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On Local Unitary Equivalence of 
Two and Three-qubit States
Bao-Zhi Sun1, Shao-Ming Fei2 & Zhi-Xi Wang2

We study the local unitary equivalence for two and three-qubit mixed states by investigating the 
invariants under local unitary transformations. For two-qubit system, we prove that the determination 
of the local unitary equivalence of 2-qubits states only needs 14 or less invariants for arbitrary two-qubit 
states. Using the same method, we construct invariants for three-qubit mixed states. We prove that 
these invariants are sufficient to guarantee the LU equivalence of certain kind of three-qubit states. 
Also, we make a comparison with earlier works.

Nonlocality is one of the astonishing phenomena in quantum mechanics. It is not only important in philosophical 
considerations of the nature of quantum theory, but also the key ingredient in quantum computation and com-
munications such as cryptography1. From the point of view of nonlocality, two states are completely equivalent if 
one can be transformed into the other by means of local unitary (LU) transformations. Many crucial properties 
such as the degree of entanglement2, 3, maximal violations of Bell inequalities4–7 and the teleportation fidelity8, 9 
remain invariant under LU transformations. For this reason, it has been a key problem to determine whether or 
not two states are LU equivalent.

There have been a plenty of results on invariants under LU transformations10–25. However, one still does not 
have a complete set of such LU invariants which can operationally determine the LU equivalence of any two states 
both necessarily and sufficiently, except for 2-qubit states and some special 3-qubit states. For the 2-qubit state 
case, Makhlin presented a set of 18 polynomial LU invariants in ref. 10. In ref. 20 the authors constructed a set of 
very simple invariants which are less than the ones constructed in ref. 10. Nevertheless, the conclusions are valid 
only for special (generic) two-qubit states and an error occurred in the proof. In this paper, we corrected the error 
in ref. 20 by adding some missed invariants, and prove that the determination of the local unitary equivalence 
of 2-qubits states only needs 14 or less invariants for arbitrary two-qubit states. Moreover, we prove that the 
invariants in ref. 20 plus some invariants from triple scalar products of certain vectors are complete for a kind of 
3-qubit states.

Results
A general 2-qubit state can be expressed as:
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where I is the 2 × 2 identity matrix, σi, i = 1, 2, 3, are Pauli matrices and ρ σ= ⊗T Itr( ( ))i
i1  etc. Two two-qubit 

states ρ and
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are called LU equivalent if there are some Ui ∈ U(2), i = 1, 2, such that ρ ρ= ⊗ ⊗ˆ † †U U U U( ) ( )1 2 1 2 . By using the 
well-known double-covering map SU(2) → SO(3), one has that for all U ∈ SU(2), there is a matrix O = (okl) ∈ SO(3), 
such that σ σ= ∑ =

†U U ok l kl l1
3 . Therefore, ρ and ρ̂ are LU equivalent if and only if there are some Oi ∈ SO(3), i = 1, 

2, such that
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For convenience, we denote µ ν= = = = S i S i{ 1, 2, }, { 1, 2, }i i1 2 , i.e., μ1 = T1, μ2 = T12T2, µ = T T Tt
3 12 12 1 

and so on. The vectors μi (vi) are transformed into O1μi (O2vi) under local unitary transformations. Otherwise, 
local unitary transformation can transform μi × μj to O1(μi × μj) and vi × vj to O2(vi × vj). Hence it is direct to 
verify that the inner products 〈μi, μj〉, 〈vi, vj〉, = i j, 1, 2, , and µ µ µ µ µ µ ν ν ν≡ 〈 × 〉 ≡( , , ) , , ( , , )i j k i j k i j k  
ν ν ν〈 × 〉 = i j k, , , , 1, 2,i j k , are invariants under local unitary transformations. Moreover, from the transfor-

mation →T O T O t
12 1 12 2, we have that αT Ttr( )t

12 12 , α = 1, 2, , and det T12 are also LU invariants.
For a set of 3-dimensional real vectors µ= = S i{ 1, 2, }i , we denote dim〈S〉 the dimension of the real lin-

ear space spanned by {μi}, i.e., the number of linearly independent vectors of {μi}. As the vectors in S1 and S2 are 
three-dimensional, there are at most 3 linearly independent vectors in each vector sets S1 and S2.

First note that, given two sets of 3-dimensional real vectors µ= = S i{ 1, 2, }i  and µ= = 

ˆ ˆS i{ 1, 2, }i , if 
the inner products µ µ µ µ〈 〉 = 〈 〉ˆ ˆ, ,i j i j , then the following conclusions are true: (i) = ˆS Sdim dim ; (ii) The cor-
responding subsets of S and Ŝ have the same linear relations; (iii) There exist O ∈ O(3) such that µ µ=ˆ Oi i. 
Furthermore, using µ µ µ µ µ µ= ˆ ˆ ˆ( , , ) ( , , )i j k i j k , we can get that O ∈ SO(3). If dim〈S〉 = 3, then O is unique. For 
dim〈S〉 < 3, µ µ µ µ µ µ= =ˆ ˆ ˆ( , , ) ( , , ) 0i j k i j k , and there is at least one O ∈ SO(3) such that µ µ=ˆ Oi i.

Next we clarify the independent invariants in S1 and S2. From the definition of μi, vi, we have

µ µ

ν ν

〈 〉 =








 +

〈 〉 =








 +

T T T T i j
T T T T i j

T T T T T i j

T T T T i j
T T T T i j

T T T T T i j

,
( ) , if , are odd
( ) , if , are even

( ) , if is odd

,
( ) , if , are odd
( ) , if , are even

( ) , if is odd

i j

t t a

t t a

t t b

i j

t t a

t a

t t b

1 12 12 1

2 12 12 2

1 12 12 12 2

2 12 12 2

2
1

12 12 1

1 12 12 12 2

ij

ij

ij

ij

ij

ij

where = + − = + −a i j b i j( 2)/2, ( 3)/2ij ij . From Hamilton-Cayley theorem, when ≥a b, 3ij ij , the invariants 
〈μi, μj〉 and 〈vi, vj〉 can be linearly represented by 〈μp, μq〉, 〈vp, vq〉, <a b, 3pq pq . Therefore there are only 9 linearly 
independent invariants: 〈μi, μj〉, 〈vi, vi〉, i = 1, 2, 3, and 〈μ1, μj〉, j = 2, 4, 6. We denote them as =L  

µ µ ν ν µ µ= 〈 〉 〈 〉 〈 〉| = = .L i j{ , , , , , 1, 2, 3, 2, 4, 6}i i i i j1
For 2-qubit states ρ and ρ̂ , if = =ˆS Sdim dim 31 1 , we need one more invariant µ µ µ( , , )r s t0 0 0

 to guarantee 
that there is an O1 ∈ SO(3) such that µ µ= ˆO i i1 , for any i. Here µ µ µ, andr s t0 0 0

 are arbitrary three linear independ-
ent vectors in S1. If = <ˆS Sdim dim 31 1 , then the invariants in L are enough to guarantee the existence of O1. 
Similar conclusions are true for S2 and Ŝ2.

Let µ µ µ ν ν ν, and ( , and )r s t r s t0 0 0 0 0 0
 denote arbitrary three linear independent vectors in S1 (S2) if dim〈S1〉 = 3 

(dim〈S2〉 = 3). For the case that at least one of dim〈S1〉 and dim〈S2〉 is 3, we have

Theorem 1 Two 2-qubit states are LU equivalent if and only if they have same values of the invariants in L, the invar-
iant µ µ µ ν ν ν( , , ) and/or ( , , )r s t r s t0 0 0 0 0 0

 if dim〈S1〉 = 3 and/or dim〈S2〉 = 3.
See Methods for the proof of Theorem 1.
For the case both dim〈S1〉 < 3 and dim〈S2〉 < 3, we also have µ µ= ˆO T T Ot

i
t

i2 12 12 1  for some Oi ∈ SO(3). But this 
does not necessarily give rise to =T̂ O T O t

12 1 12 2. In order to discuss these cases, we need the following result.

Lemma 1 For two-qubit states ρ and ρ̂ , if =α αˆ ˆT T T Ttr( ) tr( )t t
12 12 12 12 , α = 1, 2 and = ˆT Tdet det12 12. then =T̂12  

O T O t
1 12 2 for some ∈O O SO, (3)1 2 .

See Methods for the proof of Lemma 1.
For the completeness of the set of invariants, we also need an extra invariant ε ε= T T T TI ijk lmn

i l jm kn
1 2 12 12 , here εijk 

and εlmn are Levi-Cevita symbol. Now we discuss the case of = <ˆS Sdim dim 3i i , i = 1, 2.

Theorem 2 Two 2-qubit states with = <ˆS Sdim dim 3i i , i = 1, 2 are local unitary equivalent if and only if they 
have the same values of the invariants in L, and the invariants αT Ttr( )t

12 12 , α = 1, 2, det T12 and I.
See Methods for the proof of Theorem 2.
From Theorem 1 and 2 we see that for the case at least one of 〈Si〉 has dimension three, we only need 11 or 10 

invariants to determine the local unitary equivalence of two 2-qubit states: namely, 9 invariants from L, and 
µ µ µ ν ν ν( , , ) and/or ( , , )r s t r s t0 0 0 0 0 0

. If both the dimensions of 〈S1〉 and 〈S2〉 are less than 3, then µ µ µ =( , , )r s t0 0 0
 

ν ν ν =( , , ) 0r s t0 0 0
. To determine the LU equivalence, we need invariants from L, I, αT Ttr( )t

12 12 , α = 1, 2, and det T12. 
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Hence we need at most 13 independent invariants. In ref. 20, the authors considered only the generic case of 
dim〈Si〉 = 3, i = 1 and 2, in which the important invariants µ µ µ ν ν ν( , , ) and ( , , )r s t r s t0 0 0 0 0 0

 are missed. By adding 
these missed invariants, we have remedied the error in ref. 20 and, moreover, generalized the method to the case 
of dim〈Si〉 = 3 for i = 1 or 2.

As an example, let we consider the states ρ and ρ̂  with = = −ˆT T(1, 1, 1) and (1, 1, 1)t t
1 1 , respectively. 

= =ˆ ˆ ˆT T T T T Tand t t
2 2 12 12 12 12 are diagonal with different nonzero elements on diagonal line. Hence 

= =ˆS Sdim dim 31 1 . In this case the invariants from ref. 20 have the same values for ρ and ρ̂. Nevertheless, taking 
µ µ µ= = =T TT T T T T, and ( )r s

t
t

t
1 1 12 12 1 12 12

2
0 0 0

, and correspondingly, µ µ µ= = =ˆ ˆ ˆ ˆ ˆ ˆ ˆT TT T, , andr s
t

t1 1 12 120 0 0
 ˆ ˆ ˆT T T( )

t
1 12 12

2, we 
find that the triple scalar invariant we added are different for ρ and ρ̂, µ µ µ =( , , )r s t0 0 0

µ µ µ− ≠ˆ ˆ ˆ( , , ) 0r s t0 0 0
. Therefore, ρ and 

ρ̂ are not locally equivalent.
The expression of a complete set of LU invariants depends on the form of the invariants. Different construc-

tions of LU invariants may give different numbers of the invariants in the complete set, and may have different 
advantages. Obviously the eigenvalues of a density matrix are LU invariants. Based on the eigenstate decomposi-
tions of density matrices, in ref. 12 complete set of LU invariants are presented for arbitrary dimensional bipartite 
states. Nevertheless, such kind of construction of invariants results in problems when the density matrices are 
degenerate, i.e. different eigenstates have the same eigenvalues. The 18 LU invariants constructed in ref. 10 are 
based on the Bloch representations of 2-qubit states and has no such problem as in ref. 12. However, these 18 
invariants are complete but more than necessary in the sense that the number of independent invariants can be 
reduced by suitable constructions of the invariants. The LU invariants constructed in ref. 20 are also in terms of 
Bloch representations. Such constructed invariants work for both non-degenerate and degenerate states. 
Nevertheless, the invariants: I, µ µ µ ν ν ν = ˆT T( , , ), ( , , ) and det detr s t r s t 12 120 0 0 0 0 0

 make the corresponding theorems 
incorrect even for generic cases studied in ref. 20. By adding these invariants, our set of invariants work for arbi-
trary 2-qubit states. In fact, a set of complete LU invariants characterizes completely the LU orbits in the quantum 
state space. Generally such orbits are not manifolds, but varieties. For example, the set of pure states is a symplec-
tic variety26. For general mixed states, the situation is much more complicated27. Our results would highlight the 
analysis on the structures of LU orbits.

Now we come to discuss the case of three-qubit system. A three-qubit state ρ can be written as:
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One has the coefficient vectors T1, T2, T3, coefficient matrices T12, T23, T13 and coefficient tensor T123. Now, ρ 
and ρ̂  are LU equivalent if and only if there are Oi ∈ SO(3), i = 1, 2, 3, such that = = ⊗ˆ ˆT O T T O,i i i ij i  

= ⊗ ⊗ˆO T T O O O T,j ij 123 1 2 3 123. For simplicity we denote ≡t Tijk
ijk

123 and
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3 12 3 12. Similar to to the two-qubit case, one has three sets of vectors,

   

   

   

= ∗ ∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ ∗ ∗

− − − −
|

− − − −
|

− − − −
|

{ }
{ }
{ }

S T T T T

S T T T T

S T T T T

, , , ,

, , , ,

, , , ,

r r r r

r r t r r

r r t r t r

1 1
1

1 1
1

12 1
1

13 1
1

1 23

2 2
1

2 2
1

12 2
1

23 2
1

2 13

3 3
1

3 3
1

13 3
1

23 3
1

3 12

where r = 1, 2, 3 and ** represents all the suitable vectors constructed from T T T, , andij i jk i i  such that the  
vectors in Si are transformed into OiSi under LU transformations. For instance, we have ⊂T S S ,t

12 1 2  
⊂ ⊗ ⊂|T S S T S S S,t

13 1 3 1 23 2 3 1 and so on, where for ν ω= = = | = S i S j{ 1, 2, } and { 1, 2, }i j2 3 , we have 
denoted ν ω⊗ = ⊗ | = S S i j{ , 1, 2, }i j2 3  etc. Because the vectors in Si  are all 3-dimensional, we have 
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≤Sdim 3i . The inner products µ µ ν ν ω ω〈 〉 〈 〉 〈 〉 = i j, , , and , , , 1, 2,i j i j i j , are all invariants under LU transfor-
mations. Using the method in ref. 20, we now prove that these invariants together with the additional ones in 
theorem 3 are sufficient to guarantee the LU equivalence of certain kind of three-qubit states with at least two of 
dim〈Si〉 = 3 for i = 1, 2, 3.

Theorem 3 Given two 3-qubit states ρ and ρ̂ , if 〈 〉 = 〈 〉 =ˆ ˆ ˆ ˆ ˆX X X X X X X X X X, , , ( , , ) ( , , )i j i j i j k i j k  for µ ν=X , , 
ω = and i j k, , 1, 2, , and = =ˆS Sdim dim 3i i  for at least two i ∈ 1, 2, 3, then ρ and ρ̂ are LU equivalent.

See Methods for the proof of Theorem 3.
If at most one of dim〈Si〉 is 3, things become more complicated. Now we give a comparison with the results in 

ref. 11. For 3-qubit states ρ and ρ̂, if
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The results in ref. 11 concluded that ρ and ρ̂  are local unitary equivalent if and only if the invariants in 
Theorem 3, together with the invariants  =r itr( ), , 1, 2, 3i

r  for the case of Λ Θ ≠ =idet 0, 1, 2, 3i i . Obviously, 
if Λ Θ ≠ PT P T P Tdet 0, , andi i i i i i i i i i

2   are linear independent, so all dim〈Si〉 = 3. But dim〈Si〉 = 3 does not neces-
sarily imply Λ Θ ≠det 0i i . Here we only need that two of the dim〈Si〉 are 3. So we give the sufficient conditions for 
local unitary equivalence of more states than the ones given in ref. 11.

Conclusion
We study the local unitary equivalence for two and three-qubit mixed states by investigating the invariants under 
local unitary transformations. We corrected the error in ref. 20 by adding some missed invariants, and prove that 
the determination of the local unitary equivalence of 2-qubits states only needs 14 or less invariants for arbitrary 
two-qubit states. Moreover, we prove that the invariants in ref. 20 plus some invariants from triple scalar prod-
ucts of certain vectors are complete for a kind of 3-qubit states. Comparing with the results in ref. 11, it has been 
shown that we judge the LU equivalence for a larger class of 3-qubit states.

Methods
Proof of Theorem 1 Suppose = =ˆS Sdim dim 31 1 . From the construction of S1 and S2, we have that 
ν µ ν µ= = =+ + ˆ ˆ ˆT T i, , 1, 2,i

t
i i

t
i1 12 1 12 . Then µ ν ν µ µ= = = = =+ + ˆ ˆ ˆ ˆO T O T T O i, 1, 2,t

i i i
t

i
t

i2 12 2 1 1 12 12 1 . Since 
µ µ µ, andr s t0 0 0

 are linearly independent, µ µ µ ≠det( ) 0r s t0 0 0
, where µ µ µ( )r s t0 0 0

 denotes the 3 × 3 matrix given by 
the three column vectors µ µ µ, andr s t0 0 0

. From µ µ µ µ µ µ= ˆO T T O( ) ( )t
r s t

t
r s t2 12 12 10 0 0 0 0 0

, we get = ˆO T T Ot t
2 12 12 1. Then 

=T̂ O T O t
12 1 12 2. The same result can be obtained from = =ˆS Sdim dim 32 2 .	 ■

Proof of Lemma 1 From =α αˆ ˆT T T Ttr( ) tr( )t t
12 12 12 12 , α = 1, 2 and = ˆT Tdet det12 12, one has that T12 and T̂12 have the 

same singular values. According to the singular value decomposition, there are ∈ˆP P O, (3)i i , i = 1, 2, such that 
= =ˆ ˆ ˆPT P PT P diag t t t( , , )t t

1 12 2 1 12 2 1 2 3 , where t1, t2 and t3 are the singular values. Set = = ∈ˆ ˆO P P O P P O, (3)
t t

1 1 1 2 2 2 , we 
have =T̂ O T O t

12 1 12 2. From = ˆT Tdet det12 12, we have that = = ±O Odet det 11 2 . If = = −O Odet det 11 2 , we 
may change Pi to −Pi to have ∈O SO(3)i .	 ■

Proof of Theorem 2 We only need to prove the “only if ” part, i.e., to find ∈O O SO, (3)1 2  such that 
= =ˆ ˆT O T O T O T,t

12 1 12 2 1 1 1, and =T̂ O T2 2 2 for two 2-qubit states ρ and ρ̂ . From Lemma 1, we have ∈ˆP P O, (3)i i , 
such that ∈P̂ P SO(3)i

t
i  and

= = .ˆ ˆ ˆPT P PT P t t tdiag( , , ) (5)t t
1 12 2 1 12 2 1 2 3

Hence

= = = = .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆPT T P PT T P P T T P P T T P t t tdiag( , , )t t t t t t t t
1 12 12 1 1 12 12 1 2 12 12 2 2 12 12 2 1

2
2
2

3
2

Let =D t t tdiag( , , )1 2 3 ,  then = PS PT DP T D PT D P T D PT{ , , , , , }1 1 1 1 2 2
2

1 1
3

2 2
4

1 1 ,  =P S P T DPT D P T{ , , ,2 2 2 2 1 1
2

2 2  
D PT D P T, , }3

1 1
4

2 2 , we have µ µ µ µ µ µ µ µ〈 〉 = 〈 〉 = 〈 〉 = 〈 〉ˆ ˆ ˆ ˆ ˆ ˆP P P P, , , ,i j i j i j i j1 1 1 1 , and ν ν ν ν〈 〉 = 〈 〉ˆ ˆ ˆ ˆP P P P, ,i j i j2 2 2 2 . Denote 
= =PT a b c P T a b c( ) , ( )t t

1 1 1 1 1 2 2 2 2 2 . By using µ µ µ µ〈 〉 = 〈 〉 =ˆ ˆ ˆ ˆP P P P j, , , 1, 3, 5j j1 1 1 1 1 1 , i.e. 〈 〉 = 〈 ˆ ˆPT D PT PT, ,r
1 1 1 1 1 1  

〉 =ˆ ˆD PT r, 0, 2, 4r
1 1 , we get
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+ + = + + = .ˆ ˆ ˆt a t b t c t a t b t c j, 0, 2, 4 (6)j j j j j j
1 1

2
2 1

2
3 1

2
1 1

2
2 1

2
3 1

2

Similarly, using ν ν ν ν〈 〉 = 〈 〉 =ˆ ˆ ˆ ˆP P P P j, , , 1, 3, 5j j2 1 2 2 1 2 , and µ µ µ µ〈 〉 = 〈 〉 =ˆ ˆ ˆ ˆP P P P j, , , 2, 4,6j j1 1 1 1 1 1 , we obtain

+ + = + + = .ˆ ˆ ˆt a t b t c t a t b t c j, 0, 2, 4 (7)j j j j j j
1 2

2
2 2

2
3 2

2
1 2

2
2 2

2
3 2

2

+ + = + + = .ˆ ˆ ˆ ˆ ˆ ˆt a a t b b t c c t a a t b b t c c j, 1, 3, 5 (8)j j j j j j
1 1 2 2 1 2 3 1 2 1 1 2 2 1 2 3 1 2

1. If t t t, ,1 2 3 are all not equal, from (6) and (7) we can conclude that α α= ± ˆi i for α = a b c, ,  and =i 1, 2.

	 (i)	 If ≠t 0i , =i 1, 2, 3, from (8) we get α α α α= ˆ ˆ1 2 1 2 for α = a b c, , . Now if α α ≠ 01 2 , then we have 
α α α α= ⇔ =ˆ ˆ1 1 2 2. If α α = 01 2 , suppose α = 01 , then we have α =ˆ 01 . If α α= ˆ2 2, we also can write 
α α= ˆ1 1. Let =R e e ediag{ , , }1 2 3 , where ei take values +1 or −1, such that = ˆ ˆRPT PT1 1 1 1. Then one must have 

= ˆ ˆRP T P T2 2 2 2. Note that the equality (5) is also true if one replaces Pi by RPi. Let = =ˆ ˆO P RP O P RP,
t t

1 1 1 2 2 2. 
We have =T̂ O Ti i i for =i 1,2, and =T̂ O T O t

12 1 12 2. To assure that Oi be special, we have det R = 1. Firstly, 
from = <PS Sdim dim 3i i i , we have that PT D PT D PT, ,i i i i i i

2 4  are linearly dependent. Then there is at least 
one α ∈ a b c{ , , }i i i i

0  that is zero. Hence if P1T1 and D2P1T1 are linearly independent, we have that DP2T2 
can be linearly represented by P1T1 and D2P1T2. Using ≠t t t 01 2 3  and supposing a1 = 0, we get that a2 is also 
zero. Now e1 in R can be chosen to be 1 or −1 freely. We can choose e1 to assure that det R = 1. Similarly, for 
the case that P2T2 and DP2T2 are linear independent, we can also find R which has determinate one. Lastly, 
if PiTi and D2PiTi are linear dependent, then there are at least two members are zero in a b c{ , , }i i i , i = 1, 2. 
Therefore, there is an α ∈ a b c{ , , } satisfying α1 = α2 = 0, such that det R = 1.

	(ii)	 If there exists a ti = 0, say, t3 = 0, then we have α α α α= ˆ ˆ1 2 1 2 for α = a, b from (8). And the invariant I can 
assure that = ˆ ˆc c c c1 2 1 2. From the discussion above, we have the conclusion.

2. If there are two different values of t t t, ,1 2 3, suppose = ≠t t t1 2 3. Then from (6) and (7), we can get 
+ = + = ± =ˆ ˆ ˆa b a b c c i, for 1, 2i i i i i i

2 2 2 2
.

	 (i)	 If ≠ =t i0, 1,2,3i , from (8) we get + = + =ˆ ˆ ˆ ˆ ˆ ˆa a b b a a b b c c c c,1 2 1 2 1 2 1 2 1 2 1 2. Then there exists a matrix 

∈M O(2) such that 





 =











ˆ
ˆM

a
b

a

b
i

i

i

i

, i = 1, 2. And there is an e = 1 or −1 such that = ˆec ci i for i = 1, 2. 

Therefore letting = ( )R M
e

, one has = ˆ ˆRPT PT1 1 and = ˆ ˆRQT QT2 2 again. For the speciality of R, from the 

dimension of 〈Si〉, we have 





 = = =

a a
b b c cdet 0 or 01 2

1 2
1 2 . Hence, we can choose suitable M or e to make 

sure that R is special.

	(ii)	 If = =t t 01 2 , we only have = ˆ ˆc c c c1 2 1 2. We can get ∈M O(2)i  such that 





 =











ˆ
ˆM

a
b

a

bi
i

i

i

i

, i = 1, 2, and 

= ( )R M
ei i  to get the result similarly. We can choose suitable Mi for the speciality of Ri.

	(iii)	 If t3 = 0, then one has R1, R2 with the same M but different e to prove the theorem. The speciality for Ri is 
similar to the case of ≠t 0i .

3. If = = ≠t t t 01 2 3 , from (6), (7) and (8), we get + + = + +ˆ ˆ ˆa b c a b ci i i i i i
2 2 2 2 2 2 for i = 1, 2, and 

+ + = + +ˆ ˆ ˆ ˆ ˆ ˆa a b b c c a a b b c c1 2 1 2 1 2 1 2 1 2 1 2. Then we have ∈R SO(3) such that = ˆ ˆRPT PT1 1 1 1 and = ˆ ˆRP T Q T2 2 2 2. 
Replacing Pi by RPi in (5) we get the result.

4. If = = =t t t 01 2 3 , we have + + = + +ˆ ˆ ˆa b c a b ci i i i i i
2 2 2 2 2 2 for i = 1, 2. Therefore one has ∈R SO(3) such 

that = ˆ ˆRPT PTi i i i, i = 1, 2. Replacing Pi by RPi in (5) one gets the result.	 ■

Proof of Theorem 3 For 3-qubit states ρ and ρ̂, they are LU equivalent if and only if there are ∈O SO(3)i , i = 1, 2, 
3, such that = =ˆ ˆT O T T O T O,i i i ij i ij j

t and = ⊗ ⊗T̂ O O O T123 1 2 3 123. Suppose = =ˆS Sdim dim 3i i , for i = 1, 2. By 
using the given invariants, we have ∈O SO(3)i  such that µ µ ν ν ω ω= = = = 

ˆ ˆ ˆO O O i, and for 1, 2,i i i i i i1 2 3 , as 
well as, µ µ µ µ ν ν µ ν µ ν= = = ⊗ = ⊗| |

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT O T T O T T O T T O T, , and
t

i
t

i
t

i
t

i
t

i
t

i i j i j12 2 12 13 3 13 23 3 23 3 12 3 3 12  for = i j, 1, 2, . 
Suppose µ µ µ, andi i i1 2 3

 are linear independent. Then µ µ µ µ µ µ µ µ µ= =ˆ ˆ ˆ ˆ ˆO T T T O( ) ( ) ( )t
i i i

t
i i i

t
i i i2 12 12 12 11 2 3 1 2 3 1 2 3

. 
Hence we get = ˆO T T Ot t

2 12 12 1, i.e. =T̂ O T O t
12 1 12 2 . Similarly, we have =T̂ O T O t

13 1 13 2 , =T̂ O T O t
23 2 23 3 . From 

µ ν µ ν⊗ = ⊗| |
ˆ ˆ ˆT O Ti j i j3 12 3 3 12 , = i j, 1, 2, , we have

µ µ µ ν ν ν µ µ µ ν ν ν⊗ ⊗ = ⊗| |T̂ O O O T( ) ( ) ( ) ( ),i i i j j j i i i j j j3 12 1 2 3 3 121 2 3 1 2 3 1 2 3 1 2 3

where ν ν ν, ,j j j1 2 3
 are linear independent vectors in S2. Using the linear independence of µ µ µ, ,i i i1 2 3

 and 
ν ν ν, ,j j j1 2 3

,  we  get  ⊗ = = ⊗| | | |
ˆ ˆT O O O T T O T O Oor t t
3 12 1 2 3 3 12 3 12 3 3 12 1 2  which is  equiva lent  to  =T̂123  

⊗ ⊗O O O T1 2 3 123.	 ■
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