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Background: Limited treatment strategies are available for squamous-cell lung cancer
(SQLC) patients. Few studies have addressed whether immune-related genes (IRGs)
or the tumor immune microenvironment can predict the prognosis for SQLC patients.
Our study aimed to construct a signature predict prognosis for SQLC patients
based on IRGs.

Methods: We constructed and validated a signature from SQLC patients in The Cancer
Genome Atlas (TCGA) using bioinformatics analysis. The underlying mechanisms of the
signature were also explored with immune cells and mutation profiles.

Results: A total of 464 eligible SQLC patients from TCGA dataset were enrolled
and were randomly divided into the training cohort (n = 232) and the testing cohort
(n = 232). Eight differentially expressed IRGs were identified and applied to construct the
immune signature in the training cohort. The signature showed a significant difference
in overall survival (OS) between low-risk and high-risk cohorts (P < 0.001), with an
area under the curve of 0.76. The predictive capability was verified with the testing
and total cohorts. Multivariate analysis revealed that the 8-IRG signature served as an
independent prognostic factor for OS in SQLC patients. Naive B cells, resting memory
CD4 T cells, follicular helper T cells, and M2 macrophages were found to significantly
associate with OS. There was no statistical difference in terms of tumor mutational
burden between the high-risk and low-risk cohorts.

Conclusion: Our study constructed and validated an 8-IRG signature prognostic model
that predicts clinical outcomes for SQLC patients. However, this signature model needs
further validation with a larger number of patients.

Keywords: squamous-cell lung cancer, prognostic, immune-related genes, signature, immune cells,
mutation profiles
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INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the first
leading cause of cancer-related mortality worldwide, making it a
major public health concern (1). In 2018, there were an estimated
2,093,876 new cases, and 1,761,007 deaths from lung cancer
worldwide (1). There are two common histological types of non-
small cell lung cancer (NSCLC): adenocarcinoma carcinoma,
which accounts for 70% of NSCLC cases, and squamous
carcinoma, which accounts for 30% of cases. Standard treatments,
including chemotherapy, radiotherapy, and surgical resection,
have improved the prognosis of early stage squamous-cell lung
cancer (SQLC) (2). However, it is difficult to prevent metastasis
and recurrence of SQLC, which is considered responsible for
most SQLC deaths (3). Platinum-based doublet chemotherapy,
the standard therapy for advanced SQLC, only obtained poor
efficacy, with a median overall survival (OS) of 12.1 months
(4). The utility of targeted drugs had brought significant
improvements on OS and the quality of life for advanced NSCLC
patients (5, 6). However, driver gene alterations are rarely found
in SQLC patients, so the benefit from targeted agents is limited
(7). Furthermore, most novel drugs, including pemetrexed
and bevacizumab, have been approved in the treatment for
lung cancer but not for squamous-cell subtype because of
the adverse events (8, 9). Thus, there are limited treatment
strategies available for SQLC patients. Checkpoint inhibitors,
including anti-cytotoxic T lymphocyte antigen 4 (CTLA4), anti-
programmed cell death (PD-1), or anti-programmed cell death-
ligand 1 (PD-L1), have brought impressive clinical benefit for
various cancer types (10, 11). Due to the remarkable response,
pembrolizumab was approved as the first-line treatment for
recurrent or metastatic SQLC by the United States Food and Drug
Administration and National Medical Products Administration
of China (12).

Recent studies have shown that several promising biomarkers
might help to select patients who were appropriate candidates
for immunotherapy (13, 14). PD-L1 protein expression has been
reported to predict the response of checkpoint inhibitors (15, 16).
Previous studies have indicated that the tumor mutation burden
(TMB) and T-cell infiltration levels were related to the efficacy
of immunotherapy (13, 17). However, there is no consensus on
the biomarkers that can predict prognosis for SQLC patients.
The tumor biology and immune microenvironment were so
complicated that a single biomarker may be unable to sufficiently
predict the clinical outcomes of immunotherapy.

Several studies have demonstrated that immune signatures
played an important role in predicting the prognosis of patients
with cancers, such as ovarian cancer, colorectal cancer, and
cervical cancer. However, few studies have explored whether
immune-related genes (IRGs) could be biomarkers for predicting
the prognosis of SQLC. Furthermore, diverse treatment outcomes
of PD-1 or PD-L1 inhibitors were observed in SQLC patients
(12, 18). Therefore, an immune signature of SQLC based on
IRGs is urgently needed to predict clinical outcomes. The aim
of the current study was to establish an immune signature
that predicts the prognosis of SQLC patients based on IRGs
or tumor immune microenvironment (TIME). Furthermore, we

explored the relationships of the immune signature and the
clinical characteristics, immune cell infiltration, and mutation
data. This immune signature may help clinicians to provide more
precise immunotherapy for SQLC patients.

MATERIALS AND METHODS

Clinical Samples and Data Acquisition
Transcriptome mRNA-sequencing data and clinical information
of SQLC patients were downloaded from The Cancer Genome
Atlas (TCGA) data portal1. These data contained 49 normal
and 502 primary SQLC tissues. The raw count data were
downloaded for further analyses. Clinical information was also
downloaded and extracted from the Immunology Database and
Analysis Portal (ImmPort) database2. ImmPort is an important
foundation of immunology research, which updates immunology
data accurately and timely. This database provides a list of IRGs
that are involved in the process of immune activity for cancer
researchers (19).

Differentially Expressed Gene Analysis
To select the IRGs involved in the development of SQLC,
differentially expressed genes (DEGs) between tumor and normal
samples were identified with the limma package3. A differential
gene expression analysis was performed with a false discovery rate
(FDR) < 0.05 and a log2 fold change > 1 as the cutoff values. A list
of IRGs was derived from Immport. We identified differently
expressed immune-related genes (DE IRGs) at point intersection
between the IRGs list and all DEGs. Functional enrichment
analyses were performed to investigate the potential molecular
mechanisms of the DE IRGs with gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment using
DAVID. Terms in GO and KEGG with an FDR < 0.05 were
considered significantly enriched.

Development and Validation of the
Immune-Related Signature for SQLC
Squamous-cell lung cancer patients from TCGA data were
randomly divided into two cohorts, including the training
cohort and the testing cohort. The training cohort was used to
identify the prognostic immune-related signature and to develop
a prognostic immune-related risk model. The testing cohort
was used to validate its prognostic capability. We performed a
univariate Cox proportional hazard regression analysis to identify
the correlation between DE IRGs and OS in the training cohort.
To minimize overfitting and to identify the best gene model,
survival-related DE IRGs (P < 0.05) were evaluated with a
least absolute shrinkage and selection operator (LASSO) (20).
The risk score was established with the following formula: risk
score = expression gene 1 ∗coefficient + expression gene 2
∗coefficient + . . . + expression gene n ∗coefficient (21). The risk
score was calculated for each patient in the training and testing

1https://cancergenome.nih.gov
2https://immport.niaid.nih.gov
3https://Bioconductor.org/packages/limma
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cohorts based on this model. SQLC patients were divided into the
high- and low-risk groups based on the median cutoff of the risk
score. We validated the prognostic ability of the immune-related
signature by calculating the area under the curve (AUC) and
evaluating the survival difference between the high- and low-risk
groups (22).

TMB Analysis
The mutation data for SQLC patients were obtained from
the TCGA data portal, and analyzed with maftools (23). For
each patient, the TMB score was calculated as follows: (total
mutations/total covered bases) × 106 (24).

Tumor-Infiltrating Immune Cells
We used gene expression RNA-sequencing data from TCGA
to estimate the proportions of 22 types of infiltrating immune
cells with the CIBERSORT algorithm following the procedure as
previously reported (25).

Statistical Analysis
Differences among variables were analyzed with independent
t tests, chi-square tests, non-parametric tests, or ANOVA
tests. Univariate cox regression analysis and multivariate cox
regression were conducted to assess the prognostic effect of the
immune signature and clinical characteristics including gender,
age, clinical stage, and TNM stage. Statistical analyses were
conducted with SPSS 22.0 and R software, version 3.6.1. The
heatmap was generated with R package “pheatmap” and the
volcano plot was generated with R package “ggplot2”. A two-
sided P < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics
A total of 502 SQLC patients were identified in the TCGA cohort.
In order to reduce the effect of follow-up time on short term,
patients with follow-up time less than 30 days were not included
in our study. Thus, a total of 464 patients were enrolled, including
344 (74.1%) male and 120 (25.9%) female patients. These SQLC
patients were randomly divided into the training cohort (n = 232)
and the testing cohort (n = 232). No significant difference was
observed in terms of the clinical characteristics between these
two cohorts. The clinical characteristics of the patients are listed
in Supplementary Table S1.

Identification of DE IRGs
We identified 8527 DEGs for SQLC, including 5803 up-
regulated and 2724 down-regulated genes (Supplementary
Figure S1). We extracted 587 DE IRGs from the set of
DEGs, comprising 287 up-regulated and 300 down-regulated
genes (Figures 1A,B). Gene functional enrichment analysis
indicated that these genes were significantly enriched in
important inflammatory pathways, including leukocyte
migration, regulation of inflammatory response, regulation
of immune effector process, and lymphocyte-mediated

immunity (Figure 1C). KEGG pathway analysis highlighted
the six ranked pathways that were enriched among the DE
IRGs: “cytokine–cytokine receptor interaction”, “neuroactive
ligand–receptor interaction”, “viral protein interaction with
cytokine and cytokine receptor”, “chemokine signaling
pathway”, “rheumatoid arthritis”, and “JAK-STAT signaling
pathway” (Figure 1D).

Construction of Immune-Related Risk
Signatures in SQLC
We performed a univariate Cox regression analysis to explore
the association between OS and these 587 DE IRGs identified
above. A total of 32 DE IRGs were significantly associated with
the OS of SQLC patients in the training cohort (P < 0.05).
LASSO analysis was performed with these 32 survival-associated
IRGs in order to minimize overfitting. Eight DE IRGs were
utilized to construct the immune signature (Figure 2). The
prognostic model was established with the linear combination
of the expression levels of the 8-IRGs weighted by their relative
coefficient in multivariate Cox regression analysis as follows: risk
score = (MMP12 × 0.00332) + (PLAU × 0.00434) + (IGHD3-22
× 0.00460) + (IGKV1D-17 × 0.03535) + (CGA× 0.66283) + (SPP1
× 0.00072) + (AGTR2× 0.10901) + (NR4A1 × 0.02224)
(Supplementary Table S2). We calculated risk scores for each
patient in the training cohort based on the expression of the eight
IRGs and their relative coefficient. A total of 232 patients in the
training group were divided into a high-risk cohort (n = 166)
and a low-risk cohort (n = 166) based on their median risk score.
A significant difference in OS was observed between the high-risk
and low-risk cohorts [median OS, 4.56 vs 7.40 years; hazard
ratio (HR), 2.21; 95% CI, 1.44–3.41, P < 0.001] (Figure 3A).
The AUC for the 8-IRG signature was 0.76 at 1 year for OS
(Figure 3B). The distribution of the risk score and survival
status and the expression of 8-IRGs in the training cohort were
presented in Figures 3C–E.

Evaluating the Predictive Value of the
8-IRG Signature
The predictive capability of the 8-IRG signature was verified
with the testing cohort and the total cohort. As previously
described, there were 125 high-risk and 107 low-risk patients
in the testing cohort. The patients in the high-risk cohort
had a significant shorter median OS than those in the low-
risk cohort (median OS, 3.93 vs 6.47 years; HR, 1.84; 95%
CI, 1.20–2.84; P = 0.005; Figure 4A). The AUC of 1 year
was 0.63 (Figure 4B). The distribution of the risk score,
survival status, and the expression of 8-IRGs in the testing
cohort are shown in Figures 4C–E. Similarly, SQLC patients
in the total cohort were divided into low-risk (n = 223) and
high-risk (n = 241) groups. The median OS in the high-
risk cohort was inferior than that of the low-risk cohort
(median OS, 4.34 vs 7.00 years; HR, 2.04; 95% CI, 1.50
to 2.76, P < 0.001; Supplementary Figure S2a). The AUC
of 1 year in the total cohort was 0.69 (Supplementary
Figure S2b). The distribution of the risk score, survival

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 1933

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-01933 September 11, 2020 Time: 18:25 # 4

Chen et al. A Prognostic Immune Signature for SQLC

FIGURE 1 | Identification and functional enrichment analyses of differentially expressed immune-related genes in SQLC from training cohort. (A) Heatmap of
differentially expressed immune-related genes. (B) Volcano plot of differentially expressed immune-related genes. (C) Gene ontology analysis. (D) The top 10 most
significant Kyoto Encyclopedia of Genes and Genomes pathways.

status, and the expression of 8-IRGs in the total cohort are
presented in Supplementary Figures S2c–e.

Association Between the
Immune-Related Risk Signature and the
Clinical Outcome
A univariate Cox regression model was conducted to explore the
association between clinical characteristics, OS, and the 8-IRG
risk signature in the total SQLC cohort (Table 1). The immune-
related risk signature could independently predict OS in the total
cohort (HR, 1.60; 95% CI, 1.17–2.19, P = 0.003). Multivariate
Cox regression analysis suggested that the immune-related risk
signature could act as an independent prognosis predictor for
OS (HR, 1.94; 95% CI, 1.38–2.72, P < 0.001). The relationships
between the immune signature and clinical characteristics were
also explored. No significant difference of risk scores was found
in terms of age, gender, clinical stage, T stage, and N stage
(Supplementary Figure S3).

TIME Changing and the Immune-Related
Risk Signature
We applied RNA-sequencing data to assess the relative
proportion of the 22 immune cells in each SQLC sample with

CIBERSORT (Figure 5A). The abundances of the immune cell
types in the 8-IRG signature low- and high-risk cohorts are
presented in Supplementary Table S4. Among the 22 immune
cell types, the proportions of follicular helper T cells, naïve B cells,
and activated NK cells were low in the 8-IRG signature high-
risk group. The abundances of resting memory CD4 T cells, M2
macrophages, and neutrophils were high in the 8-IRG signature
high-risk group (Figure 5B). The proportions of naïve B cells,
resting memory CD4 T cells, follicular helper T cells, and M2
macrophages were significantly associated with OS. For the 8-
IRG signature in the low-risk cohort, the abundance level of
resting memory CD4 T cells and M2 macrophages was low and
showed a significant association with superior OS, whereas the
abundance levels of naïve B cells and follicular helper T cells were
high and were associated with inferior OS (Figures 5C–F).

Tumor Mutation Profile and the
Immune-Related Risk Signature
We explored the relationship between the mutation profile and
the immune-related risk signature in TCGA SQLC patients
with available somatic mutation data. The 30 ranked, mutated
genes in the low-risk and high-risk cohorts are illustrated in
Figures 6A,B. The top 10 mutated genes in SQLC patients
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FIGURE 2 | Forest plot of the multivariable Cox model of each gene in 8-IRG risk signature.

were TP53, TIN, CSMD3, MUC16, RYR2, SYNE1, USH2A,
LRP1B, ZFHX4, and FAM135B. There were no statistical
differences in terms of TMB between the high-risk and
low-risk cohorts (P = 0.121; Figure 6C). No significant
difference in OS was found in the high- or low-TMB cohorts
(P = 0.657; Figure 6D).

DISCUSSION

Several clinical trials have shown that checkpoint inhibitors were
superior to chemotherapy for SQLC patients (12, 18). However,
SQLC patients have shown limited improved clinical outcomes
from immunotherapy. Thus, it is important to identify and
develop potential biomarkers for predicting prognosis in SQLC
patients treated with immunotherapy.

Early studies have demonstrated that PD-L1 expression, T-cell
receptor clonality, TMB, and T-cell infiltration levels may be
associated with the clinical response to immunotherapy (13,
17). However, due to the complexity of tumor biology and the
immune microenvironment, a single biomarker could not be
sufficiently predictive of clinical outcomes to immunotherapy
(26). It may be necessary to apply the integration genomics
and transcriptomic to improve the accuracy of predictions.
Furthermore, as the TIME served as a critical role in tumor
progression, it is important to explore an immune-related model
to predict the prognosis of SQLC patients and identify patients
who would obtain clinical benefit from immunotherapy.

To the best of our knowledge, it was the first immune-related
signature prognostic model for SQLC patients based on RNA-
sequencing data. In our study, we firstly presented the gene

mutation profiles and the relative proportion of 22 immune cells
of SQLC from TCGA dataset. Besides, the relationships between
TMB, proportion of immune cells, and SQLC prognosis were
firstly systematic exploration in our article.

Our study established and validated an immune-related risk
signature model for SQLC from TCGA dataset. A total of eight
DE IRGs with prognostic value were included in the signature.
Among these genes, six (MMP12, PLAU, IGHD3-22, IGKV1D-17,
CGA, and SPP1) were up-regulated in SQLC tissues compared
with normal samples, while two (AGTR2 and NR4A1) were
down-regulated. PLAU and MMP12 have been reported to be
associated with aberrant regulation of gene function and poor
prognosis for lung carcinoma (27–30). SPP1 has been reported as
an independent risk biomarker prognostic evaluation of patients
with lung adenocarcinoma (31). NR4A1 has been considered
as a member of the orphan nuclear receptor superfamily of
transcription factors (32). In our study, NR4A1 was down-
regulated in the SQLC tissues compared with the normal tissues.
However, NR4A1 has been reported to be overexpressed in
multiple types of carcinomas in previous reports, and play a
critical role in survival or cell proliferation in cervical, lymphoma,
pancreatic, lung, and colon cancer cells. NR4A1 has been found
to be involved in promoting cancer invasion and metastasis
(33–35). A previous research showed that AGTR2 was under-
expressed in lung adenocarcinoma and played a role in the
pathology of adenocarcinoma (36). CGA gene was identified as
a new estrogen receptor a (ERa) responsive gene in human breast
cancer cells and a member of a novel dysregulated pathway
in prostate cancer (37–39). IGKV1-17 gene was reported to
be rarely expressed by normal cells and play a critical role
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FIGURE 3 | Construction of an 8-IRG signature in the training cohort. (A) Kaplan-Meier curve analysis of overall survival of SQLC patients in high- and low-risk
groups. (B) ROC curves analysis of 1 year. Risk score distribution (C), survival status (D), and heatmap of expression profiles (E) for patients in high- and low-risk
groups by the 8-IRG signature.

in the development of SLE-nephritis (40). IGHD gene served
as suppressor genes in the recurrence of triple-negative breast
cancer (41). Although the role of the remaining CGA, IGHD3-
22, and IGKV1D-17 genes in lung cancer patients has not
been previously reported, they might play an important role as
potential biomarkers.

We found that four IRGs encoded cytokines or cytokine
receptors, including CGA, SPP1, AGTR2, and NR4A1 genes.
Cytokines and cytokine receptors have been reported to modulate
the tumor microenvironment and promote the development
of cancer, which may contribute to disease progression and
a worse prognosis for SQLC patients in the high-risk group
(42–44). Significant differences in OS were found between
patients with high-risk and low-risk scores. Furthermore, our
signature was significantly associated with the prognosis of
SQLC patients in the training, testing, and total cohorts.
Our 8-IRG signature has acted as an independent prognostic
factor in OS for SQLC patients in both the univariate
and the multivariate Cox regression analyses. These results
demonstrated that the signature might be a useful tool for
predicting prognosis.

Our signature had also shown relationships with immune
cells. CIBERSORT was applied to assess the relative abundances
of 22 immune cells types in each SQLC sample. Our study
showed that the proportion of resting memory CD4 T cells, M2

macrophages, and neutrophils were positively correlated with 8-
IRG risk score, and the proportion of follicular helper T cells,
naïve B cells, and activated NK cells were negatively associated
with the 8-IRG risk score. Furthermore, high abundance levels of
resting memory CD4 T cells and M2 macrophages were found
in the high-risk cohort, which was associated with poorer OS.
Low abundance levels of naïve B cells and follicular helper T
cells were found in the high-risk cohort, which was associated
with better OS. High proportion of M2 macrophage was reported
to be correlated with a poor response to immunotherapy (45).
These results may contribute to the poor prognosis in the
high-risk cohort.

We also performed gene mutation analysis to explore the
possible mechanisms of the 8-IRG signature in the high- and low-
risk groups. However, there was no significant difference in TMB
between the 8-IRG signature high-risk group and low-risk group.
Furthermore, our study showed that TMB was not associated
with OS, which was not consistent with the results of previously
reported studies (17, 46). However, a recent study showed that
there was no significant correlation between TMB and the
prognosis of lung cancer patients treated with pembrolizumab
(26). According to the NCCN guideline for NSCLC patients,
TMB is an evolving biomarker that may be helpful to select
patients for immunotherapy, but there is no consensus on how
to measure TMB in clinical practices (14).
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FIGURE 4 | Validation of an 8-IRG signature in the validating cohort. (A) Kaplan-Meier curve analysis of overall survival of SQLC patients in high- and low-risk
groups. (B) ROC curves analysis of 1 year. Risk score distribution (C), survival status (D), and heatmap of expression profiles (E) for patients in high- and low-risk
groups by the 8-IRG signature.

TABLE 1 | Univariate and multivariate Cox regression analysis of SQLC.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age (≤65 vs. >65) 1.237 (0.908–1.686) 0.178 1.285 (0.932–1.771) 0.126

Gender (male vs. female) 0.899 (0.637–1.268) 0.544 0.800(0.562–1.138) 0.215

Tumor stage

T1 1 1

T2 1.274 (0.859–1.890) 0.229 1.302(0.862–1.969) 0.210

T3 1.972 (1.204–3.231) 0.007 2.245 (1.093–4.612) 0.028

T4 2.491 (1.308–4.744) 0.005 3.250 (1.288–8.196) 0.013

N stage

N0 1 1

N1 1.205 (0.862–1.684) 0.275 1.361 (0.780–2.374) 0.278

N2 1.405 (0.862–2.292) 0.173 1.521 (0.622–3.722) 0.358

N3 2.987 (0.733–12.174) 0.127 5.574 (1.005–30.929) 0.049

Clinical stage

I 1 1

II 1.235 (0.871–1.750) 0.236 0.918 (0.507–1.661) 0.777

III 1.784 (1.229–2.591) 0.002 0.874 (0.330–2.315) 0.787

IV 2.251 (0.707–7.166) 0.170 1.579 (0.419–5.959) 0.500

8-IRG risk score (low vs high) 1.600 (1.168–2.193) 0.003 1.937 (1.382–2.715) <0.001

HR, hazard ratio; CI, confidence interval; IRG, immune-related genes.
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FIGURE 5 | (A) Bar chart of the relative proportion of the 22 immune cells in each SQLC sample. (B) The association of immune cells infiltration and the
immune-related risk signature in SQLC. A red violin and a blue violin represent the 8-IRG signature high-risk and low-risk groups. The white points inside the violin
represent median values. (C–F) The association of immune cells infiltration and OS in TCGA SQLC dataset. (C) Naïve B cells; (D) Resting memory CD4 T cells; (E)
M2 macrophages; (F) Follicular helper T cells.

FIGURE 6 | The mutation profiles and TMB among low-risk and high-risk groups. Mutation profile of low-risk (A) and high-risk (B) groups. (C) The relationship
between the immune-related risk signature and TMB. (D) The association of TMB and OS in TCGA SQLC dataset.

Despite these promising results, there were several limitations
in our study. First, the immune-related signature model was
established and validated with gene profiles from the public
dataset. Second, the proportion of Asian SQLC patients was small

in the TCGA cohort. Thus, it is still unclear whether this signature
model will be effective for Asian SQLC patients. Further studies
should incorporate with a larger number of SQLC patients from
Asia and the clinical practice.
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CONCLUSION

Our study constructed and validated an 8-IRG signature
prognostic model to predict clinical outcomes for SQLC patients,
which may provide a deeper understanding of immunotherapy.
However, this signature model for SQLC needs further validation
with a larger number of patients.
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