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Abstract

Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can 

modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can 

function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it 

inhibits pathogen virulence has been elusive. Using chemical proteomics, we discovered that 

several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by 

SCFAs. Notably, a transcriptional regulator of SPI-1, HilA, was acylated on several key lysine 

residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene 

editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA 

impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica 
serovar Typhimurium invasion of epithelial cells as well as dissemination in vivo. Moreover, 

a multiple-site HilA lysine-acylation mutant strain of S. Typhimurium was resistant to butyrate­

mediated suppression in vivo. Our results suggest prominent microbiota-derived metabolites may 

directly acylate virulence factors to inhibit microbial pathogenesis in vivo.

Introduction

Short-chain fatty acids (SCFAs) generated by gut microbiota fermentation of dietary 

polysaccharides exhibit significant effects on host physiology and immunity1. SCFA 

concentrations in the mammalian gut range from 1 – 100 mM 2, depending on the location 

in the intestine, host diet and microbiota composition. Specific microbiota reconstitution 

studies have revealed that Clostridia cluster IV, XIVa, XVIII are key bacterial species 

involved in SCFA fermentation in the gut3. Amongst the SCFAs generated in vivo, butyrate 

has been reported to function as a nutrient source for colonocytes4, and as an agonist 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence to: hhang@rockefeller.edu.
Author contributions: H.C.H. conceptualized the project, Z.J.Z. and V.P. performed experiments and data analysis, T.P. synthesized 
bmK, Z.J.Z. and H.C.H. wrote the paper, and all authors contributed to manuscript editing.

Competing interests: Authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Chem Biol. Author manuscript; available in PMC 2021 September 14.

Published in final edited form as:
Nat Chem Biol. 2020 January ; 16(1): 95–103. doi:10.1038/s41589-019-0392-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


for G protein-coupled receptors (GPCRs: GPR41, GPR43, GPR109A) in multiple cell 

types5–9 to maintain intestinal barrier function. Moreover, butyrate has been suggested to 

function as a lysine deacetylase (KDAC) inhibitor to suppress inflammation in peripheral 

regulatory T (Treg) cells3,10–12, neutrophils13, macrophages14 and dendritic cells (DCs)7, as 

well as to prime an antimicrobial program in macrophages15. Clostridia cluster IV, XIVa, 

XVIII production of butyrate is also implicated peroxisome proliferator-activated receptor γ 
(PPARγ) signaling to limit the lumen oxygen availability and prevent the expansion of S. 
Typhimurium in the intestinal lumen16,17.

Beyond modulating host signaling pathways to fortify intestinal barrier integrity and 

suppress inflammation, microbiota-derived butyrate can also function as a nutrient source 

and directly attenuate the virulence of enteric pathogens. Depletion of microbiota with 

broad spectrum antibiotics or streptomycin alone increases host susceptibility to S. 
Typhimurium infection17, which can be ameliorated by recolonization with butyrate­

producing Clostridia17. Butyrate production by the microbiota has also been suggested 

to act as a carbon source for S. Typhimurium that expresses the ydiQRSTD operon18. 

Notably, butyrate also inhibits the expression of virulence-associated genes in Salmonella 
pathogenicity island-1 (SPI-1) locus19,20, which encodes transcriptional regulators, 

chaperones, secreted protein effectors and needle components of the type III secretion 

system (T3SS) required for invasion of epithelial cells and bacterial pathogenesis in vivo21. 

Nonetheless, the molecular mechanism by which butyrate directly inhibits the expression of 

SPI-1 virulence genes and S. Typhimurium infection is unclear.

To identify the protein targets of butyrate in S. Typhimurium, we employed a SCFA 

chemical reporter and label-free quantitative proteomics. We discovered that several 

virulence factors encoded within the SPI-1 locus could be acylated in S. Typhimurium. 

Amongst these acylated proteins, we focused on HilA, a key transcriptional regulator of 

SPI-1 gene expression and S. Typhimurium virulence. To address the potential site-specific 

functions of HilA acylation, we utilized CRISPR-Cas9 gene editing and genetic code 

expansion to install stable butyryl-lysine analogs at key lysine resides on chromosomally­

expressed HilA. Our analysis of these engineered S. Typhimurium strains demonstrated 

that site-specifically butyrylation can inhibit and enhance HilA activity. Notably, acylation 

of lysine 90 impairs HilA occupancy and expression of SPI-1 genes as well as attenuates 

S. Typhimurium invasion of epithelial cells and pathogenesis in vivo. Moreover, a multi­

site lysine-to-arginine and acylation-defective HilA mutant strain of S. Typhimurium was 

resistant to butyrate-mediated suppression of SPI-1 genes and slightly more virulent in 

microbiota-sufficient mice in vivo. Our results suggest that microbiota-derived SCFA 

acylation of key virulence factors may attenuate intestinal pathogen infection in vivo.

Results

Proteomic analysis of acylated proteins in Salmonella.

Given that protein acylation is prevalent in bacteria22, we explored whether microbiota­

derived butyrate could acylate specific S. Typhimurium proteins involved in SPI-1 regulation 

using an alkyne-butyrate analog (alk-3, pentynoate) (Supplementary Fig. 1a)23 and chemical 

proteomics (Supplementary Fig. 1b)24. Alk-3 behaved similar to butyrate and did not affect 
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S. Typhimurium (strain 14028S) growth at 10 mM (Supplementary Fig. 1c), but inhibited 

expression of the SPI-1 gene sipA (Supplementary Fig. 1d) and S. Typhimurium invasion 

of HeLa cells (Supplementary Fig. 1e). To visualize acylated proteins, the total cell lysates 

from alk-3 treated S. Typhimurium cultures were reacted via bioorthogonal labeling with 

azide-rhodamine for in-gel fluorescence profiling (Supplementary Fig. 1b), which revealed 

many alk-3-modified proteins (Supplementary Fig. 1f). To identify these acylated proteins, 

alk-3-labeled total cell lysates were reacted with azide-biotin, enriched by streptavidin 

beads and analyzed by label-free quantitative (LFQ) proteomics. From this analysis, 56 

proteins were selectively enriched more than 2-fold in alk-3 samples with P-values less 

than 0.05 (Fig. 1a and Supplementary Dataset). Bioinformatic analysis of the alk-3 hits 

recovered several proteins involved in metabolism as well as a few key effectors and 

regulators (SipD, SopB, SipA, SipC, SicA and HilA) of S. Typhimurium pathogenesis (Fig. 

1a, Supplementary Dataset, and Supplementary Table 1). While the SPI-1 transcriptional 

regulator HilD has been suggested to modulate propionate activity in S. Typhimurium25 and 

could be regulated by acetylation26, it was not labeled by alk-3 in our proteomic dataset 

(Supplementary Dataset) or when overexpressed (Supplementary Fig. 2a). Of note, HilA, a 

key transcriptional regulator of SPI-1 genes27,28, was one of the most prominent acylated S. 
Typhimurium candidate proteins in the dataset (Fig. 1a and Supplementary Dataset).

HilA is a transcription regulator that regulates the expression of SPI-1 genes encoding 

T3SS components and substrates27–31 and also essential for S. Typhimurium infection in 
vitro32 and pathogenesis in vivo33. HilA protein is predicted to contain an N-terminal 

DNA-binding domain (DBD) that is homologous to the OmpR/PhoB-family of transcription 

factors in bacteria30, and a tetratricopeptide repeat (TPR) domain towards the C-terminus 

(Fig. 1b). To characterize HilA acylation, we expressed epitope-tagged HilA-HA-His6 in 

S. Typhimurium and validated labeling with alk-3 (Supplementary Fig. 2b), which was 

dose-dependent (Fig. 1c), resistant to hydroxylamine treatment (Supplementary Fig. 2c), and 

insensitive to the overexpression of S. Typhimurium acyltransferase YfiQ (Pat) or deacylase 

enzyme CobB, respectively (Supplementary Fig. 2d and e), suggesting HilA acylation 

occurs through posttranslational chemical acylation of lysine residues. In addition, deletion 

of other candidate protein acyltransferase genes (yfiQ, yiaC, or yjaB), homologous to E. coli 
yiaC and yjaB 34, in S. Typhimurium did not affect alk-3 labeling of HilA (Supplementary 

Fig. 2f), further suggesting that millimolar levels of exogenous butyrate chemically acylates 

HilA through high energy acyl-CoA or phosphate intermediates in S. Typhimurium.

To characterize HilA acylation, we expressed and purified HilA-HA-His6 from S. 
Typhimurium incubated with 10 mM butyrate to identify sites of acylation. Of the 34 lysine 

residues in HilA (Supplementary Fig. 3a), we identified 5 lysines (K90, K231, K324, K456, 

and K533) that were modified with acetate, propionate or butyrate by LC-MS/MS analysis 

of tryptic peptides (Supplementary Fig. 3b–d and Supplementary Table 2), consistent with 

previous HilA acetylation studies35. Protein structure prediction of HilA by Robetta36 

suggests that all 5 acylated-lysine residues are located at surface-exposed sites for potential 

chemical acylation and are in predicted DNA-binding (K90) or protein-protein (K231, K324, 

K456) interaction domains (Fig. 1b). Amongst the five SCFA-modified lysine residues, 

K90 was the most prominent acylation site when we compared the ratio of acylated and 

unmodified peptides (Fig. 1d and Supplementary Table 2).

Zhang et al. Page 3

Nat Chem Biol. Author manuscript; available in PMC 2021 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Site-specific incorporation of acyl-lysine analogs into HilA.

To evaluate site-specific lysine-butyrylation of HilA in S. Typhimurium in vivo, we explored 

genetic code expansion with Nε-butyryl-lysine analogs (Supplementary Fig. 4a)37–39. 

Expression of wild-type Methanosarcina mazei pyrrolysine-tRNA synthetase (MmPylRS­

WT) and tRNAPyl
CUA in S. Typhimurium showed poor incorporation of Nε-butyryl-lysine 

(buK) into overexpressed HilA-HA bearing an amber codon at K90 (HilA-K90-TAG-HA) 

(Supplementary Fig. 4b and c). We then evaluated other PylRS mutants with buK and other 

analogs for improved incorporation of potential butyryl-lysine mimics (Supplementary Fig. 

4b). Analysis of HilA-HA protein levels revealed that Nε-pent-4-ynyloxy-carbonyl-lysine40 

afforded near wild-type levels of HilA-K90-TAG-HA with Methanosarcina barkeri PylRS­

ASF mutant (MbPylRS-ASF)40–42 (Supplementary Fig. 4b and c), which also cross-reacted 

with anti-butyryl-lysine antibody (Supplementary Fig. 4c) and was readily detected by 

bioorthogonal labeling (Supplementary Fig. 4c). We subsequently employed this compound 

as a lysine butyrylation-mimic (bmK) in S. Typhimurium.

To incorporate bmK into chromosomally-expressed HilA, we optimized CRISPR-Cas9 

gene editing43 in S. Typhimurium using single strand DNA templates and liquid selection 

(Supplementary Fig. 5 and 6). Our optimized CRISPR-Cas9 gene editing protocol enabled 

chromosomal insertion of an HA-tag at the C-terminus of HilA as well as alanine, 

glutamine and TAG mutants at K90. The specificity of our CRISPR-Cas9 gene editing 

protocol was confirmed by whole-genome sequencing of HilA-HA and HilA-K90-TAG-HA 

S. Typhimurium strains (Supplementary Table 3). The activity of the HilA-HA, K90A 

and K90Q (an acetylation mimic) on SPI-1 gene expression was similar to the parent S. 
Typhimurium (strain 14028S) (Fig. 2a). However, HilA-K90-bmK-HA showed significant 

reduction of SPI-1 gene expression almost to ΔhilA levels (Fig. 2a). These differences in 

SPI-1 gene expression were correlated with S. Typhimurium HilA-K90 mutant infection 

of HeLa cells (Fig. 2b) and not significant in RAW264.7 macrophages (Fig. 2c), which 

are less dependent on SPI-1 for invasion44. These results demonstrate that classical site­

directed mutagenesis to canonical amino acids may not reveal how site-specific metabolite­

modifications regulate protein function in cells.

Site-specific acylation of HilA affects Salmonella virulence.

We then generated additional S. Typhimurium strains with chromosomal amber codon 

mutants at K231, K324, K456, and K533 in HilA-HA to evaluate site-specific differences 

in activity. To control for non-specific effects of bmK incorporation into HilA, we also 

generated amber codon mutants at K57 and K527 that are not acylated based on our MS/MS 

analysis but could function as controls for protein expression and activity. Importantly, 

these engineered HilA-HA strains replicated at similar rates to the parent S. Typhimurium 

strain 14028S in liquid culture (Supplementary Fig. 7a) and efficiently incorporated bmK 

into the HilA-TAG-HA mutants that were readily detected by bioorthogonal labeling and 

anti-HA immunoblotting (Fig. 2d). To control for genetic code expansion, the HilA-HA 

S. Typhimurium strain (wt) was also transformed with plasmid encoding PylRS and 

tRNACUA and labeled with the same concentration of bmK for all subsequent experiments. 

A comparative analysis of HilA mutants showed that full-length HilA-HA expression in 

amber codon mutants depended on the presence of bmK (Fig. 2d, Supplementary Fig. 7c and 
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d). BmK-incorporation at K57, K90 and K527 yielded near wild-type levels of full length 

protein, whereas K231, K324, 456 and K533 amber codon mutants afforded slightly lower 

amounts of HilA-HA (Supplementary Fig. 7b and d). Nonetheless, the analysis of these 

S. Typhimurium strains demonstrated that HilA-bmK-HA protein levels are not correlated 

with the levels of SPI-1 secreted proteins (Fig. 2e), suggesting site-specific effects of lysine­

butyrylation on HilA function.

We then evaluated the transcriptional activity of site-specifically acylated HilA mutants in S. 
Typhimurium. Quantitative RT-PCR analysis of HilA target genes showed that relative to wt 

HilA-HA, site-specific incorporation of bmK at K57, K90, K324 and K456 afforded reduced 

expression of prgH, invF, sipA, orgB and spaO located in different operons within the SPI-1 

locus (Fig. 3a). While K57 is not acylated, it is predicted to be in the DNA-binding interface 

of HilA (Fig. 1c) and upon bmK incorporation showed significantly reduced expression 

of HilA target genes (Fig. 3a), serving as a positive control loss-of-function HilA mutant. 

Interestingly, acylated-K90 within the DNA-binding domain of HilA (Fig. 1c) also showed 

significantly reduced expression of HilA target genes with bmK incorporation (Fig. 3a). 

The incorporation of bmK into the TPR domain of HilA at K324 and K456 also impaired 

the expression of SPI-1 genes (Fig. 3a). Alternatively, bmK incorporation at K231 afforded 

slightly enhanced expression of HilA target genes compared to wt HilA-HA, bmK at K527 

(non-acylated control for bmK incorporation) and K533 (Fig. 3a). While buK did not get 

incorporated into HilA-TAG-HA mutants as efficiently as bmK (Supplementary Fig. 4b), we 

observed similar site-specific effects on the expression of SPI-1 genes, albeit at lower levels 

(Supplementary Fig. 8a).

To investigate the significance of site-specific acylation of HilA on S. Typhimurium 

virulence, we analyzed the invasion of the HeLa epithelial cell line by S. Typhimurium. 

For these experiments, both wild-type and HilA mutant S. Typhimurium strains were 

transformed with PylRS and tRNACUA expression plasmid, metabolically labeled with 

bmK, diluted with PBS buffer and used for infection. In comparison with the other lysine 

residues in HilA-HA, bmK incorporation at K57 (loss-of-function control), K90, K324 and 

K456 attenuated S. Typhimurium infection of HeLa cells, whereas K231 showed enhanced 

or similar levels of infection compared to wild-type HilA, K527 (neutral control) and 

K533 bmK-mutants (Fig. 3b). There was no significant differences in infectivity among 

the bmK-mutants in RAW264.7 macrophages (Fig. 3c), which is less dependent on SPI-1 

invasion44. These results demonstrate site-specific lysine-butyrylation of HilA modulates S. 
Typhimurium invasion of epithelial cells, consistent with its modulation of HilA-dependent 

SPI-1 gene expression (Fig. 3a) and secretion of SPI-1 substrates (Fig. 2d).

Since K90 is the most prominent butyrate modification site in HilA (Fig. 1e and 

Supplementary Table 2) and afforded significantly reduced expression of SPI-1 genes 

and S. Typhimurium infection with bmK incorporation, we focused on this site of 

HilA modification for additional functional studies. Indeed, HilA butyrylation levels were 

increased when S. Typhimurium was incubated with butyrate (Supplementary Fig. 8b), 

and K90 site-specific butyrylation was more than doubled (Supplementary Fig. 8c). To 

investigate site-specific effects of K90-butyrylation, we evaluated HilA occupancy of 

SPI-1 genes in S. Typhimurium. Crosslinking and HA-immunoprecipitation-sequencing 
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(x-IP-Seq) analysis of HilA-HA S. Typhimurium strains showed that HilA-K90-bmK-HA 

had decreased occupancy on the promoter regions of HilA-target genes (prgH and invF) 

compared to wt HilA-HA (Fig. 4a and Supplementary Fig. 9). Further analysis of HilA­

HA variants by crosslinking and HA-immunoprecipitation-qPCR (x-IP-qPCR) revealed site­

specific effects of bmK-incorporation on HilA-HA DNA binding (Fig. 4b). Indeed, bmK 

incorporation at K90 and K57 (loss-of-function control) showed markedly less occupancy 

of prgH and invF promoters compared to wt HilA and K527 (neutral control) (Fig. 4b). 

In contrast, bmK incorporation at K324 and K456 had similar HilA-HA occupancy of 

these SPI-1 locations (Fig. 4b), suggesting that their inhibitory effects may function not 

through DNA binding but through alternative mechanisms associated with the predicted 

TPR domain (Fig. 1c and Supplementary Fig. 10). Interestingly, bmK incorporation at K231 

enhanced HilA-HA occupancy at invF and prgH promoter regions (Fig. 4b), consistent 

with elevated expression of SPI-1 genes (Fig. 3a) and invasion of HeLa cells (Fig. 3b), 

suggesting butyrylation of this site may promote HilA oligomerization, DNA-binding and/or 

transcriptional activity. These results demonstrate site-specific modification of acylated­

lysine residues directly modulates the function of HilA in S. Typhimurium.

Site-specific acylation of HilA affects Salmonella dissemination.

Given that site-specific bmK incorporation into HilA yielded significant differences in 

S. Typhimurium infection in vitro, we explored the infectivity of K90 and K231 bmK­

mutants in vivo. For these studies, we employed the streptomycin-treatment model of S. 
Typhimurium infection in mice45, which has been shown to deplete butyrate-producing 

microbiota17 and provide a SCFA-deficient environment for evaluating site-specific 

modification of HilA mutants in vivo. Our initial analysis of bmK-labeled HilA-K90-TAG­

HA and HilA-K231-TAG-HA S. Typhimurium strains showed similar levels of overall 

pathogenesis upon oral infection of streptomycin-treated mice compared to ΔhilA S. 
Typhimurium (Fig. 5a,b), likely due to depletion of bmK and inactivation of full-length 

HilA protein expression after multiple days in vivo. We thus focused on S. Typhimurium 

dissemination into mesenteric lymph nodes (mLN) and liver early (2 days) post-infection 

to evaluate acute SPI-1–dependent invasion in vivo. For these experiments, we orally 

infected streptomycin-treated mice with bmK-labeled wt and HilA mutant S. Typhimurium 

strains, harvested their mLN and liver and measured colony-forming units (CFUs) by 

Salmonella-selective agar plates. In comparison to wt S. Typhimurium, the bmK-labeled 

HilA-K90 mutant was defective in dissemination from the intestines, similar to ΔhilA, 

while the bmK-labeled HilA-K231 mutant was recovered from mLN and liver at similar 

levels to wt (Fig. 5c). These results are consistent with previous reports of ΔhilA in vivo46, 

which is more attenuated than mutations in the SPI-1 needle complex alone47 since HilA 

also regulates motility and other environmental response elements in S. Typhimurium48. 

Moreover, histological analysis of intestinal sections revealed that wt S. Typhimurium 

caused significant inflammation in the mice cecum, whereas the bmK-labeled HilA-K90 

mutant had mild to no inflammation in the cecum (Fig. 5d, and Supplementary Fig. 11). 

These results demonstrate that site-specific butyrylation of K90 on HilA nearly phenocopies 

ΔhilA and is sufficient to attenuate S. Typhimurium invasion and dissemination in vivo.
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Multi-site HilA mutant is resistant to butyrate inhibition.

Since site-specific HilA lysine butyrylation impaired S. Typhimurium virulence, we 

investigated whether these bacterial strains would be resistant to butyrate inhibition. We 

initially evaluated K90 to alanine and arginine mutants as potential acylation-deficient 

mutants, but both single-site mutants showed similar sensitivity to butyrate inhibition of 

invasion in HeLa cells (Supplementary Fig. 12a). Since K324 and K456 could also be 

acylated (Supplementary Fig. 3 and Supplementary Table 2) and were inhibited by site­

specific bmK incorporation (Fig. 3a and b), we hypothesized that butyrylation of K324 

and K456 could still inhibit HilA function and S. Typhimurium virulence. We thus tested 

overexpressed multi-site HilA mutants in which K90, K324, and K456 were all mutated 

to alanine (K90,324,456A) or arginine (K90,324,456R) (Supplementary Fig. 12b). While 

the HilA-K90,324,456A mutant showed defective SPI-1 secretion activity and was not 

useful for butyrate inhibition studies (Supplementary Fig. 12b), the HilA-K90,324,456R 

exhibited similar SPI-1 secretion activity to wt HilA (Supplementary Fig. 12b). We thus 

generated HilA-K90,324,456R chromosomal mutant strain, and found that it was resistant 

to butyrate inhibition of SPI-1 gene expression (Fig. 6a) as well as invasion of HeLa 

cells (Fig. 6b). We thus explored infectivity of HilA-K90,324,456R mutant strain in vivo. 

Infection of microbiota-sufficient mice containing higher levels of butyrate17 with the 

HilA-K90,324,456R mutant strain resulted in shorter survival time compared to wt S. 
Typhimurium (Fig. 6c), which was correlated with a more rapid expansion and shedding 

of S. Typhimurium (Fig. 6d). The difference between wt S. Typhimurium and the HilA­

K90,324,456R mutant strain was dependent on the microbiota, as streptomycin-treated 

mice had similar survival time and S. Typhimurium fecal load when infected with wt or 

HilA-K90,324,456R mutant strain (Supplementary Fig. 12c and d). These results further 

demonstrate that acylation of key virulence factors such as HilA by exogenous butyrate may 

contribute to microbiota attenuation of S. Typhimurium infection in vivo.

Discussion

SCFAs are abundant metabolites generated by microbiota-fermentation of dietary 

polysaccharides, but the molecular mechanisms by which these prominent gut metabolites 

inhibit enteric pathogen virulence has been unclear. For example, propionate generated by 

Bacteroides is reported to mediate colonization resistance against S. Typhimurium and other 

Enterobacteriaceae by disrupting intracellular pH homeostasis49,50 as well as destabilizing 

HilD, another SPI-1 transcriptional regulator25, suggesting specific mechanisms from 

different microbiota species and metabolites that may act cooperatively to prevent S. 
Typhimurium infection in vivo. Indeed, our analysis of butyrate, associated with other 

microbiota species, revealed direct acylation of other SPI-1 factors may be another 

mechanism to attenuate S. Typhimurium virulence. The most prominent target from our 

chemical proteomic studies was HilA, is a key transcriptional regulator of SPI-1 genes 

required for S. Typhimurium invasion of intestinal epithelial cells and dissemination in 
vivo. To functionally evaluate site-specific HilA butyrylation, we installed butyryl-Lys 

analogs into chromosomally expressed HilA mutants using CRISPR-Cas9 gene editing 

and non-canonical amino acid mutagenesis. These constitutively butyryl-Lys-modified HilA 

mutants revealed site-specific effects on S. Typhimurium virulence gene expression, invasion 
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of epithelial cells and dissemination in vivo (Supplementary Fig. 13a). Abrogation of 

acylation on critical lysine residues on HilA results in resistance to butyrate inhibition in 
vitro and in vivo. While HilA acylation is substoichiometric, it can be increased by the 

millimolar levels of exogenous butyrate reported in the gut and may be further regulated by 

specific microbiota-butyrate producers in vivo. S. Typhimurium may therefore sense high 

concentrations of this SCFA through HilA-acylation to limit invasion of host cells and utilize 

butyrate as a nutrient source from the microbiota in the intestinal lumen (Supplementary 

Fig. 13b). Finally, our discovery of inhibitory acylation on specific proteins and amino 

acid residues suggests repurposing covalent protein modification agents may afford new 

anti-infectives for SCFA-sensitive pathogens.

Methods

Microbial Strains and Growth Conditions.

All strains used are listed in Supplementary Table 4. All Salmonella Typhimurium strains 

used were derivatives of S. Typhimurium 14028S25. Salmonella strains were cultured at 

37°C in liquid Miller Luria-Bertani (LB) medium [10 g/L tryptone, 5 g/L yeast extract, 

10 g/L NaCl] (Becton Dickinson, Difco™), SPI-1 inducing LB medium [10 g/L tryptone, 

5 g/L yeast extract, 300 mM NaCl], or on Salmonella Shigella agar (Becton Dickinson). 

Cultures were grown at 37°C in Multitron shaking incubator (INFORS HT) at 220 rpm. 

When required, antibiotics were added to the medium as follows: carbenicillin 100 μg/mL, 

kanamycin 50 μg/mL, and chloramphenicol 10 μg/mL.

Animal Experiments.

C57BL/6J (000664) mice were purchased from the Jackson Laboratory and maintained 

at the Rockefeller University animal facilities under SPF conditions. Animal care and 

experimentation were consistent with the National Institutes of Health guidelines and 

approved by the Institutional Animal Care and Use Committee of the Rockefeller University.

Chemicals.

Sodium butyrate was purchased from Sigma-Aldrich (303410). Alk-3 (4-pentynoic acid) 

was purchased from Sigma-Aldrich (232211). Az-Rho was synthesized in the lab as 

previously described51. Az-biotin was purchased from Sigma-Aldrich (762024). Butyryl­

lysine was synthesized according to previously described38. BmK was synthesized 

according to previously described40.

Generation of HilA-K90bu site-specific antibody.

HilA-K90bu peptide (CRILSED(butyrylK)EHRYIE) and HilA-K90 peptide 

(CRILSEDKEHRYIE) was synthesized in The Rockefeller University Proteomics Resource 

Center. HilA-K90bu peptide was sent to Thermo Fisher for custom antibody production with 

a 70-day rabbit immunization protocol. Serum was collected on Day 35, 56 and 58 and 

measured for titer with ELISA. Site-specific polyclonal antibodies were affinity purified and 

counter-selected with HilA-K90 peptide.
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Salmonella growth curve.

Overnight cultures of Salmonella strains in Miller LB were diluted 1:100 to 5 mL fresh 

SPI-1 inducing LB medium in Falcon round-bottom 15 mL tubes. Cultures were taken 

out aliquots of 750 μL from 0 hour to 5 hours at 1-hour interval. Aliquots were added to 

10 mm polystyrene cuvettes (Sarstedt) and OD600 was measured with Biophotometer plus 

(Eppendorf).

Preparation of Salmonella bacterial total cell lysates.

One to fifty dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 

14028s WT overnight culture were grown in 4 mL SPI-1 inducing LB for 4 h at 37°C 

with 220 rpm shaking. For alk-3 labeling experiments, cultures were incubated with or 

without 10 mM fresh alk-3 (in dH2O). For incorporation of ncAA into overexpressed HilA, 

cultures were added with 1 mM ncAA and 0.2% arabinose. For incorporation of ncAA 

into endogenous HilA, cultures were added with 100 uM ncAA and 0.01% arabinose. S. 
Typhimurium cells were pelleted at 15000 g for 1 min, and pellets were lysed with 200 μL 

lysis buffer (phosphate-buffered saline (PBS) containing 0.5% Nonidet P-40, 1X EDTA-free 

protease inhibitor cocktail (Roche), 0.5 mg/mL lysozyme (in dH2O) (Sigma), and 1:1,000 

dilution of Benzonase (Millipore)). After re-suspension, pellets were sonicated for 10 sec for 

3 times, then were incubated on ice for 30 min. Cell lysates were centrifuged at 15000 g 

for 1 min to remove cell debris and supernatants were collected. Protein concentration was 

estimated by BCA assay with BCA Protein Assay Kit (Thermo).

Salmonella protein immunoprecipitation and immunoblotting.

From Salmonella total cell lysates prepared as described above, protein samples were 

boiled with 1X Laemmli buffer 95°C for 5 min. 20 μL of each sample was loaded 

onto a 4–20% Tris-HCl gel (Bio-Rad) for SDS-PAGE. Proteins were transferred onto 

0.45 μm nitrocellulose membrane (Bio-Rad) with Trans-Blot Turbo Transfer System (Bio­

Rad) at 25 V for 30 min. Membrane was blocked with 5% non-fat milk in PBS with 

0.1% Tween-20 (PBS-T) for 30 min, and primary antibody was added to solution before 

incubating membrane at 4°C overnight. Dilution of primary antibodies were as follows: for 

HA-tagged proteins, 1:2,000 anti-HA rabbit antibody H6908 (Sigma); for FLAG-tagged 

proteins, 1:2000 anti-FLAG rabbit antibody F7425 (Sigma); for HilA-K90Bu antigen, 

1:200 anti-HilAK90Bu rabbit custom antibody (Thermo Fisher) or 1:200 anti-HilAK90 

rabbit custom antibody (Thermo Fisher). Membrane was washed with PBS-T 3 times, and 

incubated with 1:10,000 goat polyclonal anti-rabbit HRP ab97051 (Abcam) in PBS-T with 

5% non-fat milk at room temperature for 1 hour. Membrane was washed with PBS-T 3 

times, and imaged with Clarity Western ECL substrate (Bio-Rad) and ChemiDoc XRS+ 

System (Bio-Rad).

For Salmonella protein immunoprecipitation, 250 μg of each total cell lysates were 

incubated with 20 μL PBS-T-washed EZview™ Red Anti-HA Affinity Gel (Sigma) at 4 °C 

for 1 hour with end-to-end rotation. Samples were washed with 200 μL PBS-T for 3 times, 

before being boiled with 1X Laemmli buffer 95°C for 5 min. 20 μL of each sample was 

loaded onto a 4–20% Tris-HCl gel (Bio-Rad) for SDS-PAGE and further immunoblotting.
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In-gel fluorescence analysis of alk-3 labeling.

For in-gel fluorescence analysis of alk-3 labeled Salmonella proteome, from the alk-3­

treated or control total cell lysates prepared as described above, 45 μL of each total 

cell lysates (~50 μg) was added with 5 μL of click chemistry reagents as a 10X master 

mix (az-Rho: 0.1 mM, 10 mM stock solution in DMSO; tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP): 1 mM, 50 mM freshly prepared stock solution in dH2O; tris[(1­

benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA): (0.1 mM, 2 mM stock in 4:1 t-butanol: 

DMSO); CuSO4 (1 mM, 50 mM freshly prepared stock in dH2O). Samples were mixed well 

and incubated at room temperature for 1 h. After incubation, samples were mixed with 200 

μL cold methanol, 150 μL cold water, and 75 μL cold chloroform. Sample proteins were 

precipitated at 18000 g for 1 min at 4 °C. After gently removing the aqueous layer, protein 

pellets were washed with 200 μL cold methanol, spinning down at 18000 g for 1 min at 

4 °C, and liquid was gently decanted. After washing twice, pellets were allowed air-dried 

before boiling with 1X Laemmli buffer.

For in-gel fluorescence analysis of alk-3 labeled HilA, from the alk-3-treated or control 

total cell lysates prepared as described above, 250 μg of each total cell lysates were 

immunoprecipitated with 20 μL PBS-T-washed EZview™ Red Anti-HA Affinity Gel 

(Sigma). After samples were washed with 200 μL PBS-T for 3 times, 36 μL of PBS was 

added to each sample. 4 μL of click chemistry reagents as a 10X master mix mentioned 

above were added to each sample. Samples were mixed well and incubated at room 

temperature for 1 h. After incubation, samples were washed with 200 μL PBS-T for 3 

times.

Samples were boiled with 1X Laemmli buffer 95°C for 5 min before being loaded onto a 

4–20% Tris-HCl gel (Bio-Rad) for SDS-PAGE. In-gel fluorescence scanning was performed 

using a Typhoon 9400 imager (Amersham Biosciences).

Alk-3 labeling Label-Free Quantitative proteomics.

One to fifty dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 

14028s WT overnight culture were grown in 20 mL SPI-1 inducing LB for 4 h at 37°C 

with 220rpm shaking, each sample growing in 4 mL aliquots. Cultures were incubated with 

or without 10 mM fresh alk-3 (in dH2O). Cultures were pooled back to 20 mL per sample 

in Falcon tubes, and lysed in lysis buffer described above. After re-suspension in 1 mL 

lysis buffer, bacteria were sonicated for 15 sec with Sonic Dismembrator Model 500 (Fisher 

Scientific) with 5 sec on and 10 sec off per cycle. Cell lysates were centrifuged at 15000 g 

for 1 min to remove cell debris and supernatants were collected. Each total cell lysates (~2 

mg) was added with 100 μL of click chemistry reagents as a 10X master mix (az-Biotin: 

0.1 mM, 10 mM stock solution in DMSO; tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP): 1 mM, 50 mM freshly prepared stock solution in dH2O; tris[(1-benzyl-1H-1,2,3­

triazol-4-yl)methyl]amine (TBTA): (0.1 mM, 2 mM stock in 4:1 t-butanol: DMSO); CuSO4 

(1 mM, 50 mM freshly prepared stock in dH2O). Samples were mixed well and incubated at 

room temperature for 1 h. After incubation, samples were mixed with 4 mL cold methanol 

and incubated at −20°C overnight. Protein pellets were centrifuged at 5000 g for 30 min at 

4°C, and were washed with 1 mL cold methanol 3 times. After last wash, pellets were let 
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air dried before being re-solubilized in 250 μL 4% SDS PBS with bath sonication. Solutions 

were diluted with 750 μL PBS, and incubated with 60 μL PBS-T-washed High Capacity 

NeutrAvidin agarose (Pierce) at room temperature for 1 h with end-to-end rotation. Agarose 

were washed with 500 μL 1% SDS PBS 3 times, 500 μL 2M Urea PBS 3 times, and 500 

μL PBS 3 times. Agarose were then reduced with 100 μL 10 mM DTT (Sigma) in PBS 

for 30 min at 37°C, and alkylated with 100 μL 50 mM iodoacetamide (Sigma) in PBS for 

20 min in dark. On-bead proteins were digested with 400 ng Trypsin/Lys-C mix (Promega) 

at 37°C overnight with shaking. Digested peptides were collected and lyophilized before 

being desalted with custom-made stage-tip containing Empore SPE Extraction Disk (3M). 

Peptides were eluted with 2% acetonitrile, 2% formic acid in dH2O.

Peptide LC-MS analysis was performed as described previously 52. Briefly, samples were 

analyzed with a Dionex 3000 nano-HPLC coupled to an Orbitrap XL mass spectrometer 

(Thermo Fisher). Peptide samples were pressure-loaded onto a home-made C18 reverse­

phase column (75 μm diameter, 15 cm length). A 180-minute gradient from 95% buffer A 

(HPLC grade water with 0.1% formic acid) and 5% buffer B (HPLC grade acetonitrile with 

0.1% formic acid), to 25% buffer A and 75% buffer B in 133 minutes was used at 200 

nL/min. The Orbitrap XL was operated in top-8-CID-mode with MS spectra measured at a 

resolution of 60,000@m/z 400. One full MS scan (300–2000 MW) was followed by three 

data-dependent scans of the nth most intense ions with dynamic exclusion enabled. Peptides 

fulfilling a Percolator-calculated 1% false discovery rate (FDR) threshold were reported.

Label-free quantification of alk-3 labeled proteins was performed with the label-free 

MaxLFQ algorithm in MaxQuant software as described 53. The search results from 

MaxQuant were analyzed by Perseus (http://www.perseusframework.org/). Briefly, the 

control replicates and alk-3 labeled sample replicates were grouped correspondingly. The 

results were cleaned to filter off reverse hits and contaminants. Only proteins that were 

identified in all alk-3 labeled sample replicates and with more than two unique peptides were 

subjected to subsequent statistical analysis. LFQ intensities were used for measuring protein 

abundance and logarithmized. Signals that were originally zero were imputed with random 

numbers from a normal distribution, whose mean and standard deviation were chosen to best 

simulate low abundance values below the noise level (Replace missing values by normal 

distribution with Width = 0.3 and Shift = 2.2). Significant proteins enriched in alk-3 labeled 

sample group versus control group were determined by a threshold strategy, in which ratio 

larger than or equals to 2 and P-value smaller than 0.05 were categorized as hits. The 

resulting table was exported as Supplementary Dataset.

MS/MS detection of protein PTM.

One to fifty dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 

14028s ΔhilA pBAD-HilA-HA-His overnight culture were grown in 500 mL SPI-1 inducing 

LB with 10 mM sodium propionate or 10 mM sodium butyrate for 2 h at 37°C with 

220rpm shaking, before 0.2% arabinose was added to induce HilA-HA-His expression for 

3 h. Bacteria was harvested with 5000 g for 10 min at 4°C, and lysed in 25 mL lysis 

buffer described above with 1 mM EDTA and 50 mM nicotinamide (NAM). bacteria were 

sonicated for 5 min with Sonic Dismembrator Model 500 (Fisher Scientific) with 5 sec 
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on and 10 sec off per cycle. Lysates were centrifuged at 5000 g for 10 min at 4°C, and 

supernatants were filtered with 0.22 um filter before being loaded onto HisTrap FF 5mL 

column (GE Healthcare). HilA-HA-His protein was purified with wash with 3 Column 

Volume (CV) 100% buffer A (PBS-T, 50 mM NAM), wash with 5 CV 10% buffer B (PBS­

T, 50 mM NAM, 300 mM imidazole), and 5 CV elution with gradient from 10% to 100% 

buffer B. Fractions containing HilA was pooled and dialyzed to PBS-T with 3 spin-dilution 

cycles in 10,000 MWCO filter (Amicon). Purified HilA-HA-His was immunoprecipitated 

with anti-butyryllysine antibody (PTM Biolab)- or anti-propionyllysine antibody (PTM 

Biolab)-conjugated protein A/G magnetic beads (Pierce), and samples were boiled and run 

on SDS-PAGE. Coomassie Blue-stained bands corresponding to HilA was cut out, reduced 

with 10 mM DTT (Sigma) in fresh 100 mM ammonium bicarbonate (ABC) for 30 min 

at 37°C, and alkylated with 50 mM iodoacetamide (Sigma) in fresh 100 mM ABC for 20 

min in dark. Gel pieces were digested with 200 ng Trypsin/Lys-C mix (Promega) at 37°C 

overnight with shaking.

Salmonella CRISPR-Cas9 genome editing.

To make electrocompetent Salmonella Typhimurium, overnight culture of Salmonella 
Typhimurium strains were diluted 1:50 to 100 mL fresh LB, and were grown at 37°C 

in shaking incubator at 220 rpm for 2 hours, until OD600 reached 0.5 to 0.7. Cells were 

pelleted at 5000 g for 10 min at 4°C, and washed with 50 mL ice-cold 10% glycerol 

twice. Cell pellets were resuspended in 500 μL 10% glycerol, and aliquoted 50 μL per 

tube. Electrocompetent parent Salmonella Typhimurium strains were transformed with 

pKD46 via electroporation with Gene Pulser II (Bio-Rad) at 2.5 kV and 25 μF in 2 mm 

cuvette, and selected on Ampicillin agar plates at 30 °C overnight. The resulting Salmonella 
Typhimurium pKD46 strains were made into electrocompetent cells after grown at 30°C 

with 0.2% arabinose and ampicillin. Salmonella Typhimurium pKD46 electrocompetent 

cells were transformed with 2 μL pWJ297-sgRNA (~100 ng) and 10 μL 10 uM ssDNA 

editing template and selected on Chloramphenicol agar plates at 37 °C overnight. All 

colonies on the plate were collected with cell scraper and resuspended in 4 mL LB with 

Chloramphenicol. The bacterial suspension were diluted 1:50 to 4 mL fresh LB with 

Chloramphenicol, and were grown at 37°C in Multitron shaking incubator (INFORS HT) at 

220 rpm for 2 hours. Culture was streaked onto Chloramphenicol agar plates, and colonies 

from the plates were randomly picked for colony PCR to confirm successful editing. 

Successfully edited colonies were streaked onto plain agar plates to cure pWJ297-sgRNA, 

and curing was confirmed by streaking on Chloramphenicol agar plates.

Optimization of Salmonella CRISPR-Cas9 genome editing are described as follows. The 

protocol for CRISPR-Cas9 genome editing in E. coli 43 resulted in very high false-positive 

rate and an estimated editing efficiency of less than 5% (data not shown). To increase editing 

efficiency, we introduced synonymous co-mutation of nearest PAM together with targeted 

sequence, and used gRNA specific for that PAM to guide Cas9 (Supplementary Fig. 5a). As 

an example, we set out to mutate Lys90 to Ala in HilA. Synonymous PAM co-mutation 

(c243g) increased editing efficiency and resulted in successful editing (Supplementary 

Fig. 5b). Colonies selected for pWJ297 (pCas9) and pCRISPR were mostly false-positive, 

meaning that CRISPR-Cas9 system did not impose an adequate selection pressure. We 
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surmised that Salmonella has an intrinsic suppressive mechanism to inactivate exogenous 

CRISPR-Cas9 system. Therefore, we collected all colonies from the plate of first-round 

selection, suspended them in liquid medium LB with corresponding antibiotics, and grew 

them to early stationary phase. The resulting culture was plated again on selection agar plate. 

This liquid selection protocol drastically increased frequency of successfully edited clones 

(Supplementary Fig. 5c). The plasmid pCRISPR is very resistant to curing, taking up to 

one month of serial purification (data not shown), which is presumably due to its small size 

and high copy number. Therefore, we incorporated sgRNA sequence directly at pWJ297 

BsaI cloning site, sparing the usage of pCRISPR. The editing efficiency of pWJ297-sgRNA 

is similar to pWJ297 + pCRISPR combination (data not shown), while the former was 

cured in about 1 day. SsDNA recombination efficiency is much higher than dsDNA in 

E. coli because ssDNA has higher transformation efficiency54. Therefore, we decided to 

use ssDNA template when editing site-specific mutation of single codons. CRISPR-Cas9 

genome editing with ssDNA provided higher editing efficiency compared to that with long 

dsDNA template that has the same mutation site (Supplementary Fig. 5d). We observed no 

significant difference of editing efficiency among ssDNA templates that matches either the 

same strand or the complementary strand of sgRNA, nor between templates matching either 

the leading or the lagging strand of the genome (Supplementary Fig. 5e). To summarize, we 

have optimized the scarless CRISPR-Cas9 genome editing protocol to facilitate the editing 

process in Salmonella that only takes 3–4 days (Supplementary Fig. 6).

Salmonella whole-genome sequencing.

One mL of Salmonella cultures were processed with Quick-DNA Fungal/Bacterial kit 

(Zymo Research) per manufacturer’s manual. Purified Salmonella genomes were sent to 

Rockefeller University Genomics Center for processing with Nextera XT gDNA library 

preparation and sequencing with MiSeq 75 Pair-End sequencing. Sequencing results were 

analyzed with Geneious software.

Salmonella Quantitative Reverse-Transcription PCR.

Five hundred μL of Salmonella cultures were processed with RNeasy Mini Kit (Qiagen) 

per manufacturer’s manual. Concentrations of purified RNA were normalized to 100 ng/μL 

with RNase-free water. Quantitative Reverse-Transcription PCR (qRT-PCR) were performed 

with Power SYBR Green RNA-to-CT 1-Step Kit (Applied Biosystems) per manufacturer’s 

manual and primers listed in Supplementary Table 5.

Salmonella HilA crosslink-IP-qPCR and crosslink-IP-seq.

Four mL Salmonella cultures were crosslinked with 1% methanol-free PFA (Thermo) for 

20 min at room temperature. Crosslinking were quenched with 125 mM Glycine (Fisher). 

Bacteria were centrifuged 16000 g at 4°C for 1 min and washed with 1 mL PBS twice. 

Pellets were resuspended in 500 μL ChIP Lysis Buffer (10 mM Tris-HCl, pH 8.0, 20% 

sucrose, 50 mM NaCl, 10 mM EDTA, 10 mg/mL lysozyme), and incubated at 37°C for 

30 min. Lysates were added with 500 μL 2X RIPA buffer (100 mM Tris-HCl, pH 8.0, 300 

mM NaCl, 2% Nonidet P-40 (NP-40), 1% sodium deoxycholate, 0.2% SDS) and sonicated 

with Sonic Dismembrator Model 500 (Fisher Scientific) for 10 sec. Resulting solutions were 

centrifuged at 16000 g for 1 min at room temperature. 100 μL supernatants were saved as 
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total inputs. 750 uL of the remaining supernatants of each were incubated with 2 μL anti-HA 

ChIP-grade polyclonal antibody (ab9110, Abcam) at 4°C for 1 h with end-to-end rotation. 

The solutions were then added to 30 μL PBS-T-washed protein A/G magnetic beads (Pierce) 

and incubated at 4°C for 1 h with end-to-end rotation. Beads were washed with 500 μL 1X 

RIPA buffer twice, 500 μL LiCl Wash buffer (10 mM Tris-HCl, pH 8.0, 250 mM LiCl, 1 

mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate) twice, and 500 uL Tris-EDTA buffer 

(10 mM Tris-HCl, pH 8.0, 1 mM EDTA) once. Samples were eluted with 100 μL SDS 

Elution buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 1% SDS) at 65°C for 10 min. 

Each total input sample and ChIP sample were added with 5 μL 20 mg/mL proteinase K 

(Qiagen) and de-crosslinked at 65°C overnight. All de-crosslinked samples were purified 

with E.Z.N.A. Cycle Pure kit (Omega Bio-tek) and eluted with 100 μL elution buffer in 

the kit. ChIP-qPCR were performed with PowerUp SYBR Green Master Mix (Applied 

Biosystems) per manufacturer’s manual and primers listed in Supplementary Table 5. Same 

samples were sent to Rockefeller University Genomics Center for library preparation and 

sequenced with NextSeq High Output 75 Single-Read sequencing.

In vitro invasion assay and intracellular survival assay.

HeLa cells were cultured in 12-well tissue culture plates at 80–90% confluency. Wells 

were added with Salmonella cells at an MOI = 10:1 and centrifuged at 1000 g for 5 min. 

Cells were incubated at 37°C with 5% CO2 for 30 min to allow invasion. The media 

was then replaced with medium containing 100 μg/mL gentamicin and incubated for an 

additional hour to kill extracellular Salmonella. Wells were then washed 3 times with PBS, 

and cells were lysed with 500 μL 1% Triton X-100 PBS. Lysates were serially diluted and 

drip-dropped on Salmonella Shigella agar plates (BD 211597) to determine the number of 

invaded bacteria.

For intracellular survival assay of Salmonella, after incubation with medium containing 

100 μg/mL gentamicin for 1 h, media was replaced with medium containing 10 μg/mL 

gentamicin and incubated for additional 4.5 hours at 37°C, 5% CO2. Intracellular bacterial 

counts were obtained by lysing cells and drip-dropping serial dilutions on Salmonella 
Shigella agar plates.

S. Typhimurium infection of mice.

For streptomycin treatment experiments, C57BL/6J SPF mice were gavaged with a single 

dose of 20 mg of streptomycin 24 hours before infection. Bacterial cultures of different 

S. Typhimurium strains were washed and re-suspended in sterile phosphate-buffered saline 

(PBS) at 107 CFU/mL. Mice were gavaged with 100 μL of the bacterial suspension (106 

CFU). Leftover inocula were serially diluted and plated to confirm the number of CFU 

administered.

For 48 h infection experiments, mice were euthanized 48 hours after S. Typhimurium 

gavage. Colony-forming units (CFU) in the livers and mesenteric lymph nodes (mLN) were 

determined by plating five serial dilutions of livers or mLN suspended in sterile 0.1% Triton 

X-100 PBS on Salmonella Shigella agar (BD 211597). Resulting quantities were normalized 

to liver or mLN weight.
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For S. Typhimurium infection survival assay, mice weight loss was monitored starting 

just before infection, and mice were euthanized when they reached 80% baseline weight, 

appeared hunched or moribund, or exhibited a visibly distended abdomen (indicative of 

peritoneal effusion), whichever occurred first. Death was not used as an end point.

Quantification and Statistical Analysis.

Comparisons and statistical tests were performed as indicated in each figure legend. Briefly, 

Pairwise comparisons were generated with two-tailed t tests. For comparisons of multiple 

groups over time or with two variables, a two-way analysis of variance (ANOVA) was used 

with an appropriate Bonferroni posttest comparing all groups to each other, all groups to 

a control, or selected groups to each other. Survival data were analyzed using a log-rank 

(Mantel-Cox) test with a Bonferroni correction for the degrees of freedom based on the 

number of comparisons made. To compare two groups with non-normal distribution or 

low sample size, the medians of the two groups were compared using a Mann-Whitney 

test, unless one data set contained only zero values. In these cases, a Mann-Whitney test 

could not be performed because all values in the group were identical; a Wilcoxon test 

was performed instead. For comparisons of multiple groups with only one variable, a 

one-way ANOVA or Kruskal-Wallis test was performed for data with underlying normal or 

non-normal distribution, respectively, with Bonferroni, Dunnett’s, or Dunn’s posttests where 

appropriate. Statistical analyses were performed in GraphPad Prism software. A P value of 

less than 0.05 was considered significant, denoted as *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 

0.001 for all analyses.

Data and materials availability

The data and materials that support the findings of this study are available from the 

corresponding author upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proteomic analysis of acylated proteins in S. Typhimurium.
(a) LFQ proteomic analysis of alk-3-labeled proteins in S. Typhimurium (n = 4). S. 
Typhimurium cell lysates were reacted with az-biotin for the enrichment of alk-3-labeled 

proteins with streptavidin beads and identification by LC-MS/MS. Proteins that were 

enriched by alk-3 (top right corner) were colored according to their annotated biological 

function. Blue, metabolic enzymes. Red, SPI-1 proteins. Black, other proteins. (b) Domain 

architecture (top) and predicted structure of HilA (bottom). Domain architecture was 

assigned by NCBI Conserved Domain Search. Structure prediction was performed with 

Robetta. DBD, DNA-binding domain, yellow. TPR, tetratricopeptide repeat, blue. Lysine 

residues detected to be acylated (K90, K231, K324, K456, K533) and two additional lysine 

residues that serve as controls (K57, K527) are highlighted in red. K324 is buried in the back 

(see Supplementary Fig. 9). (c) Alk-3 dose-dependent labeling on HilA. S. Typhimurium 

ΔhilA overexpressing HilA-HA-His were grown with different concentrations of alk-3 

before cell lysates were reacted with az-Rho, followed by anti-HA immunoprecipitation, 

SDS-PAGE in-gel fluorescence scanning (top), and anti-HA immunoblotting (bottom). Also 

see Supplementary Fig. 14. (d) MS/MS spectrum of HilA K90 butyrylated peptide detected 

from HilA purified from S. Typhimurium grown with 10 mM butyrate.

Zhang et al. Page 19

Nat Chem Biol. Author manuscript; available in PMC 2021 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Site-specific mutation of HilA affects S. Typhimurium virulence.
(a) Relative expression level of SPI-1 gene sipA in S. Typhimurium WT, HilA-HA strain, 

ΔhilA strain, HilAK90A-HA and HilAK90Q-HA mutants measured by qRT-PCR (n = 7–8). 

All mutants were compared to WT with one-way ANOVA and Dunnett post-test. Error 

bar, SD. **, P-value < 0.01; ***, P-value < 0.001. Comparisons with no asterisk had 

P-value > 0.05 and were not considered significant. (b and c) Gentamicin protection assay 

of S. Typhimurium WT, HilA-HA strain, ΔhilA strain, HilAK90A-HA, HilAK90Q-HA, and 

HilAK90bmK-HA mutants mutants infecting HeLa cells (b) or RAW264.7 macrophages 

(c) at MOI = 10 (n = 3–6). All mutants were compared to HilA-HA with one-way 

ANOVA and Dunnett post-test. Centerline, average. **, P-value < 0.01. Comparisons 

with no asterisk had P-value > 0.05 and were not considered significant. (d) Endogenous 

expression of HilA-bmK-HA mutants in S. Typhimurium. S. Typhimurium HilA-HA strain 

(wt) and amber codon mutants (HilA-TAG-HA) with amber codon suppression system 

were grown with or without 100 μM bmK. Anti-HA immunoprecipitated samples were 

analyzed with SDS-PAGE in-gel fluorescence scanning (top) and anti-HA immunoblotting. 

Also see Supplementary Fig. 14. (e) Secreted proteins of S. Typhimurium endogenous 

HilA-bmK-HA mutants. S. Typhimurium HilA-HA strain (wt) and amber codon mutants 

(HilA-TAG-HA) with amber codon suppression system were grown with or without 100 μM 

bmK. Supernatants of the cultures were precipitated with 10% trichloroacetic acid (TCA) 

and analyzed with SDS-PAGE Coomassie blue staining.
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Figure 3. Site-specific acylation of HilA affects S. Typhimurium transcriptional activity and 
invasion in vitro.
(a) Relative expression level of SPI-1 genes in several operons (prgH, invF, sipA, orgB, 
and spaO) in S. Typhimurium HilA-HA strains and HilA-bmK-HA mutants measured by 

qRT-PCR (n = 6–8). All mutants were compared to HilA-HA with one-way ANOVA and 

Dunnett post-test. Centerline, average. Error bar, SD. *, P-value < 0.05; **, P-value < 

0.01; ***, P-value < 0.001. Comparisons with no asterisk had P-value > 0.05 and were 

not considered significant. (b and c) Gentamicin protection assay of S. Typhimurium 

endogenous HilA-bmK-HA mutants infecting HeLa cells (b) or RAW264.7 macrophages (c) 

at MOI = 10 (n = 4–8). All mutants were compared to HilA-HA with one-way ANOVA and 

Dunnett post-test. Centerline, average. *, P-value < 0.05; ***, P-value < 0.001. Comparisons 

with no asterisk had P-value > 0.05 and were not considered significant.
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Figure 4. HilAK90 acylation affects its occupancy at target genes.
(a) Crosslink-IP-Seq result on S. Typhimurium HilA-HA and S. Typhimurium HilA­

K90bmK-HA in SPI-1 region. Yellow shade, prgH promoter region (left) and invF promoter 

region (right). RPKM, Reads Per Kilobase Million. (b) Crosslink-IP-qPCR of prgH 
promoter region (left) or invF promoter region (right) of S. Typhimurium endogenous HilA­

bmK-HA mutants (n = 3). All mutants were compared to HilA-HA with one-way ANOVA 

and Dunnett post-test. Error bar, SD. *, P-value < 0.05; **, P-value < 0.01. Comparisons 

with no asterisk had P-value > 0.05 and were not considered significant.

Zhang et al. Page 22

Nat Chem Biol. Author manuscript; available in PMC 2021 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. HilAK90 acylation affects S. Typhimurium infection and intestinal inflammation in 
vivo.
(a and b) C57BL/6 mice were orally infected with 106 CFU S. Typhimurium HilA-HA 

strain, ΔhilA strain, HilAK90bmK-HA or HilAK231bmK-HA mutant (n = 3). (a) survival 

and (b) weight loss are shown. Weights of all mutants at day 4 were compared to HilA-HA 

with one-way ANOVA and Dunnett post-test. Error bar, SD. *, P-value < 0.05; **, P-value 

< 0.01. (c) S. Typhimurium bacterial CFU counted from mesenteric lymph nodes (mLN, 

left) or liver (right) of mice orally infected with S. Typhimurium HilA-HA, ΔhilA, HilA­

K90bmK-HA or HilA-K231bmK-HA at 48h post-infection (n = 12). HilA-K90bmK-HA 

and HilA-K231bmK-HA mutants were compared to HilA-HA or ΔhilA with Kruskal-Wallis 

test and Dunns post-test. Centerline, median. *, P-value < 0.05; **, P-value < 0.01. ns, not 

significant. Dashed line, detection limit. (d) Representative images of cecum tissue stained 

with H&E, harvested 48h post-infection from mice infected with S. Typhimurium HilA-HA 

or HilA-K90bmK-HA. Scale bar, 100 μm.
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Figure 6. HilA-K90,324,456R mutant resists butyrate inhibition in vitro and in vivo.
(a) Relative expression level of SPI-1 gene sipA in S. Typhimurium HilA-HA strains and 

HilA-K90,324,456R-HA mutant in the presence or absence of 10 mM butyrate measured by 

qRT-PCR (n = 6). Mutants were compared with one-way ANOVA and Bonferroni post-test. 

Centerline, average. Error bar, SD. ***, P-value < 0.001. ns, not significant. (b) Gentamicin 

protection assay of S. HilA-HA strains and HilA-K90,324,456R-HA mutant in the presence 

or absence of 10 mM butyrate infecting HeLa cells at MOI = 10 (n = 8). Mutants were 

compared with one-way ANOVA and Bonferroni post-test. Centerline, average. Error bar, 

SD. ***, P-value < 0.001. ns, not significant. (c) Survival curve of C57BL/6 mice orally 

infected with 106 CFU S. Typhimurium HilA-HA or K90,324,456R mutant (n = 13). Groups 

were compared with Gehan-Breslow-Wilcoxon test. *, P-value < 0.05. (d) S. Typhimurium 

fecal load of mice as in (c). Error bar, SD. Dashed line, detection limit.
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