase, and protease

treatment of the heat-treated C. acnes cells did not decrease the silkworm hemolymph mel-

anization. Treatment with peptidoglycan-degrading enzymes, such as lysostaphin and lyso-

zyme, however, decreased the induction of melanization by the heat-treated C. acnes cells.

These findings suggest that silkworm hemolymph melanization may be a useful indicator to

evaluate innate immune activation by C. acnes and that C. acnes peptidoglycans are

involved in the induction of innate immunity in silkworms.

Introduction

Cutibacterium acnes, a human commensal bacterium, causes inflammatory skin diseases such

as acne vulgaris and inflammation in intervertebral discs [1–3]. Acne vulgaris is inflammation

of the hair follicles and sebaceous glands that results in the formation of comedones [3]. C.

acnes was detected in 34% to 36.2% of intervertebral discs removed from patients with chronic

back pain due to local inflammation such as herniated discs [4, 5]. Therefore, understanding

the mechanisms underlying the induction of host immunity by C. acnes may contribute to pre-

venting and treating those diseases.

C. acnes secretes proteins such as lipases, which cause inflammation [6], or directly interacts

with Toll-like receptor (TLR) 2 and TLR4 on keratinocytes and immune cells to cause
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inflammation [7, 8]. Activation of the innate immune system by C. acnes is the cause of the

inflammation [9–13]. Immune activation induced by C. acnes requires multiple cellular

responses in the host, and systemic C. acnes infection models have been established in mam-

mals such as mice and rats to evaluate the mechanisms of the chronic inflammation [14, 15].

Long-term mammalian infection experiments using a large number of individuals, however,

are problematic from the viewpoint of animal ethics [16].

Silkworms are useful laboratory animals for evaluating the pathogenic mechanisms of

microorganisms that cause systemic infections and for assessing the activation of innate

immunity [16–19]. Silkworms have several advantages in experiments using large numbers of

individuals, and fewer ethical issues are associated with their use [20]. Blood sampling and

quantitative drug administration are easy to perform in silkworms, and biochemical parame-

ters in silkworm hemolymph can be determined [21–24].

One innate immune response in insects, including silkworms, is hemolymph melanization

[25, 26]. In Drosophila melanogaster, hemolymph melanization caused by the recognition of a

foreign invader such as bacteria or fungi in the body contributes to coagulating the invader

and repairing the wound [25, 26]. The hemolymph melanization and Toll pathway-dependent

immune responses are mediated by the same recognition steps through pattern recognition

receptors and cofactors [25–27]. Hemolymph melanization was caused by phenoloxidases acti-

vated by serine proteases [25, 26]. The phenoloxidases (PPO1 and PPO2)-deficient flies are

sensitive to Staphylococcus aureus infection [28]. Therefore, hemolymph melanization in

insects can be used as an indicator of innate immune system activation [17, 19, 29]. The induc-

tion of innate immunity by Porphyromonas gingivalis and Candida albicans was evaluated by

silkworm hemolymph melanization [24, 30]. A silkworm infection model with C. acnes was

also established for evaluating antimicrobial drug efficacy [31]. A system for evaluating the

induction of innate immunity by C. acnes on the basis of silkworm hemolymph melanization,

however, has not yet been developed.

In the present study, we established a system for evaluating the induction of innate immu-

nity by C. acnes using silkworm hemolymph melanization as an indicator and show that

water-insoluble C. acnes peptidoglycans are involved in inducing innate immunity.

Materials & methods

Reagents

Gifu anaerobic medium agar was purchased from Nissui Pharmaceutical Co., Ltd. (Tokyo,

Japan). Tryptic soy broth was purchased from Becton Dickinson (Franklin Lakes, NJ, USA).

Protease K was purchased from QIAGEN (Hilden, Germany). RNase A was purchased from

NIPPON GENE, Co., Ltd. (Tokyo, Japan). DNase was purchased from Promega Corporation

(WI, USA). Lysostaphin, lysozyme, methanol, and chloroform were purchased from FUJI-

FILM Wako Pure Chemical Corporation (Osaka, Japan). Staphylococcus aureus peptidogly-

cans, Bacillus subtilis peptidoglycans, and Micrococcus luteus peptidoglycans were purchased

from Sigma-Aldrich (St. Louis, MO, USA).

Culture of bacteria

The C. acnes ATCC6919 strain and Staphylococcus aureus Newman strain were used in this

study. The C. acnes ATCC6919 strain was spread on Gifu anaerobic medium agar and incu-

bated under anaerobic conditions at 37˚C for 3 days [31]. S. aureus Newman strains were

spread on tryptic soy broth agar and incubated under aerobic conditions at 37˚C for 1 day.
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Silkworm rearing

Silkworm rearing procedures were described previously [32]. Silkworm eggs were purchased

from Ehime-Sanshu Co., Ltd. (Ehime, Japan), disinfected, and hatched at 25–27 ˚C. The silk-

worms were fed an artificial diet, Silkmate 2S, containing antibiotics purchased from Ehime-

Sanshu Co., Ltd. Fifth instar larvae were used in the infection experiments. The silkworm

infection experiments were performed as previously described [32]. Silkworm fifth instar lar-

vae were fed an artificial diet (1.5 g; Silkmate 2S; Ehime-Sanshu Co., Ltd) overnight. A 50-μl

suspension of C. acnes cells was injected into the silkworm hemolymph with a 1-ml tuberculin

syringe (Terumo Medical Corporation, Tokyo, Japan). Silkworms injected with the C. acnes
cells were placed in an incubator and survival was monitored.

In vivo melanization assay

An in vivo melanization assay was performed as previously described [30] with slight modifica-

tion. Hemolymph was collected from the larvae through a cut on the first proleg as described

previously [33]. The silkworm hemolymph (50 μl) was mixed with 50 μL of physiologic saline

solution (0.9% NaCl: PSS). Absorbance at 490 nm was measured using a microplate reader

(iMark™ microplate reader; Bio-Rad Laboratories Inc., Hercules, CA, USA). The arbitrary unit

was defined as the absorbance at 490 nm of a sample of silkworm hemolymph (50 μl) mixed

with saline (50 μl).

DNase, RNase, and protease treatment

Autoclaved C. acnes cells (AC) were diluted with phosphate buffered saline (PBS) to absor-

bance at 600 nm (A600) = 3 in 1 mL, and 10 μL each of DNase (1 U/μl) and RNase (100 mg/ml)

was added. After incubation for 2 h at 37˚C, the suspension was centrifuged at 15,000 rpm for

15 min at room temperature. The precipitate was suspended with 500 μL of PSS, diluted with

PBS to A600 = 2 in 1 mL, and 50 μL of protease (0.75 AU/ml) was added. After incubation for 1

h at 50˚C, the sample was centrifuged at 15,000 rpm for 10 min at room temperature. The pre-

cipitate was suspended with 1 mL of PSS, and the remaining enzymes were inactivated by

incubation at 80˚C for 30 min. The samples were centrifuged at 15,000 rpm for 10 min at

room temperature, and the precipitate was diluted with PSS to A600 = 1 to make the AC-En

sample.

Bligh-Dyer method

The AC-En sample (1 mL) was mixed with 1 mL of distilled water, 2.5 mL of methanol, and

1.25 mL of chloroform by shaking for 2 min. The sample was allowed to stand at room temper-

ature for 10 min; 1.25 mL of chloroform was then added and the mixture shaken vigorously

for 30 s. Next, 1.25 mL of distilled water was added, and the sample was mixed vigorously for

30 s and centrifuged at 3,000 rpm for 5 min at room temperature. The aqueous fraction was

collected by removing the organic solvent layer. The extracted aqueous fraction was further

centrifuged at 15,000 rpm for 15 min at room temperature and separated into supernatant and

precipitate. The precipitate fraction was prepared by adding the same volume of PSS as the

supernatant fraction.

Lysostaphin and/or lysozyme treatment

Lysostaphin (10 mg/ml; 2.5 μL) and lysozyme (100 mg/ml; 5 μL) were added alone or in com-

bination to 300 μL of the precipitate fraction obtained by the Bligh-Dyer method, adjusted to

500 μL using PBS, and the samples were incubated at 37˚C for 24 h. The incubated samples
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were centrifuged at 15,000 rpm for 15 min at room temperature and separated into superna-

tant and precipitate. The precipitate fraction was prepared by adding the same volume of PSS

as the supernatant fraction.

Statistical analysis

Statistical differences between groups were analyzed by the Tukey test or Tukey-Kramer test.

Each experiment was performed at least twice and error bars indicate the standard deviations

of the means. A P value of less than 0.05 was considered statistically significant.

Results

Silkworm hemolymph melanization caused by the injection of C. acnes
Injection of C. acnes cells into silkworm hemolymph killed the silkworms [31]. Based on

the silkworm infection model, we examined whether injection of C. acnes cells causes

melanization, a darkening of the silkworm hemolymph. Silkworm hemolymph melani-

zation was induced by injection of C. acnes cells within 3 h (Fig 1). On the other hand, inoc-

ulation with S. aureus, a human skin commensal gram-positive bacterium like C. acnes,
did not induce melanization of the silkworm hemolymph at 3 h (Fig 2). These findings

suggest that silkworm hemolymph melanization is induced more rapidly by C. acnes than

by S. aureus.

Melanization of silkworm hemolymph by heat-killed C. acnes cells

We next examined whether C. acnes survival is important for inducing melanization of the

silkworm hemolymph. Heat-killed C. acnes cells (C. acnes [AC]) were obtained by autoclaving.

Melanization-inducing activity of C. acnes cells was detected even after the cells were auto-

claved (Fig 3A and 3B). Silkworm hemolymph melanization was induced by the heat-killed C.

acnes cells in a dose-dependent manner (Fig 3C and 3D). These findings suggest that a heat-

tolerant bacterial component of C. acnes is involved in inducing melanization of the silkworm

hemolymph.

Induction of silkworm hemolymph melanization by water-insoluble C.

acnes peptidoglycans

We next examined which components of the heat-killed C. acnes cells induced melanization of

the silkworm hemolymph. Melanization of the silkworm hemolymph was caused by the

DNase-, RNase-, and protease-treated fraction (C. acnes [AC-En] fraction) of the heat-killed

C. acnes cells (Fig 4). This result suggests that active substances other than DNA, RNA, and

protein in the heat-killed C. acnes induce melanization of the silkworm hemolymph. Next, we

examined whether the lipid-eliminated fraction obtained by the Bligh-Dyer method from the

C. acnes (AC-En) fraction exhibited melanization activity. When the C. acnes (AC-En) fraction

was treated with the Bligh-Dyer procedure, water-soluble and water-insoluble fractions were

obtained in addition to the chloroform-methanol fraction (Fig 5A). The water-insoluble frac-

tion (Ppt) induced silkworm hemolymph melanization, but the water-soluble fraction (Sup)

did not (Fig 5B and 5C). These findings suggest that the C. acnes induces silkworm hemo-

lymph melanization by water-insoluble substances other than DNA, RNA, proteins, and lipids.

We hypothesized that peptidoglycans are candidate heat-tolerant water-insoluble substances

other than DNA, RNA, proteins, and lipids in C. acnes. The water-insoluble fraction (BDppt)

was treated with lysostaphin and/or lysozyme, which cleave peptidoglycans (Fig 6A). More-

over, supernatant and precipitate fractions were obtained after treatment with lysostaphin
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Fig 1. Induction of silkworm hemolymph melanization by injection of C. acnes. (A) Illustration of an experimental method to determine the silkworm

hemolymph melanization. Silkworms were injected with saline (Saline) or C. acnes cell suspension (C. acnes; 1.1 x 107 cells/larva), and reared at 37˚C.

Silkworm hemolymph was collected for 3 h, photographs of the silkworm hemolymph were taken (B), and absorbance at 490 nm (A490) (C) was measured.

The arbitrary unit was defined as the absorbance at 490 nm of a sample of silkworm hemolymph (50 μl) mixed with saline (50 μl).

https://doi.org/10.1371/journal.pone.0271420.g001
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Fig 2. Comparison of melanization induction by C. acnes and S. aureus in silkworm hemolymph. Silkworms were

injected with saline (Saline), C. acnes cell suspension (C. acnes; 1 x 108 cells/larva), or S. aureus cell suspension (S.

aureus; 1 x 108 cells/larva). After incubation for 3 h at 37˚C, the silkworm hemolymph was collected. Photographs of

the silkworm hemolymph were taken (A), and absorbance at 490 nm (A490) (B) was measured. The arbitrary unit was

defined as the absorbance at 490 nm of a sample of silkworm hemolymph (50 μl) mixed with saline (50 μl). n = 3/

group. Statistically significant differences between groups were evaluated using the Tukey test. �P< 0.05.

https://doi.org/10.1371/journal.pone.0271420.g002
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and/or lysozyme (Fig 6A). Silkworm hemolymph melanization activity induced by the super-

natant and precipitate fractions obtained after treating with both lysostaphin and lysozyme

was lower than that induced by the BDppt (Fig 6). On the other hand, treatment with each

enzyme alone tended to decrease the melanization-inducing ability in the silkworm hemo-

lymph, but the difference was not statistically significant (Fig 6). Moreover, injection of the

supernatant fractions obtained after treatment with lysostaphin and/or lysozyme did not

induce melanization of the silkworm hemolymph (Fig 6A, 6F, and 6G). These findings suggest

that a water-insoluble active substance of C. acnes is sensitive to peptidoglycan-degrading

enzymes and that degraded water-soluble peptidoglycans did not have melanization inducing

activity.

Fig 3. Melanization of silkworm hemolymph induced by injection of heat–killed C. acnes cells. (A, B) Silkworms were injected with saline (Saline), C. acnes
cell suspension (C. acnes; 1.1 x 107 cells/larva), or the autoclaved C. acnes cell suspension (C. acnes [AC]). After incubation for 3 h at 37˚C, the silkworm

hemolymph was collected. Photographs of the silkworm hemolymph were taken (A) and absorbance at 490 nm (A490) (B) was measured. n = 5/group.

Statistically significant differences between groups were evaluated using the Tukey test. �P< 0.05. (C, D) Dose–dependent induction of silkworm hemolymph

melanization by autoclaved C. acnes cell suspension (C. acnes [AC]). Absorbance at 600 nm (A600) of the autoclaved C. acnes cell suspension (C. acnes [AC])

was measured. Silkworms were injected with 50 μl of the autoclaved C. acnes cell suspension (C. acnes [AC]; A600 = 0.625–5). After incubation for 3 h at 37˚C,

the silkworm hemolymph was collected. Photographs of the silkworm hemolymph were taken (C), and absorbance at 490 nm (A490) (D) was measured. The

arbitrary unit was defined as the absorbance at 490 nm of a sample of silkworm hemolymph (50 μl) mixed with saline (50 μl).

https://doi.org/10.1371/journal.pone.0271420.g003
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Discussion

The results of the present study demonstrated that injection of C. acnes cells into silkworms

induces melanization, a darkening of the silkworm hemolymph, within 3 h, whereas injection

of S. aureus does not induce rapid silkworm hemolymph melanization. Various fractionations

and enzymatic treatments revealed that water-insoluble peptidoglycans of C. acnes induce mel-

anization in the silkworm hemolymph. These findings suggest that C. acnes induces silkworm

innate immunity more rapidly than S. aureus and that the water-insoluble peptidoglycans of

C. acnes are the active melanization-inducing substance.

Since we established a silkworm infection model with C. acnes under rearing conditions of

37˚C, which corresponds to human body temperature [31], the rearing condition at 37˚C was

used in this study. On the other hand, the standard silkworm rearing temperature is 25–27˚C.

We confirmed that the melanization of silkworm hemolymph induced by C. acnes in the rear-

ing condition at 37˚C was similar to that at 27˚C (S1 Fig in S1 File). The result suggests that

Fig 4. Effect of various enzyme treatments against the heat–killed C. acnes cells on their ability to induce melanization of the silkworm hemolymph. (A)

Preparation of the enzyme–treated C. acnes (AC) fraction (C. acnes [Ac–En]). The C. acnes (AC) fraction was treated with DNase, RNase A, and protease K. (B, C)

Silkworms were injected with 50 μl of saline (Saline), the autoclaved C. acnes cell suspension (C. acnes [AC]), or the enzyme–treated C. acnes (AC) fraction (C. acnes
[Ac–En]). After incubation for 3 h at 37˚C, the silkworm hemolymph was collected. Photographs of the silkworm hemolymph were taken (B), and absorbance at 490

nm (A490) (C) was measured. The arbitrary unit was defined as the absorbance at 490 nm of a sample of silkworm hemolymph (50 μl) mixed with saline (50 μl).

n = 5–7/group. Statistically significant differences between groups were evaluated using the Tukey–Kramer test. �P< 0.05.

https://doi.org/10.1371/journal.pone.0271420.g004
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the phenoloxidase has activity at 27˚C and 37˚C in vivo. We also confirmed that the protein

concentration of silkworm hemolymph did not alter by melanization after injection of C.

acnes sample (S2 Fig in S1 File). The melanization is caused by several steps including ligand

recognition, protease cascade, and maturation of phenoloxidase [26, 28]. Therefore, the deter-

mination of the kinetic parameters of the melanization reaction is difficult in an in vivo experi-

ment. Ligand recognition is the first step of the melanization reaction [26, 28]. The

determining kinetic parameters of ligand recognition using purified ligand and receptor in
vitro is an important future subject.

Melanization of the silkworm hemolymph occurs through oxidative reactions caused by the

recognition of microorganism components such as peptidoglycans and β-1,3-glucans [26].

Inflammation such as acne vulgaris is caused by excess activation of the innate immune

Fig 5. Induction of silkworm hemolymph melanization by injection of the water–insoluble C. acnes fraction obtained following the Bligh–Dyer

procedure. (A) Preparation of the aqueous fraction and the chloroform–methanol fraction by the Bligh–Dyer method from the enzyme–treated C. acnes
(AC) fraction (C. acnes [Ac–En]). The water–soluble (Sup) and water–insoluble (Ppt) fractions were obtained. (B, C) Silkworms were injected with 50 μl

of saline (Saline), the water–soluble fraction (Sup), or the water–insoluble fraction (Ppt). After incubation for 3 h at 37˚C, the silkworm hemolymph was

collected. Photographs of the silkworm hemolymph were taken (B) and absorbance at 490 nm (A490) (C) was measured. The arbitrary unit was defined

as the absorbance at 490 nm of a sample of silkworm hemolymph (50 μl) mixed with saline (50 μl). n = 5/group. Statistically significant differences

between groups were evaluated using the Tukey test. �P< 0.05.

https://doi.org/10.1371/journal.pone.0271420.g005
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Fig 6. Reduction of melanization–inducing activity of the water–insoluble C. acnes fraction by treatment with

peptidoglycan–degrading enzymes. (A) Preparation of the peptidoglycan–degrading enzyme–treated fractions. The

water–insoluble fraction obtained following the Bligh–Dyer procedure was called the BDppt fraction. The BDppt fraction

was treated with lysostaphin and/or lysozyme. Silkworms were injected with 50 μl of saline (Saline), the BDppt fraction

(BDppt), or the peptidoglycan–degrading enzyme–treated fractions. After incubation for 3 h at 37˚C, the silkworm
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response mediated by pattern recognition receptors, such as Toll-like receptors [11]. Melani-

zation and Toll pathway-mediated immune responses in the silkworm mediate the same sig-

naling pathway [30]. Bombyx mori peptidoglycan recognition proteins S1, S4, S5, and L6 in the

silkworm hemolymph bind to S. aureus peptidoglycans [34]. Moreover, Bombyx mori peptido-

glycan recognition proteins S1, S4, and S5 enhance melanization via binding to S. aureus pepti-

doglycans [34]. On the other hand, Bmintegrin β3, an integrin expressed in silkworm blood

cells, binds to S. aureus and inhibits the melanization reaction [35]. In this study, C. acnes cells

induced melanization of the silkworm hemolymph whereas S. aureus cells did not, suggesting

that the melanization inhibitory factors like Bmintegrin β3 recognize S. aureus cells, but not C.

acnes cells. Moreover, purified S. aureus peptidoglycans induced melanization of the silkworm

hemolymph (S3 Fig in S1 File). We assumed that the Bmintegrin β3 has higher inhibitory

activity, which suppresses acute melanization by S. aureus peptidoglycans. The effects of C.

acnes cells on melanization inhibitory factors will be an important topic for future studies.

Even C. acnes cells killed by autoclaving induce melanization of the silkworm hemolymph.

Therefore, the survival of C. acnes may not play a significant role in melanization caused by C.

acnes, and heat-tolerant substances are involved. The melanization-inducing active substance

of C. acnes was sensitive to peptidoglycan-degrading enzymes, suggesting that water-insoluble

peptidoglycans are an active component. These findings suggest that the silkworm can be used

to evaluate the ability of C. acnes peptidoglycans to induce innate immune reactions.

Peptidoglycans are polymers composed of glycopeptides containing N-acetylglucosamine

and N-acetylmuraminic acid [36]. Peptide subunits comprising several amino acids bind to

the carboxyl group of N-acetylmuraminic acid [37]. The types of amino acids involved in the

peptide subunits and cross-linked structures differ among gram-positive bacteria [37]. More-

over, the sites of amino acid binding in the cross-linked structures differ [37]. The S. aureus
peptidoglycans consist of a peptide unit composed of L-Ala, D-Glu, L-Lys, and D-Ala bound

to muramic acid by a pentaglycine bridge with a 3–4 cross-link [38]. On the other hand, the

peptidoglycans of Corynebacterium pointsettiae, another gram-positive bacterium, comprise

peptide units consisting of Gly D-Glu, L-Hse (homoserine), and D-Ala bound to muramic

acid by D-Orn bridge at a 2–4 cross-link [37]. These structural differences in peptidoglycans

may affect the robustness of the cell wall and its ability to induce innate immunity. S. aureus
and B. subtilis peptidoglycans induced the melanization of silkworm hemolymph, but M.

luteus peptidoglycan did not (S3 Fig in S1 File). The result suggests that the activities of pepti-

doglycans in inducing the melanization of the silkworm hemolymph were different among

species in the in vivo assay system. We assume that the differences in the melanization-induc-

ing ability between C. acnes and S. aureus may be due to differences in their peptidoglycan

structures. Lysozyme is an enzyme that cleaves the β-1,4 linkage between N-acetylglucosamine

and N-acetylmuramic acid in peptidoglycans [39, 40]. Lysostaphin is an enzyme that cleaves

the pentaglycine crosslinker in S. aureus peptidoglycans [41]. The sites in C. acnes peptidogly-

cans cleaved by these enzymes might be important for recognition by molecules that induce

melanization of the silkworm hemolymph. Further studies are required to determine the struc-

tures of the water-insoluble C. acnes peptidoglycans.

Since the melanization experiments using an individual silkworm are needed to inject the

suspension samples into silkworms, individual differences occur. A sample, which precipitates

hemolymph was collected. Photographs of the silkworm hemolymph were taken (B, D, F) and absorbance at 490 nm (A490)

(C, E, G) was measured. (B, C) Lysozyme treatment experiment. (D, E) Lysostaphin treatment experiment. (F, G) Lysozyme

and lysostaphin treatment experiment. The arbitrary unit was defined as the absorbance at 490 nm of a sample of silkworm

hemolymph (50 μl) mixed with saline (50 μl). n = 4–6/group. Statistically significant differences between groups were

evaluated using the Tukey–Kramer test. �P< 0.05.

https://doi.org/10.1371/journal.pone.0271420.g006
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quickly in a syringe, causes the differences. The optimization of the experimental condition for

the precipitate samples is an important subject.

Conclusion

Silkworms can be used to evaluate the innate immune activation of C. acnes and the water-

insoluble peptidoglycans of C. acnes are important for its hemolymph melanization activity.

The silkworm innate immune system is expected to be useful for evaluating compounds that

affect innate immune responses caused by C. acnes, such as acne vulgaris and intervertebral

disc inflammation.
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