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Abstract: Chitinases are enzymes catalyzing the hydrolysis of chitin that are present on the cell wall
of fungal pathogens. Here, we identified and characterized the chitinase gene family in cultivated
soybean (Glycine max L.) across the whole genome. A total of 38 chitinase genes were identified in
the whole genome of soybean. Phylogenetic analysis of these chitinases classified them into five
separate clusters, I–V. From a broader view, the I–V classes of chitinases are basically divided into
two mega-groups (X and Y), and these two big groups have evolved independently. In addition, the
chitinases were unevenly and randomly distributed in 17 of the total 20 chromosomes of soybean, and
the majority of these chitinase genes contained few introns (≤2). Synteny and duplication analysis
showed the major role of tandem duplication in the expansion of the chitinase gene family in soybean.
Promoter analysis identified multiple cis-regulatory elements involved in the biotic and abiotic stress
response in the upstream regions (1.5 kb) of chitinase genes. Furthermore, qRT-PCR analysis showed
that pathogenic and drought stress treatment significantly induces the up-regulation of chitinase
genes belonging to specific classes at different time intervals, which further verifies their function in
the plant stress response. Hence, both in silico and qRT-PCR analysis revealed the important role of
the chitinases in multiple plant defense responses. However, there is a need for extensive research
efforts to elucidate the detailed function of chitinase in various plant stresses. In conclusion, our
investigation is a detailed and systematic report of whole genome characterization of the chitinase
family in soybean.

Keywords: Glycine max L.; PR proteins; chitinase; genome-wide; plant stresses

1. Introduction

Plants, being immobile, are often subjected to different environmental stresses that
lead to a decrease in plant growth and productivity [1,2]. However, to combat these
external threats, plants have developed well established defense mechanisms. For example,
a small group of heterogeneous proteins called pathogenesis-related (PR) proteins are
produced following the attack of disease pathogens, and these proteins plays critical role in
inducing plants’ potential to resist pathogen attack [3,4]. Many studies have documented
the accumulation and activation of these proteins under multiple abiotic stresses, and thus
they are recognized as part of multiple defense systems. Up to now, many families of PR
proteins have been characterized [3]; among them, the PR3 family consist of chitinases
enzymes that inhibit fungal growth by degrading heterogenous polysaccharide (chitin),
a major component of the fungi cell wall [4]. Under normal conditions, these proteins
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are expressed at basal level; however, pathogen attack or abiotic stress such as drought
increases their expression considerably, resulting in systemic acquired resistance (SAR) [4].

Chitinases are ubiquitous in nature and are found in living organisms across different
kingdoms of life [5]. The proteins are categorized into two glycosyl hydrolases (GH)
families, GH18 & GH19, based on the presence of specific catalytic domains [6]. In addition,
by considering the different characteristics of chitinases such as structure, catalytic reaction,
phylogenetic relationship and specificity to inhibitors, etc., these chitinases represent five
distinct classes (classes I–V) [4]. The members of the GH19 family are specifically found
in plants only; however, GH18 family members are widely distributed across different
kingdoms, including plants. A lack of chitin in the plant cell wall and other tissue parts
makes chitinase an important component of the plant defense system. Chitinase has been
documented to the control positive feedback cycle in the plant defense system [7]. This
pathway is used by plants in the regulation of plant defense reactions against fungal
pathogens [8]. Hence, the chitinases are important targets for enhancing plant growth,
especially under environment stresses [9]. To this end, recent studies have also documented
the role of chitinase in abiotic situations such as salinity and water deficit conditions [10–12].

Soybean (Glycine max L. Merr.), an important legume crop, possesses high levels of
edible oil and protein in its seed [13]. However, many environment stresses, including both
biotic and abiotic conditions, have a negative influence on soybean growth and yield, and
the frequency of these stress events has increased due to the changing global climate [14].
Among the biotic stresses, pathogenic diseases such as white mold (caused by Sclerotinia
sclerotiorum) are a major stress affecting the growth, yield and quality of soybean [15,16].
White mold disease is documented as the fourth major cause of yield losses in soybean [17].
Lack of information about the genes regulating disease resistance is the major hindrance to
developing pathogenic-resistant cultivars [18], and the phenotypic evaluation of disease
scoring in the field is also technically challenging. Development of resistant cultivars
against pathogens requires the identification of underlying genes. The gene family of
chitinase has been identified in multiple species, and research studies have confirmed
its role against the invasion of fungal pathogens [3,19]; for example, transgenic lines of
chitinase genes possess increased resistance to pathogens of fungal origin [3,5]. To this
end, chitinases are documented to modulates abiotic stress responses, such as to drought in
various plant species [6,11,20]. However, until now, the gene family has not been identified
and characterized at the whole genome level in Glycine max L. Nevertheless, there are
research studies that have used chitinase genes from other organisms to develop transgenic
soybean lines [21].

Until now, almost negligible efforts have been made to characterize and identify the
chitinase gene family in soybean at the whole genome scale. However, the availability of
the whole genome sequence of crop plants is allowing characterization of the whole gene
families in plants. In this context, the whole genome sequence of the soybean plant is freely
available in public databases (SoyBase and Phytozome); hence, in the current investigation,
we identify and characterize the chitinase gene family at the genome-wide scale in soybean.
In addition, we also studied the response of the identified chitinase genes under pathogenic
attack and drought stress, to confirm their role in plant defense.

2. Materials and Methods
2.1. Identifying Chitinase Genes in Soybean

For chitinase gene family identification in soybean, the whole genome sequences of
soybean were downloaded from the Phytozome database (https://phytozome-next.jgi.doe.
gov/ (accessed on 11 November 2019)), using the Glycine max Wm82.a2.v1. This genome
sequence was used to develop the protein local database of soybean, using Bioedit ver
7.2 software. Moreover, the 24 known chitinase genes of Arabidopsis thaliana freely available
at the TAIR database (https://www.arabidopsis.org/ (accessed on 11 November 2019))
were used as a query sequence to identify putative orthologs in soybean, using BLASTp [22].
The e-value <10−5 and bit scores >100 were the fitted parameters used to pick out high
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scoring pairs (HSPs). Redundant hits possessing highest similarity were eliminated to
select the unique sequences. To confirm the Glyco_hydro_18 or Glyco_hydro_19 conserved
domains, we submitted all identified unique sequences to NCBI-The Conserved Domain
Database (https://www.ncbi.nlm.nih.gov/cdd/?term=) (accessed on 17 November 2019).

2.2. Phylogenetic Analysis and Multiple Sequence Alignment

Protein sequences of chitinases were aligned using the CLUSTALW function present
in MEGA 7.0 [23]. The neighbor-joining method and a bootstrap value of 1000 were
used to develop the phylogenetic tree. Chitinases of cultivated soybean (Glycine max L.)
plus 24 chitinases of Arabidopsis thaliana were utilized to develop the phylogenetic tree.
Grouping of the chitinases were based on the different chitinase classes (I–V) of A. thaliana.
Finally, using EvolView (https://www.evolgenius.info//evolview/#login (accessed on
2 December 2019)), the evolutionary trees were developed.

2.3. Structure Analysis and Chromosomal Location of Chitinase Genes

The ProtParam database (https://web.expasy.org/protparam/ (accessed on 7 De-
cember 2019)), an online program for determining physical protein properties such the
molecular weight (MW), length of protein and isoelectric points (pI), was utilized in tge
present study for chitinase proteins [24]. The genomic and coding sequence of all chitinases
genes were collected from an online database (Phytozome); and gene structures (i.e., exon-
intron structures) analysis was performed using the online Gene Structure Display Server
tool (http://gsds.gao-lab.org/ (accessed on 7 December 2019)). Chromosomal location
information of individual genes of chitinase was obtained from the Phytozome database
(https://phytozome-next.jgi.doe.gov/ (accessed on 10 December 2019)); and chromosomal
maps were developed with MapChat software (www.https://mapchat.ca/ (accessed on
15 December 2019)).

2.4. Promoter Analysis and Three-Dimensional (3D) Structure of Chitinase Genes

The PlantCARE Database (https://bioinformatics.psb.ugent.be/webtools/plantcare/
html/ (accessed on 19 December 2019)) was utilized for analysis of cis-regulatory elements
in the promotor region (upstream region of 1.5 kb) of chitinase [3].

PHYRE2 server software (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=
help (accessed on 19 December 2019)) was used for generating three-dimensional (3D) mod-
els, and the thresholds were kept as alignment coverage >65% and confidence = 100%. The
transmembrane helix and topology of chitinases proteins were predicted by the MEMSAT-
SVM prediction method, available at the PSIPRED online site (https://bio.tools/memsat-
svm (accessed on 20 December 2019)).

2.5. Synteny and Duplication Analysis

The syntenic information about Glycine max and Arabidopsis thaliana was downloaded
from the Phytozome database (https://phytozome-next.jgi.doe.gov/ (accessed on 23 De-
cember 2019)). Using the comparison of inter-genomic, the mapping of chitinase genes
were performed, and TBtools software (https://bio.tools/tbtools (accessed on 24 December
2019)) was used to draw a syntenic diagram. By using the criteria of physical positions of
chitinase genes in the genome of cultivated soybean, we identified the tandem duplications.
Tandem duplication genes are considered as those that are separated by not more than one
intervening gene.

2.6. Plant Materials and Culture

To sterilize the seeds of soybean (W82), we initial used ethanol (70% v/v) for 1 min,
and after this for 6 min these seeds were bleached (10%); this was followed by sowing
them in a 10 cm diameter pot containing vermiculite and nutritive soil at 1:1 (v/v) mixture.
The soybean seedlings were raised in a growth chamber by maintaining the controlled
conditions followed by Aleem et al. [25]. After every four days, seedlings were supplied
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with water in half-length Hoagland solution. The V3 stage of the seedlings were selected
for the stress treatments, i.e., fungus inoculation and osmotic stress treatment.

2.7. Pathogenic and Drought Treatments

The white mold pathogen of soybean (Sclerotinia sclerotiorum) was cultured by fol-
lowing the detailed procedure described by Hoffman et al. [26]. The drop-mycelium
method was used for the inoculation of Sclerotinia sclerotiorum to soybean leaves, using
four replications [27]. The experiments were conducted in controlled conditions at the
Soybean Research Institute, Nanjing Agricultural University, China. The S. sclerotiorum
isolate 105 HT was provided by the Department of Plant Protection, Nanjing Agricultural
University and used in disease evaluation. Procedures for the controlled evaluation of
white mold diseases in soybean were followed, as described by Chen and Wang, [27].
For about three to four days, potato dextrose agar (PDA) medium was used to grow the
sclerotia (sterilized), and fresh stock was maintained by re-culturing the sclerotia. Small
pieces of mycelia were put into the liquid broth of potato dextrose, and homogenization of
the potato dextrose broth was performed in a G10 Gyrotory shaker (Edison, NJ) at 200 rpm
for four nights. A household blender was used to homogenize the suspension of mycelia for
maintaining mycelium uniformity immediately before the inoculation. A battery-operated
hand sprayer was used to spray a suspension of blended mycelia at ~4.6 ml/plant on the
plant leaves, and this spray was used at the V3 growth stage. The inoculated plants were
placed in controlled chambers, maintaining near 100% humidity inside the chambers. A
control was also used, that was not inoculated with the pathogen.

Seedlings were randomly grouped in four replicates for the osmatic treatments. Three
replicates were subjected to drought stress and treated using 20% PEG-6000, whereas the
fourth one was used as control, and not subjected to drought treatment. Collection of
fresh and healthy leaf tissues was carried out for both control and treated plants (in case
of both disease and drought stress) at time intervals of 6, 12, 24 and 48 h post-inoculation
(hpi)/post-treatment for the extraction of RNA, and were rapidly flash frozen in liquid
nitrogen and stored at −80 ◦C.

2.8. qRT-PCR Analysis

Total RNA was extracted from the leaf tissue (100 mg) that was collected from soybean
plants using a PureLink RNA Mini Kit (Ambion Life Technologies, 5791 Van Allen Way
Carlsbad, CA, USA). A nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE,
USA) was used for checking the quality and quantity of RNA. The protocol used for cDNA
synthesis was same as followed by us in the previous study of Sharmin et al. [27]. The
primers used in the qRT-PCR analysis are listed in the Table S1. The qRT-PCR reaction was
performed as initial annealing at 95 ◦C for 5 min, followed by 40 cycles as 94 ◦C for 30 s,
60 ◦C for 30 s, and 72 ◦C for 30 s. The reaction mixture and replication used is as per our
previous study [28,29].

In our experiment, we used the actin gene as an internal control, and relative expres-
sion of each gene was estimated by the Delta Ct method [30]. The p < 0.05 was used to
check the level of significance.

2.9. Statistics

In our experiments we used replicates of three, and every replicate was repeated three
times. Student’s t-test was used to check for significance differences in gene expression of
chitinases. In all experiments, the difference among the groups is reported as statistically
significant (* p < 0.05) or extremely significant (** p < 0.01).

3. Results
3.1. Chitinase Genes Identified in the Glycine max Genome

Soybean whole-genome sequence availability has allowed the characterization of
novel gene families in these crop plants, but it requires already known orthologs query
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genes from the model plants. Therefore, by using the known sequence of 24 chitinase genes
of A. thaliana as a query, we identified the 38 chitinase genes in cultivated soybean (Table 1).
These sequences were further subjected to functional annotation using the Conserved
Domain Database (CDD), and the results revealed that the predicted protein sequence of
these genes possess either the Glyco_hydro 18 or Glyco_hydro 19 domain (Table 1). These
domains are the key component needed by the chitinase enzymes to hydrolyze the chitin;
therefore, this confirmed their role as chitinase enzymes. Protein sequences containing the
catalytic domain of Glyco_hydro 18 are members of either Class III or V, whereas those
possessing Glyco_hydro 19 are the members of any of the three different classes, Class I, II
or IV. Interestingly, out of the 38 identified chitinases in soybean, 25 possess Glyco_hydro
18, while only 13 harbored the Glyco_hydro 19 domain (Table 1).

3.2. Phylogenetic Analysis and Chromosomal Location of Chitinase in Glycine max

The protein sequence of the 38 chitinases of soybean, along with the 24 known chiti-
nases from A. thaliana, were utilized for developing an unrooted maximum likelihood
phylogenetic tree (Figure 1). Based on the phylogenetic relationship, chitinases are clas-
sified into five different groups representing five classes of chitinases, I, II, III, IV and V
(Figure 1). Each class of chitinase is grouped into separate cluster. Broadly, chitinases are
grouped into two mega-groups. All the chitinases of classes I, II and IV, comprising the
GH19 family, are clustered into mega-group 1, while mega-group 2 possesses the chitinases
of the GH18 family. Naming of chitinases for Glycine max is based on their known ortholog
of A. thaliana, which shows three, seven, nineteen, three and six chitinases of class I, class II,
class III, class IV and class V, respectively.
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Table 1. Genome-wide identification and distribution of chitinase genes in soybean.

S. No. Name Gene ID Class Protein
Length(aa) Mol. Wt.(Da) PI(pH) Instability

Index GRAVY Arabidopsis
Ortholog Locus

Arabidopsis Locus
Description

1 Gm_chitinaseI-1 Glyma.01G160100 I 275 30,182.55 5.34 38.39 −0.331 AT3G12500 BASIC CHITINASE,
PR3

2 Gm_chitinaseI-2 Glyma.02G042500 I 320 34,341.3 7.40 29.21 −0.404 AT3G12500 BASIC CHITINASE,
PR3

3 Gm_chitinaseI-3 Glyma.16G119200 I 317 34,445.61 8.10 38.56 −0.350 AT3G12500 BASIC CHITINASE,
PR3

4 Gm_chitinaseII-1 Glyma.02G007400 II 281 31,229.36 8.83 49.95 −0.290 AT1G02360 Chitinase family
protein

5 Gm_chitinaseII-2 Glyma.08G259200 II 326 36,029.92 5.83 34.73 −0.180 AT1G05850 CHITINASE-LIKE
protein 1

6 Gm_chitinaseII-3 Glyma.09G038500 II 317 34,709.20 7.01 34.06 −0.266 AT3G16920 Encodes a
chitinase-like protein

7 Gm_chitinaseII-4 Glyma.10G138400 II 245 27,411.72 8.66 42.22 −0.578 AT1G02360 Chitinase family
protein

8 Gm_chitinaseII-5 Glyma.15G143600 II 318 34,889.50 6.97 34.32 −0.254 AT3G16920 Encodes a
chitinase-like protein

9 Gm_chitinaseII-6 Glyma.18G283400 II 329 36,375.35 5.91 37.68 −0.176 AT1G05850 CHITINASE-LIKE
protein 1

10 Gm_chitinaseII-7 Glyma.19G221800 II 272 29,960.98 6.80 36.74 −0.181 AT4G01700 Chitinase family
protein

11 Gm_chitinaseIII-1 Glyma.01G055200 III 296 31,735.72 5.39 35.54 −0.113 AT5G24090 Chitinase A
(class III)

12 Gm_chitinaseIII-2 Glyma.02G113600 III 296 31,687.55 5.18 34.54 −0.106 AT5G24090 Chitinase A
(class III)

13 Gm_chitinaseIII-3 Glyma.03G254300 III 303 32,588.90 8.97 38.48 −0.231 AT5G24090 Chitinase A
(class III)

14 Gm_chitinaseIII-4 Glyma.05G075000 III 298 32,643.35 9.41 38.72 −0.115 AT5G24090 Chitinase A
(class III)

15 Gm_chitinaseIII-5 Glyma.07G061600 III 289 31,297.28 6.31 23.17 −0.068 AT5G24090 Chitinase A
(class III)

16 Gm_chitinaseIII-6 Glyma.08G299700 III 300 32,004.46 8.08 38.61 0.024 AT5G24090 Chitinase A
(class III)

17 Gm_chitinaseIII-7 Glyma.08G300300 III 245 25,864.39 4.87 35.41 0.106 AT5G24090 Chitinase A
(class III)

18 Gm_chitinaseIII-8 Glyma.09G126200 III 292 30,880.19 4.07 33.02 −0.016 AT5G24090 Chitinase A
(class III)

19 Gm_chitinaseIII-9 Glyma.10G227700 III 304 32,429.85 7.58 39.30 0.049 AT5G24090 Chitinase A
(class III)
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Table 1. Cont.

S. No. Name Gene ID Class Protein
Length(aa) Mol. Wt.(Da) PI(pH) Instability

Index GRAVY Arabidopsis
Ortholog Locus

Arabidopsis Locus
Description

20 Gm_chitinaseIII-10 Glyma.12G156600 III 298 31,508.36 5.51 30.94 −0.050 AT5G24090 Chitinase A
(class III)

21 Gm_chitinaseIII-11 Glyma.15G015100 III 820 91,012.67 6.31 35.59 −0.141 AT5G24090 Chitinase A
(class III)

22 Gm_chitinaseIII-12 Glyma.16G173000 III 297 31,768.55 5.01 34.00 −0.043 AT5G24090 Chitinase A
(class III)

23 Gm_chitinaseIII-13 Glyma.18G120200 III 295 31,225.32 5.87 35.97 0.095 AT5G24090 Chitinase A
(class III)

24 Gm_chitinaseIII-14 Glyma.18G120700 III 295 31,266.46 7.50 32.96 0.045 AT5G24090 Chitinase A
(class III)

25 Gm_chitinaseIII-15 Glyma.19G076200 III 316 34,753.54 9.42 37.34 −0.238 AT5G24090 Chitinase A
(class III)

26 Gm_chitinaseIII-16 Glyma.19G251900 III 148 16,384.63 8.91 37.51 −0.124 AT5G24090 Chitinase A
(class III)

27 Gm_chitinaseIII-17 Glyma.20G035400 III 800 88,944.66 7.93 42.27 −0.170 AT5G24090 Chitinase A
(class III)

28 Gm_chitinaseIII-18 Glyma.20G164600 III 301 32,393.00 9.34 41.78 −0.017 AT5G24090 Chitinase A
(class III)

29 Gm_chitinaseIII-19 Glyma.20G164900 III 299 32,114.60 4.27 38.89 −0.092 AT5G24090 Chitinase A
(class III)

30 Gm_chitinaseIV-1 Glyma.11G124500 IV 235 25,871.79 4.90 34.87 −0.261 AT3G54420 CHITINASE
CLASS IV

31 Gm_chitinaseIV-2 Glyma.12G049200 IV 280 30,569.11 4.94 26.76 −0.276 AT3G54420 CHITINASE
CLASS IV

32 Gm_chitinaseIV-3 Glyma.13G346700 IV 274 29,829.05 5.02 28.58 −0.301 AT3G54420 CHITINASE CLASS
IV

33 Gm_chitinaseV-1 Glyma.13G155800 V 379 41,065.40 4.78 16.18 0.141 AT4G19800 Glycoside hydrolase,
family 18

34 Gm_chitinaseV-2 Glyma.15G206400 V 762 86,075.18 6.40 39.94 −0.167 AT4G19800 Glycoside hydrolase,
family 18

35 Gm_chitinaseV-3 Glyma.15G206800 V 365 40,085.06 8.92 34.77 −0.304 AT4G19810 CLASS V
CHITINASE

36 Gm_chitinaseV-4 Glyma.17G076100 V 374 41,252.20 8.79 33.08 −0.102 AT4G19810 CLASS V
CHITINASE

37 Gm_chitinaseV-5 Glyma.17G103500 V 377 41,059.92 9.11 18.08 0.158 AT4G19800 CLASS V
CHITINASE

38 Gm_chitinaseV-6 Glyma.17G217000 V 384 43,291.89 6.14 32.33 −0.228 AT4G19810 CLASS V
CHITINASE
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By analyzing the distribution of the chitinase genes on the different chromosomes in
soybean, we identified that all of the 38 chitinase genes are distributed on 17 of the total of
20 soybean chromosomes (Figure S1). Distribution of these chitinase genes was random
and uneven across the soybean genome. For example, Chr.15 possess four genes, whereas
Chr.04, Chr.06 and Chr.14 possess no chitinase gene; however, the remaining chromosomes
contain one to three genes. Hence, the results of current study showed that Glycine max
chitinases are not evenly distributed in the soybean genome.

3.3. Structural Analysis of Chitinase Genes in Glycine max

Exon–intron analysis of soybean chitinase genes was carried out by comparing the
genomic and coding sequence of each gene (Figure 2). Structural analysis showed that
most of the genes of same chitinase class possess almost the same number of exons or
introns. For instance, all the three chitinases of class I have two introns; similarly, chitinase
genes of class IV and class V contain one intron, except Gm_chitinaseV-2 of class V, that
possesses six introns. Moreover, out of seven chitinases of class II, four have two introns,
two have one intron and one has three introns. However, the 19 chitinase genes of class
III are very diverse in terms of intron number, which varies from 0–6 introns; for example,
eight of them contains zero introns, another eight possess one intron, and the remaining
one has three, one has two and two have six introns. Overall, structural analysis revealed
that soybean chitinases showed significant variation in exon and intron numbers, and this
ultimately leads to differences in the length of different chitinases and their physio-chemical
properties (Table 1).

To understand the role and response of the chitinases in plant growth and multiple
plant stresses, 1.5 kb upstream promoter sequences of ten randomly selected chitinase
genes (two each from classes I, II, III, IV and V) were utilized for cis-regulatory element
identification (Figure S2; Table 2). Our results showed the presence of multiple cis-elements
regulating the response against biotic and abiotic stresses. For example, biotic stress
responsive elements were observed as EIRE (fungal elicitor responsive elements), Box-W,
TCA-element (SA-responsive element), CGTCA-motif and TGACG-motif (JA responsive
element) and TC-rich repeats (ATTTTC). Similarly, abiotic stress response cis-elements
were identified in the chitinase promoter genes such as LTRE motif (TGG/ACC GAC),
involved in cold/chilling response, MBS/MYB motif (TAACTG) for water-deficit, HSE
motif (CNNGAANNTTCNNG), involved in heat stress, WUN-motif, involved in wound
response and ABREs motif (ACGT), regulated by expression of ABA. To this end, many
elements showing responsiveness for hormones are also identified, such as gibberellin-
(P-box and GARE-motif), ethylene- (ERA) and auxin-responsive elements (TGA) (Table 2).
The presence of these elements in the chitinase promoters suggests their regulatory role in
multiple abiotic and biotic stresses.

3.4. Molecular Modeling of Chitinases in G. max

Dynamic and energetic information regarding the chitin binding domain of the chiti-
nase proteins can be determined by using the bioinformatic approach of molecular mod-
eling. This information is very laborious and expensive to obtain, as well as taking a
long time. The PHYRE2 server, freely available online, was used to construct 3D models
for chitinases of I–V classes, and this analysis provides a better understanding about the
structural properties of chitinase genes in soybean (Figure 3). The following parameters
were used to generate the 3D model of chitinase proteins: confidence >90% and residue
coverage of 72–98. These predicted 3D protein structures can serve as the preliminary basis
to understand the function of chitinase genes at the molecular level. Our results revealed
that, except class II members, all of the chitinases have a N-terminal signal peptide that
possesses a different number of amino acids; however, all the five classes of chitinases
possess pore linings with varying amino acid numbers. A signal peptide at the N-terminal
guides chitinase proteins to their proper location, and after they reaches their destination,
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the signal peptide is cleaved off. In addition, results showed the cytoplasmic nature of all
chitinases, and extra-cellular mode of action (Figure 3).
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Table 2. Putative cis-regulatory elements in BjPR1 promoter sequence, identified by PlantCARE and PLACE promoter databases.

Cis-Acting Element Function Sequence

ABRE ABA-dependent expression ACGTG/AACCCGG
ABRE3a ABA-dependent expression TACGTG
ABRE4 ABA-dependent expression CACGTA/CACGTA
AuxRE part of an auxin-responsive element TGTCTCAATAAG

CGTCA-motif JA responsive element CGTCA
GARE-motif gibberellin-responsive element TCTGTTG
GT1-motif pathogen and salt response GGTTAA/GTGTGTGAA

LTR cis-acting element involved in low-temperature responsiveness CCGAAA
MBS drought stress CAACTG
MYB drought stress CAACCA/CAACAG/TAACCA

MYB-like sequence drought stress TAACCA
MYC early response to drought and ABA induction CAATTG/CATGTG/CATTTG
P-box gibberellin-responsive element CCTTTTG

TATC-box cis-acting element involved in gibberellin-responsiveness TATCCCA
TCA-element cis-acting element involved in salicylic acid responsiveness CCATCTTTTT/TCAGAAGAGG

TC-rich repeats cis-acting element involved in defense and stress
responsiveness ATTCTCTAAC

TGACG-motif cis-acting regulatory element involved in
MeJA-responsiveness TGACG

TGA-element auxin-responsive element AACGAC
W-box activation of defense and wounding-related genes TTGACC

WUN-motif wound response AAATTACT/TTATTACAT
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3.5. Synteny Analysis of Chitinases

Soybean crops have encountered different duplication events, such as one WGD and
WGT events, during their evolution [31]; these events give rise to many copies of different
soybean genes, and a highly duplicated genome [32]. Hence, it is expected that each
Arabidopsis thaliana chitinase gene might have multiple copies in the soybean genome.
In this context, we identified only 38 chitinase orthologs from the 24 chitinase genes of
Arabidopsis thaliana. It is interesting these 38 chitinase genes represent the orthologs of
only nine chitinase genes of Arabidopsis, i.e. At_chitinaseI-1, At_chitinaseII-1, At_chitinaseII-
2, At_chitinaseII-3, At_chitinaseII-4, At_chitinaseIII-1, At_chitinaseIV-9, At_chitinaseV-7 and
At_chitinaseV-8. The remaining 15 chitinase genes of Arabidopsis thaliana do not have any
orthologs in the soybean genome, perhaps because these chitinase genes have been lost
during the evolution of the soybean genome. The highest number of 19 ortholog genes was
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observed for Arabidopsis At_chitinaseIII-1 in the soybean genome, followed by three genes
each for At_chitinaseI-1, At_chitinaseIV-9, At_chitinaseV-7 and At_chitinaseV-8 and two
genes each for At_chitinaseII-1, At_chitinaseII-2, At_chitinaseII-3. At_chitinaseII-4 has the
lowest, one ortholog gene, in the soybean genome. The Circos and synteny analysis showed
that both tandem duplication and segmental duplication are involved in the expansion of
the chitinase gene family in the soybean (Figure 4).
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3.6. Transcriptional Analysis of Chitinase Genes in Response to White Mold and Drought Stress

Research evidence has revealed the regulatory role of chitinases in biotic stress such
as antifungal disease resistance [3,10,33], and abiotic stress such as drought [11,34–36]. In
addition, the role of chitinases in modulating plant growth and productivity has been
also reported [37]. Hence, the current investigation examined changes in the expression
of the genes in response to white mold fungal pathogen (Sclerotinia sclerotiorum) and
drought stress (Figure 5). In this regard, we randomly selected two GmChis genes from
each of five different classes (I–V) of chitinases identified in the soybean to determine

http://circos.ca/
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their expression pattern in response to pathogen infection and drought stress. Our results
revealed that chitinase of different classes showed a considerably varied response under
both pathogen and drought stresses. For example, the chitinases belonging to class I and
class III were significantly up-regulated (6-fold to 10-fold) at different intervals following
pathogen infection. In contrast, the chitinases of class-II, class IV and class V did not show
any significant response under the pathogen treatment. Under drought stress, only the
chitinase of class V showed significantly higher up-regulation (up to a 16-fold increase
in expression) at all the four time intervals (6 h, 12 h, 24 h and 48 h) following the stress
treatment. Chitinases of the remaining four classes did not significantly change under
drought stress. This suggests a diverse and specific role of different chitinase genes of
soybean in the regulation of biotic and abiotic stresses. Hence, research efforts are needed
to functionally elucidate the role of chitinase genes in the regulation of different biotic and
abiotic stresses in soybean.
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4. Discussion

Plants, being immobile, often encounter various environmental stresses, leading
to negative effects on the plants’ growth [1]. Plants possess well established defense
mechanism to alleviate these stresses. For example, PR proteins are a diverse range of
proteins produced by the plants in response to stress, and chitinases are one class of PR
proteins that are ubiquitously found in prokaryotes and eukaryotes, including plants [3,38].
Chitinases regulate plant growth and development under biotic (such as fungal pathogens)
and abiotic stresses [3,5]. Research investigation has confirmed the important role of
chitinases in plant defense, but there is a need to identify and elucidate the function of
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these genes for their potential use in crop improvement. To date, little is known about
chitinases in cultivated soybean (Glycine max L.), and no systematic investigation has been
carried in soybean. Hence, we undertook a comprehensive and systematic investigation
to identify and characterize the chitinase gene family across the whole soybean genome.
We identified 38 chitinase genes in the soybean genome, and this number was relatively
higher than previously reported in A. thaliana [5]. This can be explained as follows: the
soybean genome is complex, and in its evolutionary history it has gone through the events
of WGD and WGT, ~13–130 million years ago, which might have created multiple gene
copies [31]. However, soybean possesses a very similar number of chitinases to what has
previously been reported in rice (37), grape (38), B. rapa (33) and cucumber (28) [39–42]. In
contrast, soybean possesses a lower number of chitinase genes than Gossypium hirsutum (92),
Gossypium barbadense (116), E. grandis (67) and C. sativa (79) [3,5,43]. This can be attributed
to the large genome size and more duplication events present in these species, compared
to soybean [3]. Moreover, chitinase genes in Glycine max L. are unevenly and randomly
distributed in 17 of the 20 chromosomes (Figure S1). Chen et al. [41] also reported the
distribution of 33 chitinases genes on eight of the 10 total chromosomes. Similar findings
were observed in rice [39] and P. trichocarpa [44].

Based on the phylogenetic relationship, soybean chitinase, along with the known
chitinases of Arabidopsis thaliana, are classified into five separate clusters, and these five
clusters represent five chitinase classes, i.e., I, II, III, IV and V in soybean. From a broader
viewpoint, these five clusters are basically separated into two mega-clusters (“mega-cluster
1” & “mega-cluster 2”). The GH19 family chitinases that include class I, II and IV are
grouped in “mega-group 1”, and “mega-group 2” possess the chitinases of the GH18
family (class III and V). However, GH19 and GH18 are distinct from each other, as well as
having an independent history of evolution [3]. For example, chitinases of the GH18 family
possess the catalytic domains triosepho-sphateisomerise (TIM barrel) with highly conserved
motif (DxDxE), and these chitinases function in hydrolytic reactions, whereas chitinases
of the GH19 family contains alpha-helices and catalyze single displacement [45–47]. The
chitinase classes of I and II are grouped close to each other, because class II has originated
from class I via chitin-binding domain insertion [48]. In addition, the two mega-clusters
can be easily identified based on their domain; for example, “mega-cluster 1” chitinases
are characterized by the Glyco_hydro_19 domain, whereas “mega-cluster 2” possess the
Glyco_hydro_18 domain. Chitinases of “mega-cluster 2” are present in diverse living
organisms, such as microorganisms, animals and plants; in contrast, the chitinases of
“mega-cluster 1” are uniquely found in plants [44]. However, our results showed that the
soybean genome possesses a lower number of GH19 chitinases (13) than GH18 chitinases
(25). Similar differences in the contribution of GH18 and GH19 genes to the chitinase family
has been also previously reported in B. rapa [41], Musa acuminata [49] and Zea mays [50], etc.

Stress-related genes have been observed to contain a smaller number of introns, relative
to other genes that possess no role in plant stress response (Jeffares et al. 2008). Hence,
our study showed that, out of 38 chitinase genes identified in the soybean, 36 possess
three or fewer introns, and confirmed the above conception. Similar findings were recently
reported by Mir et al. [3], who also reported fewer introns in the chitinase genes of B. juncea
and C. sativa. Moreover, many authors have reported lower intron numbers in different
stress-related genes such as the LEA family [51], leucine-rich repeat (LRR) family [52] and
the trehalose-6-phosphate synthase gene family [53]. Genes that possess a higher number
of introns need a longer time for transcription, hence the product of these genes is not
available immediately for cellular function. In contrast, genes with reduced intron numbers
are quickly transcribed, and are thus rapidly available for defense response [54]. In this
context, the reduced number of introns in the soybean chitinase genes allows them to react
quickly and respond to stress conditions immediately.

In order to understand chitinase functioning in the various stress responses, we
scanned the 1.5 kb upstream promoter regions of chitinase genes for cis-elements. The
bioinformatic analysis revealed the presence of multiple cis-regulatory elements, either
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in one or more copies, in the upstream promoter regions. The biotic stress regulatory cis-
elements present in the promoter region include SA motifs, TC-rich repeats, JA motifs and
fungal responsive elements. Hence, this suggests a function of chitinase in modulating the
stress response in plants. The ABA-dependent pathway activates the genes involved in the
abiotic stress response in plants, and it requires the presence of single or multiple copies of
ABREs motifs. In addition, these genes are activated independently via binding of different
DREBPs groups to DRE motifs (TAC CGA CAT) [55]. To this end, the MYB and MBS
cis-elements identified in the upstream region are drought-inducibility elements/motifs,
suggesting role of the chitinase in drought stress [56]. Additionally, cold/chilling responsive
cis-elements (LTRE) were also identified [57], and HSEs are the important cis-elements
present in the heat shock protein genes (HSPs) regulating the heat stress response in
plants [58]. Moreover, the presence of ERA, GARE- motif, P-box and TGA-element in the
chitinase promoters suggests their regulatory influence by plant hormones. The motifs
of SA and JA are present in many stress-related genes and regulate stress tolerance in
plants [4]. Similar to our findings, these motifs (existing in one or more copies) were also
previously reported in chitinase genes and other PR genes in different plants, such as
B. juncea and C. sativa [3,4], and thus our results provide preliminary evidence for the
functioning of chitinase genes in multiple plant stresses. Therefore, cis-regulatory element
analysis showed that soybean chitinase might be involved in modulating both biotic and
abiotic stress tolerance in soybean.

Widening of gene families occurs through different types of duplication events, such
as WGD/WGT, segmental and tandem duplications [59]. The two and one WGD and
WGT events experienced by soybean genome in its evolution have produced many copies
of soybean genes and led to the genome’s complexity [31,32]. However, all A. thaliana
chitinase genes do not have homologous genes in the soybean genome; only nine chiti-
nase genes of Arabidopsis possess homologs in the soybean genome. The remaining 15
chitinase genes of Arabidopsis do not have any orthologs in the soybean genome, per-
haps because these chitinase genes have been lost during the evolution of the soybean
genome. Interestingly, At_chitinaseIII-1 has 19 chitinase orthologs in the soybean genome,
and they represent mostly tandem duplications, but a few are segmental duplications.
Four genes, At_chitinaseI-1, At_chitinaseIV-9, At_chitinaseV-7 and At_chitinaseV-8, revealed
triplication, and this has evolved through tandem duplication. The remaining three genes,
At_chitinaseII-1, At_chitinaseII-2 and At_chitinaseII-3, showed duplication, and this has also
evolved through tandem duplications, and At_chitinaseII-4 has only a single copy in the
soybean genome. Hence, the widening of the soybean chitinase gene family has mainly
resulted from tandem duplications (Figure 4). Our results suggest that Arabidopsis chitinase
genes might have been conserved before speciation, but have been lost during the evolution
of the soybean genome as well as during artificial selection. Similar to our findings, the
homologs of Arabidopsis chitinase has been lost in other plant species as well. For example,
10 Arabidopsis chitinase genes do not have orthologs, and are lost in B. rapa [41]. Similar
findings were observed in B. Juncea and C. sativa by Mir et al. [3]. In addition, the WGD
and WGT events leading to the loss of genes in soybean have been reported for other gene
families, such as cytokinin oxidase/dehydrogenase (CKX) genes [60], nucleotide binding
site (NBS)-encoding genes [61] and MKK and MPK genes [62]. These results suggest that
expansion or elimination of some Arabidopsis chitinase genes in the soybean genome might
have occurred due to functional differentiation of these genes under diverse environmental
stresses. The soybean probably has retained a sufficient number of chitinase genes during
its evolution to respond to external stress properly.

In plants, PR proteins modulate the plant defense system to provide protection against
various environmental stresses. Hence, the PR-3 family of PR proteins represents the
chitinases class [9], and expression of PR-3 proteins has been demonstrated to be induced
by both biotic and abiotic stresses [5,11]. Therefore, our results revealed that chitinases
belonging to specific classes were significantly induced under white mold fungal pathogen
and drought stress treatments. For example, the chitinases belonging to class I and class III
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were significantly up-regulated (6-fold to 10-fold) at different intervals following pathogen
infection. In contrast, the chitinases of class II, class IV and class V did not show any
significant response under the pathogen treatment, which is similar to reports of different
studies in various plants [63–65]. Moreover, in the cotton plant, the expression of chitinase
genes was induced by inoculation of a pathogen (Verticillium dahlia) and significantly
reached peak level 24 h following inoculation [5]. Under drought stress, only the chitinases
of class V showed significantly higher up-regulation (up to a 16-fold increase in expression)
at all the four time intervals (6 h, 12 h, 24 h and 48 h) following the stress treatment.
Chitinases of the remaining four classes did not undergo significant changes under drought
stress. In agreement with our report, chitinase expression induced by drought stress has
also been reported in Arabidopsis thaliana [11] and Crocus sativus [20]. Hence, the above
findings suggest an important role of chitinase genes in controlling multiple plant stress
(diseases and abiotic) responses in soybean plants. Therefore, the more research efforts are
required to elucidate the detailed function and mechanism involved in chitinase-mediated
regulation of plant defense.

5. Conclusions

The current investigation provides a comprehensive and systematic report of the
chitinase gene family at the whole genome scale in soybean. Here, we detected 38 chitinase
genes in the soybean genome, and these genes were randomly and unevenly distributed
on the soybean chromosomes. Phylogenetic analysis grouped these chitinase genes into
five distinct clusters representing five classes of chitinase (I, II, III, IV and V). In addition,
synteny and duplication analysis revealed that tandem duplication has played the major
role in widening the family of chitinase genes in soybean, while segmental duplication
has the smallest role. Promoter analysis showed multiple cis-regulatory elements related
to biotic and abiotic stresses in the upstream region of the chitinase genes, suggesting
their role in plant defense response against multiple stresses. Moreover, gene expression
analysis revealed that pathogenic and drought stress treatments significantly induce the up-
regulation of chitinase genes belonging to specific classes at different time intervals, which
further confirmed their role in plant stress response. Overall, our study provides evidence
about the role of the chitinases in multiple plant stress responses in soybean. However,
there is a need for future research efforts to validate the specific or general functions of
different chitinases against different biotic and abiotic stresses. Therefore, extensive research
efforts are required to elucidate the detailed mechanism involved in chitinase-mediated
modulation for different plant stresses, for their potential use in soybean improvement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12091340/s1, Figure S1: Diagram showing the distribution of
the 38 chitinase genes identified among the different 17 of the total 20 chromosomes of the soybean;
Figure S2: In silico analysis of Chitinase gene promoters of G. max L. Promoter cis-elements of 10
chitinase genes (two genes from each five classes of chitinases identified in soybean) in response
to biotic, abiotic and hormonal stresses are shown in different shapes and colors along with their
respective positions from the start codon ATG; Table S1: List of primers used in the qRT-PCR analysis
of the selected chitinase genes of soybean.
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