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We study the local unitary equivalence for two and three-qubit mixed states by investigating the
. invariants under local unitary transformations. For two-qubit system, we prove that the determination
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Published online: 07 July 2017 . states. Using the same method, we construct invariants for three-qubit mixed states. We prove that

. these invariants are sufficient to guarantee the LU equivalence of certain kind of three-qubit states.
Also, we make a comparison with earlier works.
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Nonlocality is one of the astonishing phenomena in quantum mechanics. It is not only important in philosophical
considerations of the nature of quantum theory, but also the key ingredient in quantum computation and com-
munications such as cryptography’. From the point of view of nonlocality, two states are completely equivalent if
one can be transformed into the other by means of local unitary (LU) transformations. Many crucial properties
such as the degree of entanglement® >, maximal violations of Bell inequalities* and the teleportation fidelity®°®
remain invariant under LU transformations. For this reason, it has been a key problem to determine whether or
not two states are LU equivalent.

There have been a plenty of results on invariants under LU transformations'®-**. However, one still does not
have a complete set of such LU invariants which can operationally determine the LU equivalence of any two states
both necessarily and sufficiently, except for 2-qubit states and some special 3-qubit states. For the 2-qubit state
case, Makhlin presented a set of 18 polynomial LU invariants in ref. 10. In ref. 20 the authors constructed a set of
very simple invariants which are less than the ones constructed in ref. 10. Nevertheless, the conclusions are valid
only for special (generic) two-qubit states and an error occurred in the proof. In this paper, we corrected the error
in ref. 20 by adding some missed invariants, and prove that the determination of the local unitary equivalence
of 2-qubits states only needs 14 or less invariants for arbitrary two-qubit states. Moreover, we prove that the
invariants in ref. 20 plus some invariants from triple scalar products of certain vectors are complete for a kind of
3-qubit states.

Results
A general 2-qubit state can be expressed as:

1 ® 1 +ZTU®1 +ZTJI ®U+ZT;JZU®
i=1 j=1 i,j=1

p=

where I is the 2 x 2 identity matrix, o;, i =1, 2, 3, are Pauli matrices and Tli = tr(p(o; ® I)) etc. Two two-qubit
states p and

1 3. 3 3 i
Pzzlz®12+2nl‘7i®12+Zszlz® ZTU:

i=1 j=1

are called LU equivalent if there are some U; € U(2), i=1, 2, such that p = (U; ® U,)p( U;r ® UZT). By using the
well-known double-covering map SU(2) — SO(3), one has that for all U € SU(2), there is a matrix O = (0y) € SO(3),
such thatUg,U" = 33| oy ;. Therefore, p and /) are LU equivalent if and only if there are some O, € SO(3),i=1,
2, such that
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=0T T,=0,T,
I, = O1T1202t~ ey
One has two sets of vectors,

S = AL T,h, T12T1t2T1’ T12T1t2T12T2> TR
S, = {Ty T,T THL, T THTLTLT, ) @

For convenience, we denote S; = {|i = 1,2, ---}, S, = {yfi = 1, 2, ---hie, =T, Ho =TT p, = T,T,T,
and so on. The vectors (i, (v;) are transformed into O, 1 (Ozv ) under local unitary transformatlons Otherwise,
local unitary transformation can transform j; X p; to Oy(p; X p;) and v; X v; to O,(v; X v;). Hence it is direct to
verify that the inner products (u; 1)), (vi» vj), 4, j =1, 2, -+ and (u, [ ) = (1 ;% Hed> W v )=
(vp v; X 1), i, j, k = 1,2, - are invariants under local unitary transformations. Moreover, from the transfor-
mat1on T, — O,T;,0;, we have that tr(T;,T},)% @ = 1, 2, ---, and det T}, are also LU invariants.

For a set of 3-dimensional real vectors S = {y|i = 1, 2, ---}, we denote dim(S) the dimension of the real lin-
ear space spanned by {1}, i.e., the number of hnearly 1ndependent vectors of {y;}. As the vectors in S, and S, are
three-dimensional, there are at most 3 linearly independent vectors in each vector sets S, and 82

First note that, given two sets of 3-dimensional real vectors § = {1|i = 1, 2, }and§ = {ali=1,2,}if
the inner products (1., ﬂ) (M p,) then the following conclusions are true: (1) dim(S) = dlm( ) (ii) The cor-
responding subsets of S and § have the same linear relations; (iii) There exist O € O(3) such that /i, = Oy,
Furthermore, using (1, 1 /"k) (4, M fi,)» we can get that O € SO(3). If dim(S) =3, then O is unique. For
dim(S) <3, (1, s ) = (M s ) = 0, and there is at least one O € SO(3) such that /i, = Oy,

Next we clarlfy the 1ndepend]ent invariants in S; and S,. From the definition of y;, v;, we have

THT,T)%T,  if i,j are odd
(Hp 1) = {T(TLL) T, if i, j are even
THT,TL) T, T, if i+ j is odd
THTLT)%T,  if i,j are odd
(W vj) = {Ty(T,TH)T,  if i,j are even
THT,TL) T, T, if i+ j is odd

where g, j=(+j—2)2,b; = (i+j— 3)/2.From Hamilton- Cayley theorem, when @, by > 3, the invariants
(k> 1) and (v;, v;) can be linearly represented by (14, 1), (Vp» Vg)> @y b, < 3. Therefore there are only 9 linearly
independent invariants: (1, ;). (vi, v;), i=1, 2, 3, and (p,, ,uj) j=2, 4, 6. We denote them as L=
L= o 1) o s (1 )i =1,2,3,j = 2, 4, 6}.

For 2-qubit states p and p, ifdim(S;) = d1m( 1) = 3, we need one more invariant (.U B Py, ) to guarantee
that there is an O, € SO(3) such that Olp = fi, for any i. Here Hoo b and p, are arbitrary ‘three linear independ-
ent vectors in 8. If dim(S,) = dim($)) < 3, then the invariants in L'are enough to guarantee the existence of O,.
Similar conclusions are true for S, and S,.

Let 1o I 4 and p " (14 v, and 1) denote arbitrary three linear independent vectors in S, (S,) if dim(S,) =3

(dlm(Sz) 3). For the case that at least one of dim(S;) and dim(§,) is 3, we have

Theorem 1 Two 2-qubit states are LU equivalent if and only if they have same values of the invariants in L, the invar-
lant(,u B K, ) and/or (v, s Vip Vs, )if dim(S,) = 3 and/or dim(S,) = 3.

See Methocfs for the proof of Theorem 1.

For the case both dim(S,) < 3 and d1m(Sz) <3, we also have O, T}, = leolu for some O; € SO(3). But this
does not necessarily give rise to T}, = O,T;,0x. In order to discuss these cases, we need the following result.

Lemma 1 For two-qubit states p and p, if tr(T,,T},)* = tr(flzfltz)“, a=1, 2 and detT;, = detT},. then T,, =
0,1;,0, for some O;, O, € SO(3).

See Methods for the proof of Lemma 1.

For the completeness of the set of invariants, we also need an extra 1nvar1antI = €ikCimn T1 TZT{Zm lez”, here Eiik
and ¢,,,,, are Levi-Cevita symbol. Now we discuss the case of dim S; = dim S < 3i= 1 2.

Theorem 2 Two 2-qubit states with dim S; = dim §; < 3, i= 1, 2 are local unitary equivalent if and only if they
have the same values of the invariants in L, and the invariants tr(T,T},)", =1, 2, det T, and L.

See Methods for the proof of Theorem 2.

From Theorem 1 and 2 we see that for the case at least one of (S;) has dimension three, we only need 11 or 10
invariants to determine the local unitary equivalence of two 2-qubit states: namely, 9 invariants from L, and
(,u o ) and/or (v, v, ;). If both the dimensions of (S,) and (S,) are less than 3, then (M ,ut)

4, 1/ v, ) =0.To determme the LU equivalence, we need invariants from L, I, tr(T;,T},)" a=1, 2, and det le
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Hence we need at most 13 independent invariants. In ref. 20, the authors considered only the generic case of
dim(S;) =3, i=1 and 2, in which the important invariants (M 1o 1 t) and (1, 1, , v, ) are missed. By adding
these missed invariants, we have remedied the error in ref. 20 and moreover, generahzed the method to the case
of dim(S;)=3fori=1or2.
As an example, let we consider the states p and p with T, = (1, 1, 1)" and T; = (1, 1, —1)", respectively.
A A At
T, = T, and T12T1'2 = T,,T;, are diagonal with different nonzero elements on diagonal line. Hence
dim(S ) = dim(S,) = 3. In this case the invariants from ref. 20 have the same values for P and p. Nevertheless, takmg

K = =Thnu = = T, T}, and By = T(T,T1) andcorrespondmgly,,u =T, M = Tlele and,u T(leTrz) we

find that the triple scalar invariant we added are different for pand p,( Hos o 1y ) =, A, 0n,)=0 Therefore, pand
"o 0

0

p are not locally equivalent.

The expression of a complete set of LU invariants depends on the form of the invariants. Different construc-
tions of LU invariants may give different numbers of the invariants in the complete set, and may have different
advantages. Obviously the eigenvalues of a density matrix are LU invariants. Based on the eigenstate decomposi-
tions of density matrices, in ref. 12 complete set of LU invariants are presented for arbitrary dimensional bipartite
states. Nevertheless, such kind of construction of invariants results in problems when the density matrices are
degenerate, i.e. different eigenstates have the same eigenvalues. The 18 LU invariants constructed in ref. 10 are
based on the Bloch representations of 2-qubit states and has no such problem as in ref. 12. However, these 18
invariants are complete but more than necessary in the sense that the number of independent invariants can be
reduced by suitable constructions of the invariants. The LU invariants constructed in ref. 20 are also in terms of
Bloch representations. Such constructed invariants work for both non-degenerate and degenerate states.
Nevertheless, the invariants: I, (H s )> U Vi 1) and det T}, = det f“lz make the corresponding theorems
incorrect even for generic cases studled in ref. 20 By addlng these invariants, our set of invariants work for arbi-
trary 2-qubit states. In fact, a set of complete LU invariants characterizes completely the LU orbits in the quantum
state space. Generally such orbits are not manifolds, but varieties. For example, the set of pure states is a symplec-
tic variety®®. For general mixed states, the situation is much more complicated?”. Our results would highlight the
analysis on the structures of LU orbits.

Now we come to discuss the case of three-qubit system. A three-qubit state p can be written as:

3
12®12®12+ZT ®IZ®IZ+ETJI2 oL+ Y TLRL® o,
i=1 j=1 k=1

+Z Tho, ® 0, ® I, + Z T ® L ® o + E THL ® 0, ® o
i,j=1 i,k=1 j-k=1

+ Z T, @ 0, ® o).
ij,k=1

One has the coefficient vectors T;, T,, T, coefficient matrices T;,, Tos, T}5 and coefﬁc1ent tensor T'y;. Now, p
and p are LU equivalent if and only if there are O,€ SO(3), i=1, 2, 3, such that T OT, T, = =0,®

it ij
OT T23 = 0, ® 0, ® 05T, For simplicity we denote ¢, Tl’zk3 and

ij> ijk =

hi hiz tis har foa st bz hiss
Tips = [t bia bz far by tas ba ha bl
B B Bais fao1 Baon taas Bazn B33 333
hi tie ts b b bz B B fis
Lz = |t hoa tios bor by tos tayn Ban Gas)s
tisr tisy tiaz taar Basp fasz fazr B33 fasz

tlll t121 t131 t211 t221 t231 t311 t321 t331
T;}|12 = t112 t122 t132 t212 t222 t232 t312 t322 t332 .

t113 t123 t133 t213 t223 t233 t313 t323 t333

Also, we write 7} = T1|23T1|23’ T,= T2\13T2|13’ Ty = T3\12T3\12 and 7, = T1\23T1|23» T;= T2|13T2\13’ T,=
T3‘1 2T3|12 Similar to to the two-qubit case, one has three sets of vectors,

S = {TrlTp Ty Ty, Ti T %, TflTl|23 * *}»

)
(%)
I

r—1 r—1mpt r—1 r—1
{Tz L, Ty Toxx*,Ty Ty*x,T, T2\13**}>

]
[
I

r—1 r—1mt r—1mt r—1.
{’73 T, Ty Tyaxx,T5 Tyyxx,T5 1"3“2**},

where r=1, 2, 3 and ** represents all the suitable vectors constructed from T, T |]k’ 7, and T, such that the
vectors in S; are transformed into O;S; under LU transformations. For instance, we have TS, C Sy
TS, C Ss, Tjj238; ® S3 C S, and so on, where for §, = {yj|i = 1, 2, ---} and S; = {wj[j = 1, 2, ---}, we have
denoted S, ® S; = {v; ® wj|i,j =1, 2, ---} etc. Because the vectors in §; are all 3-dimensional, we have
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dlm( ) < 3.Theinner products(u ,u> (Vs J> and (w;, w) i,j=1,2,are all invariants under LU transfor-

mations. Using the method in ref. 20] we now prove that these invariants together with the additional ones in
theorem 3 are sufficient to guarantee the LU equivalence of certain kind of three-qubit states with at least two of
dim(S;)=3fori=1,2,3.

Theorem 3 Given two 3-qubit states p and ;j, if (X, Xj) = (}2}, )A(].>, X X;, X)) = ()A(i, )Z'j, f(k) for X = p, v,
wand i, j, k =1, 2, -, and dim(S;) = dim(S;) = 3 for atleast two i € 1, 2, 3, then p and / are LU equivalent.
See Methods for the proof of Theorem 3.
If at most one of dim(S;) is 3, things become more complicated. Now we give a comparison with the results in
ref. 11. For 3-qubit states p and p, if

wT) =wd), TT =17 ri=123, 3)

then there are P, B, € O(3) such that

ty . a;
; A n A ~n
BTR =| 1, |=BTH. BT =Bf=|a
tis a3 (4)
Denote
uzl a12 at3 1 1 1 azl
Y, = Lhan tpAp tiadis| = [t o G a;, = A0,
2 2 2 2
thay tpdin tixas th to t E

The results in ref. 11 concluded that p and j are local unitary equivalent if and only if the invariants in
Theorem 3, together with the invariants tr(7°}), r, i = 1, 2, 3 for the case of det A;0; = 0, i = 1, 2, 3. Obviously,
ifdet A;0, = 0, PT,, P7,T; and P7 T, are linear independent, so all diim(S;) = 3. But diim(S;) = 3 does not neces-
sarily imply det A;©, = 0. Here we only need that two of the dim(S;) are 3. So we give the sufficient conditions for
local unitary equivalence of more states than the ones given in ref. 11.

Conclusion

We study the local unitary equivalence for two and three-qubit mixed states by investigating the invariants under
local unitary transformations. We corrected the error in ref. 20 by adding some missed invariants, and prove that
the determination of the local unitary equivalence of 2-qubits states only needs 14 or less invariants for arbitrary
two-qubit states. Moreover, we prove that the invariants in ref. 20 plus some invariants from triple scalar prod-
ucts of certain vectors are complete for a kind of 3-qubit states. Comparing with the results in ref. 11, it has been
shown that we judge the LU equivalence for a larger class of 3-qubit states.

Methods
Proof of Theorem 1 Suppose dim(S;) = dim(S;) = 3. From the construction of S, and S,, we have that
A At A . ,\ ~t A ~t . .
Vigr = Thattp Dy = Tiofls i = 1,2, . Then 0, Ty, = Oy = 0,y = Tppfy = 1,041, i = 1, 2, . Since
Ho 1 and p, are hnearly mdependent det(p 1 o t) = 0, where (y 1, M )denotes the 3 x 3 matrix given by
A8

the three column vectors it , jy and By From O2 12(,uo “t) = leO (N K, H’t) we get 0,T}, = TIZO1 Then
T, = 0,T;,0L. The same result can be obtamed from d1m(82) = dim(S,) = '3, [ |

Proof of Lemma 1 From tr(T;,T},)" = tr(fnﬁtz)a, a=1,2anddet T;, = det T},, one has that T, and 7}, have the
same smgular values According to the singular value decomposition, there are P, }A’, € 0(3),i=1, 2, such that
PleP; = PleP2 = diag(t;, t,, 1;), where t,, 1, and t; are the singular values. SetO; = lsltPl, 0, = IS;P2 € 0(3), we
have T,, = O,T;,0.. From det T, = det T,,, we have that det O, = det O, = +1. If det O, = det O, = —1, we
may change P; to —P; to have O; € SO(3). [ |

Proof of Theorem 2 We only need to prove the “only if” part, i.e., to find O}, O, € SO(3) such that
T, =0, 12OZ, T, = 0,T;, and T, = O,T, for two 2-qubsit states p and j. From Lemma 1, we have P, P € O(3),
such thatEE € SO(3)and

A~ At
BT,P, = PT,P, = diag(ty, t,, t). (5)

Hence
PT.T.P' = BT T B = pT!T Pt = BT T B — di (2, £, t2)
1241287 111241281 211241282 211241283 1aglty, by, L3).

Let D = diag(t, t,, t;), then BS, = {RT, DR,T,, D’RT, D°BT,, D'PT, -}, BS, = {B,T,, DRT, D’RT,
3PT1, D'BT,, -}, wehave (R, Bys) = (u, 1) = (A, fi)) = (Bfi,, BA) and (P, Pyy) = (B, Pyy). Denote

=(a, b ¢)), BT, =(a, b, cz) Byusmg( s 1,“) (Plul, 1I~L> j=1,3, 5,1e(PT1, D'PT) = (RT,
rP1T1>» r=0, 2, 4, we get
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tial + tjb} + tic} = tja} + tzb + el j=0,2,4. (6)

Similarly, using (P, Pj) = (P, Bp,), j = 1, 3, 5,and (B, Pp) = (B, 131,1]_), j = 2, 4,6, we obtain
. A2 .
tiay + tib; + tic; = tla; + tib, + t{&], j=0,2, 4. 7)

tiaa, + tibb, + ticc, = tjaa, + tibb, + t{eé, j=1,3,5. (8)
1.1f¢t, t,, tyare all not equal, from (6) and (7) we can conclude thata; = £&; fora = a, b, candi = 1, 2.

(i) Ift; = 0,i =1, 2, 3, from (8) we get ayar, = &4&, fora = a, b, c. Now if v, = 0, then we have

o= & & a, = & Ifaa, = 0, supposea; = 0, then we have &; = 0.Ifa, = &,, we also can write
oy = &, Let R = diagf{e,, e,, e5}, where e, take values +1 or —1, such that RBT, = PT Then one must have
RRT, = PZT2 Note that the equality (5) is also true if one replaces P; by RP;. LetO; = P1 RP, O, = 132RP2
Wehave T, = O,T; fori = 1,2,and T;, = O,T;,0.. To assure that O; be special, we have det R=1. Firstly,
from d1m(PS ) = dim(S;) < 3, we have that PT,, D’PT,, D*PT; are linearly dependent. Then there is at least
onea,” € {a;, b, c;} that is zero. Hence if P, T1 and D? P1 T, are linearly independent, we have that DP,T,
can be linearly represented by P, T, and D*P, T,. Using t,t,t, = 0 and supposing a, =0, we get that a, is also
zero. Now e, in R can be chosen to be 1 or —1 freely. We can choose e, to assure that det R= 1. Similarly, for
the case that P,T, and DP,T, are linear independent, we can also find R which has determinate one. Lastly,
if P,T;and D?P,T; are linear dependent, then there are at least two members are zero in{a;, b;, ¢}, i=1, 2.
Therefore, thereis an v € {a, b, ¢} satisfying o; = @, =0, such that det R=1.

(ii) If there exists a t;=0, say, £; =0, then we have «,, = &, for a=a, b from (8). And the invariant I can
assure that c,c, = ¢,¢,. From the discussion above, we have the conclusion.

2. If there are two different values of t, t,, t;, suppose t; = t, = t;. Then from (6) and (7), we can get
a’ + b’ =a} +b,c—:|:cforz—12

(i) Ift; = 0, i = 1,2,3, from (8) we geta,a, + bb, = 4,4, + b,by, ¢,c, = ,¢,. Then there exists a matrix

M € O(2) such that M[Zi] — Lji ,i=1,2. And thereisan e=1 or —1 such thatec; = ¢, fori=1, 2.
i

i

Therefore letting R = (M e)’ one has RPT, = PT, and RQT, = QT, again. For the speciality of R, from the

a, a,
dimension of (S;), we have det[ b b ] = 0or ¢, = ¢, = 0. Hence, we can choose suitable M or e to make

sure that R is special.
“"], i=1,2,and

~

i

(i) Ift, = t, = 0, we only havec,c, = ¢,é,. We can get M; € O(2) such that Mi[zi] = [
i

R = (M )to get the result similarly. We can choose suitable M; for the speciality of R;.

1
e
(iii) If#;=0, then one has R;, R, with the same M but different e to prove the theorem. The speciality for R; is
similar to the case of £, = 0.

3.Ifty=t,=t,=0, from (6), (7) and (8), we get g; —|—b2—|—c = 4 —|—b —|—c fori=1, 2, and
a,a, + bbb, + cic, = a,4, + b b + ¢,6,. Then we have R € SO(3) such that RPT PT and RR,T, = Q,T,.
Replacmg P by RP;in (5) we get the result.
4.1ft, = t, = t, = 0,we havea? + b7 + ¢/ = a7 + l;iz + ¢ for i=1, 2. Therefore one has R € SO(3) such
that RBT; = PT, i=1, 2. Replacing P; by RP; in (5) one gets the result. [ ]

Proof of Theorem 3 For 3-qubit states p and p, they are LU equivalent if and only if there are O; € SO(3),i=1,2,
3,suchthatT, = O/, 1} OTO andT,,; = O, ® 0, ® 0,T;,;. Supposedim(S,) = dim(S;) = 3,fori=1,2.By
using the glven 1nvar1ants we haveO € SO(3) such that /i, = Olu D, = O, and &; = Ozw; fori =1, 2, -+ as
well as, leﬂ = Olezlu T13N = 03T13,“ T23’/ = 03T, and T3\12N ® P, —tO3T3|12N ® v forz =12

Suppose,u 1, andu are linear independent. Then O,T 2(,u M, 1 )7 TZ(,u Ai A, )7 leOl(,u 1y 1 )
Hence we get O2 = leop i.e. T, = O,T;,0.. Similarly, we have T,=0 T1302, T23 = 02T2303 From

3\12“1 ® 0= O3 @ vphs j =1, 2, .-+, we have
T3|1201 ® OZ(Mil Miz uis) @ (le ij Vja) = OST3\12(M1'1 Miz lui3) X (le VJ'Z Vj3)>

where v, v, v, are linear independent vectors in S,. Using the linear independence ofu Hip B, and

i Vi Vs
Vi Vi, Vi, We get T3‘1201 ® 0, = O;T3, or T3‘12 = 0 3“201 ® O, which is equlvalent to lea—
Ol @ 0, @ 03115 |
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