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Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and
sphingosine-1-phosphates (S1P) are a large group of structurally and functionally di-
verse molecules. Some specific species are found associated with atherogenesis and
provide novel therapeutic targets. Herein, we briefly review how sphingolipids are impli-
cated in the progression of atherosclerosis and related diseases, and then we discuss the
potential therapy options by targetting several key enzymes in sphingolipid metabolism.

Sphingolipids metabolism
Overview of sphingolipid biosynthesis
Sphingolipids are based on a ceramide parent structure. Ceramides are composed of a hydrophobic
sphingoid backbone and a fatty acyl chain, linked to the backbone via an amino bond [1]. Three
metabolic pathways are involved in ceramide production (Figure 1). (1) De novo synthesis begins in
the cytosolic layer of the endoplasmic reticulum (ER) with the condensation of the amino acid serine
and palmitoyl-coenzyme A (CoA) via serine palmitoyltransferase (SPT), generating 3-ketosphinganine.
3-ketosphinganine is then reduced to sphinganine, the 18-carbon backbone, via 3-ketosphinganine re-
ductase (KSR). Finally, N-acylation of sphinganine by ceramide synthases (CerS) generates dihydroce-
ramide, which is subsequently converted into ceramide via dihydroceramide desaturase (DES) [2]. This
de novo pathway is the major source of ceramide in cells, and all eukaryotic cells have the capacity to
produce sphingolipids in this way. (2) A catabolic pathway occurs in lysosomes, including hydrolysis of
sphingomyelin via sphingomyelinase (SMase) and catabolism of glycosphingolipids via glycosidases hy-
drolyzing glycosidic bonds [3]. (3) A salvage pathway generates ceramides by recycling sphingosine via
CerS, as the sphingosine is produced by the hydrolysis of ceramide catalyzed by ceramidase (CDase) [4].
At least half of the sphingosine enters this reutilization pathway, playing an important role in sphingolipid
homeostasis [3].

Ceramides have three main ways to be incorporated into various sphingolipids. (1) In the ER, ce-
ramide can be deacetylated to form sphingosine, which in turn is phosphorylated to serine palmitoyl-
transferase (S1P) via sphingosine kinase (SphK) [5]. (2) In the Golgi, after being transported from the
ER by ceramide transfer protein (CERT) in a non-vesicular pathway, ceramide acquires a phosphoryl-
choline moiety from phosphatidylcholine to form sphingomyelin and diacylglycerol via sphingomyelin
synthase (SMS); when transported from the ER via transport vesicles, ceramide add a glucose/galactose to
form glucosylceramide (GluCer)/galactosylceramide (GalCer) via glucosylceramide synthase (GCS, also
named UDP-glucose ceramide glucosyltransferase) or galactosylceramide synthase (GalCerS, also named
2-hydroxyacylsphingosine 1-β-galactosyltransferase). Then, GluCer is transferred from the cis-Golgi to
the trans-Golgi by vesicular transport or a carrier protein, four-phosphate adapter protein 2 (FAPP2),
to generate lactosylceramide (LacCer) catalyzed by lactose ceramide synthase (LCS), also named gluco-
sylceramide β1→4 galactosyltransferase (GalT-2) [6]. In the trans-Golgi, LacCer can further produce
complex globosides and gangliosides [7]. (3) In the Golgi, ceramides can also be phosphorylated to form
ceramide-1-phosphate (C1P) via ceramide kinase (CERK).
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Figure 1. Sphingolipid biosynthesis and sphingolipid-centric theraputics

(1) De novo sphingolipid synthesis starts in the ER with the decarboxylation of a serine residue and condensation with a palmi-

toyl-CoA catalyzed by SPT. Sequential reactions lead to the production of ceramides, which are precursors for the biosynthesis of

sphingomyelins and glycosphingolipids. In the ER, ceramides can be deacylated by CDase to form sphingosine. Sphingosine can be

phosphorylated to form sphingosine-1-phosphate (S1P) by SphK1/2. In the Golgi, ceramides transferred by CERT are predestined

to synthesize sphingomyelins by the addition of phosphocholine head group or be phosphorylated to form ceramide-1-phosphate.

Ceramides transferred by vesicular transport can be glycosylated to form glucosylceramides or galactosylceramides. FAPP2 can

transfer glucosylceramides from the cis-Golgi to the trans-Golgi, where they are converted into lactosylceramides. (2) Bidirection-

ally, in the plasma membrane, lysosome, mitochondria, and Golgi, sphingomyelins can be converted into ceramides by SMSases.

Similarly, ceramide-1-phosphate and glycosphingolipids can be hydrolyzed to form ceramides (not shown). (3) Sphingosine can

be recycled to generate ceramides by CerSs. Myriocin is a SPT inhibitor; Fenretinide plays a role in DES1 inhibition; Adiponectin

exerts its metabolic improvement functions through CDase signaling; FTY720 and CYM5442 are S1P analogs; D609 and D2-series

are SMS inhibitors; Desipramine and SMA-7 et al. are inhibitors of SMase. D-PDMP inhibits both GCS and LCS; AMP-DNM and

EtDO-P4 are specific GCS inhibitors. Abbreviations: AMP-DNM, N-(5-adamantane-1-yl-methoxy)-pentyl-1-deoxynoijirimycin;

CDase, ceramidase; CERK, ceramide kinase; CerS1-6, ceramide synthase1-6; CERT, ceramide transfer protein; DES1/2,

dihydroceramide desaturase1/2; D-PDMP, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; EtDO-P4,

D-threo-1-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidino-propanol; FAPP2, four-phosphate adaptor protein 2; FTY720,

2-amino-2-[2-(4-octylphenyl)ethyl] propane-1, 3-diolhydrochloride; GalCerS, galactosylceramide synthase; GCS, glucosylce-

ramide synthase; KSR, 3-ketosphinganine reductase; LCS, lactose CerS; SMS, sphingomyelin synthase; SphK1/2, sphingosine

kinase1/2; SPP1/2, S1P phosphatase1/2; SPL, S1P lyase.

Regulation in sphingolipid metabolism
The abundance and species of sphingolipids can be regulated by the availability of different substrates and the ac-
tivity of various enzymes. It was proven that feeding rodents and rabbits a diet enriched in saturated fats increased
their levels of various sphingolipids. In humans, different diets also affect the serum levels of ceramides. Thus, the
oversupply of substrate palmitate and serine may promote de novo ceramide biosynthesis [8].

In addition, many key enzymes not only influence the synthetic rate but also introduce variations into the basic
structure. SPT, acting as a rate-limiting enzyme, can generate a multitude of sphingoid bases by altering the substrate
specificity. More specifically, SPT can utilize alanine or glycine instead of serine and prefer myristate or stearate as
a fatty acid substrate, instead of the canonical palmitate. The sphingoid bases can be further compounded by an
additional double-bond via DES1 and an OH via DES2 [9]. The N-linked fatty acid chains also display wide variations
with various chain lengths, unsaturation levels, and hydroxylation levels. Distinct CerS isoforms prefer specific fatty
acyl-CoAs with different chain lengths, such as the CerS1 mainly involved in the synthesis of C18:0 ceramides [10].
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Distribution and transport of sphingolipids
Plasma sphingolipids are very rare, mainly consisting of the most prevalent sphingomyelins (∼87%), complex gly-
cosphingolipids (9-10%), and ceramides (∼3%) [7]. Insoluble lipids are associated with apolipoprotein (apo), form-
ing lipoproteins for transport in circulation and metabolism. According to their flotation density, lipoproteins are
classified as chylomicrons, very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), or high-density
lipoproteins (HDL). Approximately, sphingomyelins are distributed into VLDL/LDL (63–75%) and HDL (25–35%);
the most abundant glycosphingolipids, GluCer and LacCer, are present as VLDL (8–14%), LDL (46–60%), and HDL
(28–44%), while ceramides are distributed equally as VLDL, LDL, and HDL [11]. How sphingolipids are incorporated
into lipoprotein particles is not very clear. Recently, it was demonstrated that microsomal triglyceride transfer protein
(MTP), by helping apoB lipoproteins with assembly, plays a crucial role in the plasma levels of sphingomyelin and
ceramides, along with GluCer concentrations [12].

Intracellular sphingolipids have specific compartmentalizations and can be transported between different mem-
branes via two routes, as mentioned above: vesicular transport and non-vesicle transporters. Apart from CERT for
ceramide transport and FAPP2 for GluCer transport, there are other identified transfer proteins, such as protein
spinster homolog 2 (SPNS2) for S1P, C1P transfer protein (CPTP) for C1P, and glycolipid transfer protein (GLTP) for
LacCer [9].

Sphingolipids associated with metabolic disease
The metabolic syndrome, mainly driven by obesity, defines a multiplex risk factor for atherosclerotic vascular dis-
ease and type 2 diabetes [13]. It is a growing epidemic, composed of dyslipidemia, insulin resistance, hypertension,
a pro-thrombotic state, and a pro-inflammatory state. Also, non-alcoholic fatty liver disease (NAFLD), which pro-
gresses from steatosis alone to ultimate cirrhosis, is a common metabolic disease. Countless studies have shown that
subjects with the above metabolic disorders exhibit greater plasma or tissue levels of one or more of the sphingolipid
species [14–16]. Some specific sphingolipids are even emerging as biomarkers and prognostic indicators, such as
for cardiovascular disease [17]. Sphingolipid metabolism is strongly associated with the pathogenesis of a repertoire
of metabolic diseases. Great efforts have been exerted in identifying the critical sphingolipids, modulating sphin-
golipid synthesis and catabolism, recognizing the biological functions, identifying the transporting mode, and locat-
ing the sphingolipid-dependent signal pathways in diverse pathologies. More importantly, disrupting sphingolipid
metabolism has proven to provide novel therapeutic avenues for metabolic disorders, which is the ultimate goal.

The sphingolipidome is extremely diverse and complex, so in this brief review, we focus on relationships between
specific sphingolipids and atherosclerosis, a leading cause of worldwide morbidity and mortality, and summarize how
metabolic pathways are being regulated for anti-atherosclerosis effects.

Sphingomyelins and atherosclerosis
Human studies investigating the role of sphingomyelins
Employing a novel high-throughput enzymatic method for plasma lipid determination, Jiang et al. [18] systematically
assessed plasma sphingomyelin for the first time. Higher plasma sphingomyelin level was found in coronary artery
disease (CAD) patients, and proposed as an independent risk factor for CAD. Also, the arterial tissues obtained by
coronary artery bypass grafting (CABG) surgery had a higher concentration than normal vascular tissues [19]. Subse-
quently, the relationships of plasma sphingomyelin with left ventricle systolic dysfunction and clinical cardiac events
were investigated [20,21]. What is more, Nelson et al. [22] found the sphingomyelin level was positively correlated
with earlier, subclinical atherosclerotic disease, such as carotid intimal–medial wall thickness.

The question as to whether higher plasma sphingomyelin concentration is risk factor for CAD and indicates worse
prognosis remains controversial. Yeboah et al. [23] assessed the predictive value in a cohort study of participants free
of clinical CAD at baseline. After 5 years of follow-up, the data showed no association between plasma sphingomyelin
levels and incident CAD events (myocardial infarction, definite angina, coronary revascularization, resuscitated car-
diac arrest, and cardiovascular death). Sigruener et al. [24] found long chain saturated sphingomyelins (23:0, 24:0)
seemed to be associated with a protective effect on cardiovascular mortality. Therefore, more studies are needed to
determine how sphingomyelins are implicated in cardiovascular diseases and to illuminate the mechanisms involved.
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SMSs as potential therapeutic targets for atherosclerosis
SMSs act on the last step of sphingomyelin synthesis; three homologs have been identified: SMS1, SMS2, and SMSr

(SMS-related protein) [25]. SMS1 and SMS2 both possess SMS activity, albeit with distinguishable subcellular local-
ization. SMS1 is mostly located in the Golgi apparatus and SMS2 is mainly found in plasma membranes. SMSr serves
as monofunctional ceramide phosphoethanolamine (CPE, a sphingomyelin analog) synthase in the ER.

It was reported that overexpression of SMS1 and SMS2 would increase plasma sphingomyelin level and aggravate
atherosclerosis in mice models [26,27]. Conversely, inhibiting SMS1 and SMS2 activity in vitro could lower sphin-
gomyelin concentrations [28] and cause blunt NFκB activation responding to inflammatory stimuli [29]. Further in
vivo experiments showed that atherosclerotic lesions were efficiently decreased and inflammatory responses were
lowered in the SMS2 deficient (SMS2−/−) mice models [30–32]. Besides, SMS2 deficiency protected mice against
tissue and whole-body insulin resistance [33,34], which might be associated with less liver steatosis [35].

Although SMS1 deficiency in macrophages showed similar anti-atherosclerotic effects in a mice model [36], SMS1
is indeed not an appropriate therapeutic target. To date, it has been reported that SMS1−/− mice exhibited several se-
vere abnormalities, including defective insulin secretion [37], progressive hearing loss at a low frequency range [38],
CD4+ T-cell dysfunction [39], adipocyte lipid storage dysfunction [40], male spermatogenesis defects [41], and mes-
enchymal transition of epithelial cells derived from the renal papillary collecting duct [42]. Disruption of SMSr in
mice resulted in marginal changes in the plasma levels of sphingomyelin, ceramide, and S1P [43,44]. Thus, compared
with SMS1 and SMSr, SMS2 is a more promising therapeutic target for atherosclerosis, but it is a challenge to develop
highly specific SMS2 inhibitors without cross-reaction with SMS1.

Tricyclodecan-9-yl-xanthogenate
Tricyclodecan-9-yl-xanthogenate (D-609) was the first compound reported as an inhibitor against sphingomyelin
synthesis from Bacillus cereus [45,46]. Some undesired properties of D609 and its prodrugs, e.g. instability, low
specificity, and week potency hindered them from being practical drugs (Table 1) [47].

D2 group inhibitors
The D2 group inhibitors with more potent and better performance on inhibiting SMS2 than D-609 were found by
applying structure-based virtual screening [48]. However, D2-series are still not applicable drugs as they possess a
toxic α-aminonitrile group [25].

2-Quinolone SMS2 inhibitors
Recently, Adachi et al. [25] established a high throughput screening-compatible assay condition and identified a
2-quinolone derivative as an SMS2 selective inhibitor. There was no further specific experimental data to evaluate
their safety and efficacy.

4-benzyloxybenzo[d]isoxazole-3-amine
Very recently, 4-benzyloxybenzo[d]isoxazole-3-amine derivatives were identified as potent SMS2 selective inhibitors
[49]. What was more, one of the compounds were proved to significantly attenuate chronic inflammation in db/db
mice after oral dosing for 6 weeks. Undoubtedly, the study provides robust evidence of developing selective SMS2
inhibitors to prevent inflammation-associated diseases, e.g. atherosclerosis.

SMases as potential therapeutic targets for atherosclerosis
There are three types of SMases depending on the optimum pH value: acid, neutral, and alkaline. The secretory form
of acid SMase could convert sphingomyelins in lipoproteins into ceramide. The acid SMase was believed to be one po-
tent inducer of subendothelial lipoprotein aggregation and foam cell formation [50]. It remains controversial whether
the level of circulating acid SMase activity affects atherosclerosis development. In 2008, Devlin et al. [51] compared
acid SMase gene-deficient (Asm−/−) mice and non-deficient (Asm+/+) mice on the ApoE−/− and LDLr−/− back-
grounds, and found the absence of acid SMase strikingly contributed to reductions in lipoprotein retention within
early lesions. But in 2011, Leger et al. [52] found no expected accelerated or exacerbated lesions in ApoE−/− mice
which concurrently overexpressed acid SMase by injecting recombinant adeno-associated virus. Several compounds
have been tested as acid SMase inhibitors, such as the tricyclic antidepressants (desipramine, imipramine, and amit-
ryptiline), SMA-7, and siramesine [53,54]. To date, no references were found to demonstrate that any kind of SMase
inhibitors has definite effects on anti-atherosclerosis.

766 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY-NC-ND).



Clinical Science (2019) 133 763–776
https://doi.org/10.1042/CS20180911

Table 1 Human studies investigating the role of diverse sphingolipid species in atherosclerosis related diseases

Study population n Correlating sphingolipids Clinical end points Reference

Human studies investigating the role of sphingomyelins

African American and whites
with CAD

279 cases and 277 controls Higher plasma sphingomyelins CAD Jiang et al. (2000) [18]

CABG patients 32 CABG patients Higher concentration of
sphingomyelins in arterial tissues

Coronary arteries obtained
on CABG surgery

Kummerow et al. (2001) [19]

CAD patients 1102 CAD patients and 444
controls

Higher plasma sphingomyelins 6-year, a predictor for myocardial
infarction (MI) and cardiovascular
death

Schlitt et al. (2006) [20]

Asymptomatic adults, MESA
study

6814 adults Higher plasma sphingomyelins Subclinical atherosclerosis
(carotid intimal–medial wall
thickness, ankle-arm blood
pressure, and Agatston coronary
artery calcium score)

Nelson et al. (2006) [22]

Adults free of clinical CAD in
MESA

6809 adults Plasma sphingomyelins, not
associated with risk of incident
CAD

5-year, incident CAD events (MI,
resuscitated cardiac arrest,
angina, cardiovascular death and
revascularization)

Yeboah et al. (2009) [23]

Chinese, participants underwent
coronary angiography for chest
pain

732 adults Plasma sphingomyelins CAD, left ventricle systolic
dysfunction

Chen et al. (2011) [21]

Caucasian, LURIC study 2538 CAD patients and 733
controls

Protetive sphingomyelins (23:0;
24:0); risky sphingomyelin
species (16:0; 24:1) and risky
ceramides (16:0; 24:1)

8-year, total and/ or CAD
mortality

Sigruener et al. (2014) [24]

Human studies investigating the role of ceramides on T2D

Obese T2D, adults 13 patients and 14 lean controls Higher ceramide species (C18:1,
18:0, 20:0, 24:1, and 24:0)

T2D Haus et al. (2009) [59]

Obese adults, T2D 13 lean, 5 obese, 12 T2D Higher total ceramides T2D Boon et al. (2013) [62]

Obese female T2D, children, and
adolescents

14 patients and 14 lean controls Higher ceramide species (C18:0,
20:0, and 22:0), higher
dihydroceramide (C24:1)

Obese T2D Lopez et al. (2013) [60]

T2D, athletes, adults 15 T2D, 15 athletes, and 14
obese controls

Higher ceramide species (C18:0,
20:0, and 24:1) and total
dihydroceramide

T2D Bergman et al. (2015) [61]

Two cohorts: DESIR, western
France; CoLaus, Switzerland

298, 300 participants without
T2D

Higher dihydroceramides, higher
ceramide species (C18:0, 20:0,
and 22:0)

9-year, 5-year, incident T2D Wigger et al. (2017) [65]

1557 multi-ethnic adults, the
Dallas Heart Study

1557 participants without T2D Short-chain saturated ceramide
(C16:0, 18:0), longer chain
polyunsaturated ceramides
(C24:2, 30:10, and 32:11)

7-year, incident diabetes Neeland et al. (2018) [64]

American Indian in SHFS 2086 participants without
diabetes

Higher ceramide species (C16:0,
18:0, 20:0, and 22:0);
sphingomyelin; GluCer; LacCer

5.4-year, pre-diabetes Lemaitre et al. (2018) [63]

Human studies investigating the role of ceramides on CAD

CAD patients 33 CAD patients Higher ceramides CAD Mello et al. (2009) [135]

Chinese, CAD patients 304 CAD patients and 52
controls

Higher ceramides, higher
sphingomyelins

ACS Pan et al. (2014) [69]

German, CAD patients, LURIC 258 CAD patients and 187
controls

Higher ceramide species (C16:0
and 18:0); LacCer, GluCer,
globotriaosylceramide

3-year, cardiovascular death Tarasov et al. (2014) [71]

European, CAD patients,
ATHEROREMO-IVUS

581 CAD patients Higher ceramide species (C16:0,
24:0, and 16:0/24:0 ratio);
LacCer (C18:0)

1-year, vulnerable plaque
characteristics, MACE

Cheng et al. (2015) [66]

Chinese, CHF patients 423 CHF patients Higher ceramides 4.4-year, mortality Yu et al. (2015) [70]

Healthy volunteers, BLSA 433 participants Higher ceramide species (C18:0,
20:0, and 24:1); higher
dihydroceramides

Lower aerobic capacity Fabbri et al. (2016) [72]

Continued over
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Table 1 Human studies investigating the role of diverse sphingolipid species in atherosclerosis related diseases (Continued)

Study population n Correlating sphingolipids Clinical end points Reference

Three CAD cohorts: Corogene
(Finnish); BECAC (Norway);
PUM-ACS (Swiss)

80 stable CAD and 80 controls;
51 stable CAD and 1586
controls; 81 ACS and 1506
controls

Higher ceramide species (C16:0,
18:0, 24:1, and 16:0/24:0 ratio)

2.5-year; 4.6-year; 1-year.
Cardiovascular death

Laaksonen et al. (2016) [67]

Finnish, healthy individuals 8101 Higher ceramide species (C16:0,
18:0, 24:1 and ratios with 24:0)

13-year, MACE Havulinna et al. (2016) [73]

European Caucasians, the
PREDIMED trial

980 participants Higher ceramide species (C16:0,
C22:0, C24:0 and C24:1)

4.5-year, non-fatal AMI, non-fatal
stroke, or cardiovascular death

Wang et al. (2017) [74]

Participants before nonurgent
coronary angiography

265 CAD and 230 No CAD Higher ceramide species (C16:0,
18:0, 24:1 and ratios with 24:0)

12.8-year, MACE Meeusen et al. (2018) [68]

Two cohorts: FHS and SHIP
participants

2642 and 3134 Lower plasma C24:0/C16:0,
C22:0/C16:0 ceramide ratios

6-year and 8.24-year, incident
CAD and total mortality

Peterson et al. (2018) [15]

Human studies investigating the role of glycosphingolipids

Autopsy (died with
atherosclerosis)

3 Higher concentration of GluCer
and LacCer in arterial tissues

Atherosclerotic plaque Chatterjee et al. (1997) [105]

CAD patients 140 CAD patients and 80
controls

Higher dihexosylceramide Unstable CAD Meikle et al. (2011) [109]

Human studies investigating the role of S1P

CAD patients 126 mild, 102 intermediate, and
90 severe CAD

Higher S1P CAD Deutschman et al. (2003) [136]

MI patients 22 MI patients and 21 controls Lower S1P MI Knapp et al. (2009) [125]

CAD patients 83 MI, 95 stable CAD, and 85
healthy controls

Lower HDL-bound S1P, higher
non-HDL-bound S1P

Stable CAD and MI Sattler et al. (2010) [126]

Danes, CCHS 95 CAD and 109 No CAD Lower HDL-bound S1P,
dihydro-S1P and ceramide
(C24:1)

CAD Argraves et al. (2011) [127]

MI patients 32 MI and 32 controls Lower S1P MI Knapp et al. (2013) [128]

CAD patients 59 Lower HDL-bound S1P 0.5-year, CAD Katherine Sattler et al. (2014) [129]

Patients with ischemic heart
disease

74 Lower S1P and sphingomyelins Reduced left ventricular ejection
fraction

Polzin et al. (2017) [130]

Abbreviations: ACS, acute coronary syndrome; ATHEROREMO-IVUS, Atherosclerosis Intravascular Ultrasound Study; BECAC, Bergen Coronary An-
giography Cohort; BLSA, Baltimore Longitudinal Study of Aging study; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CCHS,
Copenhagen City Heart Study; CHF, chronic heart failure; CoLaus, Cohorte Lausannoise study; DESIR, Data from the Epidemiological Study on the
Insulin Resistance Syndrome; FHS, Framingham Heart Study; LURIC, Ludwigshafen Risk and Cardiovascular Health; MACE, major adverse cardiac
events (defined as all-cause mortality, ACS and unplanned coronary revascularization); MESA, Multi-Ethnic Study of Atherosclerosis; MI, myocardial
infarction; PREDIMED, the Prevencion con Dieta Mediterranea; SHFS, Strong Heart Family Study; SHIP, Study of Health in Pomerania; SPUM-ACS,
Special Program University Medicine-Inflammation in Acute Coronary Syndrome; T2D, type 2 diabetes.

Ceramides and atherosclerosis
Human studies investigating the role of ceramides
Ceramides are found accumulated in atherosclerotic lesions and in obesity [55]. They are involved in insulin resis-
tance [56], lipoprotein uptake and aggregation [57], vascular tone [58], inflammation, oxidative stress, and apoptosis.
Moreover, circulating ceramides are correlated strongly with diabetes and some specific species have served as pre-
dictive biomarkers of future adverse cardiovascular events [16]. Here, we summarize the related evidence.

Since 2009, several small cross-sectional studies showed diabetic patients had elevated plasma ceramide levels
[59–62]. Lately, prospective studies based on large population were reported, further revealed that higher concen-
trations of several ceramide species (e.g. C16:0, 18:0, and dihydroceramides) were associated with fasting insulin
levels [63,64] and an increased risk of future diabetes in individuals without diabetes [65]. However, after adjustment
for age, sex, and race, none of the ceramide species was independently associated with incident type 2 diabetes [64].

In studies of patients with CAD, ceramide species (C16:0, 18:0, 22:0, 22:0, 24:0, and 24:1) were quantitated, and also
used in ratios to perform risk estimation for plaque instability [66], adverse CAD incidents [67–69], and future mor-
tality [15,70,71]. In studies of healthy individuals, serum ceramides were strongly associated with lower aerobic ca-
pacity [72] and could also forecast adverse cardiovascular outcomes [73,74]. Research findings from different groups
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were not totally consistent, and whether C24-ceramides were cardioprotective remained controversial [24]. The dif-
ferences may relate to patient selection and different quantitation methods. In general, these strongly supportive evi-
dence of plasma ceramides driving cardiometabolic dysfunction provided the basis for developing ceramide-reducing
interventions.

SPT as a potential therapeutic target for atherosclerosis
Myriocin, a commonly used SPT inhibitor (also known as thermozymocidin) inhibits the first step in the de novo syn-
thesis pathway, originating from a traditional Chinese medicine called Isaria sinclairii, classified as a fungal species.
Park et al. first investigated the beneficial effects of myriocin in ApoE−/− mice [75]. Myriocin administration could
dramatically prevent the progression of atherosclerotic lesions and even regress the pre-existing plaques, with lower
plasma lipid levels, including total cholesterols (TC), triglycerides (TG), ceramides, sphingomyelins, S1P, sphingo-
sine, and glycosphingolipids [76–79]. Besides, myriocin was found to improve insulin sensitivity [80–82], ameliorate
hepatic lipid accumulation and further reverse NAFLD [83,84]. Because myriocin inhibits the initial step in the syn-
thesis of a number of sphingolipids, the identity of the critical species is unknown. Nevertheless, the experimental
results supported the hypothesis that myriocin, an SPT inhibitor, could be a novel therapeutic drug for atherosclerosis
and related diseases.

CerSs as potential therapeutic targets for atherosclerosis
Six fatty acyl selective CerSs (CerS1–6) exist in mammals, distributed in distinct tissues [85]. The regulation of CerSs is
elaborate at multiple levels, and the enzyme activity may present inconsistently with the mRNA or protein expression
levels. Mutations in CerSs genes or deregulation in the CerSs’ contents and enzyme activity are all correlated with
human disease. Over the past few years, each CerS knockout was established in mice, showing that specific CerS
deactivation may cause serious impacts and may be lethal, such as CerS1-null mice exhibiting Purkinje cell death
[86], CerS2-null mice generating myelin sheath defects and hepatocellular carcinomas [87], CerS3-null mice dying
shortly after birth [88], and CerS4-null mice developing alopecia [89]. Relatively, CerS5/6-null mice showed a mild
phenotype, presenting some behavioral abnormalities [90].

Turpin et al. [91] measured the gene expression of CerS1, 2, 4, 5, and 6 in human adipose tissues and identified that
only CerS6 expression was positively correlated with obesity. Further, they generated conventional CerS6-deficient
mice, as well as specific brown adipose tissue and liver CerS6 deletion mice, and then demonstrated CerS6 ablation
could up-regulate β-oxidation and increase lipid utilization [91]. But so far, there are no conclusive data proving that
targetting specifically unique CerS could benefit atherosclerotic degression, and no pharmacological inhibitors with a
high degree selectivity for one certain CerS are available. Given that inhibiting CerS6 is good for obesity and diabetes,
it will probably restrain atherosclerosis development, but needs further novel studies to provide favorable evidence.

DESs as potential therapeutic targets for atherosclerosis
DESs catalyze the last step in de novo ceramide biosynthesis, which is responsible for the conversion of dihydro-
ceramide into ceramide. The dominant isoform is DES1, distributed in most tissues. In the last few years, multiple
publications have demonstrated that dihydroceramides are implicated in a far wider spectrum of biological functions
than previously thought [92]. Heterozygous deletion of DES1 in mice was also demonstrated to prevent diet-induced
vascular dysfunction and hypertension in mice [93]. Importantly, pharmacological inhibition of DES1 protected hu-
mans from obesity and insulin resistance. The most notable inhibitory compound is fenretinide, which has been
tested in several clinical trials [94]. Fenretinide treatment could positively balance the metabolic profile by improving
insulin sensitivity in overweight premenopausal women [95]. Also, long-term therapy with fenretinide could alleviate
diet-induced adiposity and dyslipidemia and prevent hepatic steatosis in mice [96–98]. Altogether, although there was
no direct evidence on inhibited Des1 preventing atherosclerosis, it is reasonable to hypothesize DES1 as a effective
target for normalizing vascular homeostasis by controlling ceramide production.

CDase as a potential therapeutic target for atherosclerosis
Since inhibitors targetting ceramide biosynthesis are potential means for the treatment of metabolic syndrome, pro-
moting ceramide degradation may provide similar benefits. Deacylation of ceramide species is initiated by the family
of enzymes called CDase. Chavez et al. [99] demonstrated that overexpression CDase negated the inhibitory effects of
exogenous free fatty acids on muscle insulin sensitivity through blocking ceramide accumulation in vitro. Holland et
al. [100] found that adiponectin, a protein hormone has antidiabetic and cardioprotective properties, could stimulate
CDase activity and further lower cellular ceramides. CDase was found to have some homology with the adiponectin
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receptors, AdipoR1 and AdipoR2. In vivo studies, targetted induction of ceramide degradation in adipose tissue or
liver by overexpressing transgenic CDase was found sufficient to recapitulate most adiponectin actions [14]. More-
over, overexpression of AdipoR1 or AdipoR2 in either the adipocyte or hepatocyte revealed enhanced CDase activa-
tion, improved hyperglycemia and glucose intolerance, while opposing hepatic steatosis [101]. Together, adiponectin
exerted its metabolic improvement functions through CDase signaling [102]. These findings support the strategy of
CDase replacement as a potential treatment for atherosclerosis.

Glycosphingolipids and atherosclerosis
Human studies investigating the role of glycosphingolipids
Glycosphingolipids are extremely diverse, composed of hydrophobic ceramide scaffolds and hydrophilic sugar chains.
Glycosyl groups are different, such as d-glucose, d-galactose, d-acetylglucosamine, d-acetylgalactosamine, l-fucose,
d-mannose, and sialic acid. Sphingoglycolipids can be generally divided into cerebrosides, sulphatides, globosides,
and gangliosides. According to the number of glycosides, they can be divided into monohexosylceramide (MHC),
dihexosylceramide (DHC), trihexosylceramide (THC), and tetrahexosylceramide.

Associating glycosphingolipids with atherosclerosis was based on the following observations: gangliosides [103],
GluCer and LacCer accumulate in the atherosclerotic plaques [104,105]; GluCer and LacCer stimulate the pro-
liferation of aortic smooth muscle [106]; GluCer and LacCer suppress apoE production in macrophages and
cholesterol-loaded foam cells [107] and LacCer stimulates the recruitment of monocytes to the endothelium [108].
Recently, specific plasma glycosphingolipids were identified as discriminatory risk-associated lipids for unstable CAD
and CAD mortality, such as DHC [109], GluCer and LacCer [66,71]. Our research team successfully separated GalCer
and GluCer, a pair of isomers [110]. We discovered that the plasma GalCer levels were increasing in atherosclerotic
patients, rather than GluCer. Although the enormous number of distinct glycosphingolipid species has made it diffi-
cult to determine which one is critical, it is suggested that inhibiting glycosphingolipid synthesis may be an effective
approach for the treatment of atherosclerosis.

Glycosphingolipid synthase inhibitors
D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an analog of GluCer, could inhibit both
GCS and LCS activity [111]. Chatterjee et al. [112] confirmed that oral D-PDMP could dose-dependently ameliorate
atherosclerosis and vascular stiffness in both ApoE−/− mice and rabbits fed a high-fat diet. They further proposed that
D-PDMP could slow the progression of cardiac hypertrophy in ApoE−/− mice by inhibiting mitogen-activated protein
kinase (MAPK) phosphorylation [113,114]. Thus, D-PDMP could be accepted as a potential desirable compound for
treating cardiovascular diseases.

N-(5-adamantane-1-yl-methoxy)-pentyl-1-deoxynoijirimycin
The iminosugar N-(5-adamantane-1-yl-methoxy)-pentyl-1-deoxynoijirimycin (AMP-DNM) is another inhibitor,
specifically inhibiting the activity of GCS. Aerts et al. [115] found this small molecule inhibitor could improve both
muscle and hepatic insulin sensitivity in rodent models. Subsequent studies reported that AMP-DNM treatment could
also reverse hepatic steatosis [116], improve adipocyte function, and reduce inflammation in leptin-deficient obese
mice [117]. Bietrix et al. [118] evaluated the beneficial effect of AMP-DNM on atherosclerosis development in both
APOE*3 Leiden mice and LDLr−/− mice. Collectively, AMP-DNM can be suggested as a possible valid approach for
the prevention or treatment of atherosclerosis.

D-threo-1-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidino-propanol
d-threo-1-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidino-propanol (EtDO-P4), another specific GCS in-
hibitor, can reduce plasma and tissue glycosphingolipid concentrations [119]. Glaros et al. [120] assessed the im-
pact of EtDO-P4 on atherosclerosis in apoE−/− mice. Unexpectedly, EtDO-P4 administration did not result in de-
creased lesion areas, although the plasma GluCer and LacCer concentrations were reduced. Unlike D-PDMP and
AMP-DNM, EtDO-P4 did not affect plasma cholesterol or TG levels. At present, it is not clear whether one or more
glycosphingolipids take part in atherosclerosis, and whether inhibition of glycosphingolipid synthesis per se has an
antiatherogenic impact.
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S1P and atherosclerosis
Human studies investigating the role of S1P
S1P is a bioactive lipid, primarily carried by apoM on HDL, and signals its G protein-coupled receptors, named
S1PR1-5 [5], S1P is degraded by two pathways: dephosphorylation by S1P phosphatases (SPP1/2) and irreversible
cleavage by S1P lyase (SPL). S1P has dual nature in the pathogenesis of atherosclerosis: S1P preserves endothelium
via S1PR1/3 [121]; inhibits smooth muscle cells migration via S1PR2; and possesses anti-inflammatory properties via
S1PR4 [122]; while S1P also promotes inflammatory monocyte/macrophage recruitment through S1PR2/3 [123,124].
Although it is yet not concensus, several clinical data reported that plasma S1P concentrations were negatively asso-
ciated with prevalence and severity of CAD and myocardial infarction [125–130].

S1P receptor agonists
Nofer et al. [131] reported that 2-amino-2-[2-(4-octylphenyl)ethyl] propane-1, 3-diolhydrochloride (FTY720), a
synthetic S1P analog targetting S1PR1, S1PR3, S1PR4, and S1PR5, could dose-dependently retard the progression
of atherosclerosis in LDLr−/− mice. Another study team reached a similar conclusion with ApoE−/− mice [132].
As FTY720 is a non-selective S1P analog, Nofer et al. [131] further investigated the antiatherogenic effects of
S1PR1-selective agonists, such as CYM5442 and KRP-203, and demonstrated that activating S1PR1 at least partially
mediated atheroprotective effects [133,134]. Thus, S1P analogs may be promising bullets against atherosclerosis.

Conclusions
The worldwide burden of metabolic diseases, especially atherosclerotic disorder, is staggering. Understanding the
precise roles of sphingolipid metabolites and related enzymes on the development of atherosclerosis will invite new
available treatments. This brief review mainly focussed on seeking therapeutic targets for atherosclerosis from the
complicated sphingolipids metabolism. The above possible targets or inhibitors shed significant light on those patients
suffering from atherosclerosis as well as related diseases, although further investigation and refining is necessary.
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