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Abstract: Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomy-
cosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen
presents as infective mycelium at 25 ◦C in the soil, reverting to its pathogenic form when inhaled
by the mammalian host (37 ◦C). Among these dimorphic fungal species, dimorphism regulating
histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are
present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular
survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the
cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to
different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the
role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to
iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them
was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy
analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis
after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phago-
cytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the
role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In
parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally,
our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we
can identify β-glucan. Understanding this signalling pathway may be of great value for identifying
targets of antifungal molecular activity since HKs are not present in mammals.

Keywords: histidine kinase; dimorphism; Paracoccidioides; paracoccidioidomycosis; cell wall

1. Introduction

Paracoccidioidomycosis (PCM) is a systemic granulomatous human disease endemic
in Latin America. It is caused by Paracoccidioides spp., a thermally-dimorphic fungus that
presents as an infective mycelium in the environment, and it switches to a pathogenic
yeast form in the mammalian host [1,2]. Its clinical manifestations occur in two distinct
forms, acute or subacute and chronic [3], affecting mainly the lungs, but it is capable of
spreading to other tissues [4,5]. Primary infection usually occurs by inhaling propagules
(conidia) produced during the mycelial form [6]. Once inhaled, fungal propagules will
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be recognized by cells of the innate immune system [7]. The recognition of fungal cell
wall components begins with pathogen-associated molecular patterns (PAMPs) through
pathogen recognition receptors (PRRs). These receptors include Toll-like receptors (TLRs),
mannose receptors, complement pathway molecules and lectin family receptors (CLRs),
such as dectin-1 [8]. The interaction of these molecules with fungal yeasts leads to activation
of the innate immune response, consequently activating mediators involved in eliminating
these pathogens and controlling the adaptive immune response [9].

However, fungi have mechanisms to prevent their elimination by the host’s immune
system [10]. Several fungi that engage in morphological transitions are of great medical
importance, such as Talaromyces marneffei (Penicillium marneffei), Blastomyces dermatitidis,
Coccidioides immitis, Histoplasma capsulatum, Sporothrix schenckii, and Paracoccidioides spp. [11].
The transition in Paracoccidioides spp. and other dimorphic fungi is essential for the es-
tablishment of the disease [12]. This alters not only the cell morphology but also the
composition of the cell wall elements. In Paracoccidioides spp. mycelium, there is a preva-
lence of β-1,3-glucan and β-1,6-glucan, and in the yeast form, there is a prevalence of
α-1,3-glucan and chitin [13]. This ensures fungal survival in the host environment since
the content of α-1,3-glucan is correlated with the degree of fungal virulence [14]. In addi-
tion, masking the presence of β-1,3-glucan molecules, a highly immunogenic structure, is
recognized by the dectin-1 receptor of phagocytic cells [15]. The morphological switch is
believed to be an additional evasion strategy against phagocytic cells and mechanisms for
recognition of the cell wall components [15]. In this context, the fungal cell wall plays an
important role in immunological recognition.

In Paracoccidioides spp., different genes are expressed according to the phase (yeast
or mycelium) [16]. The mechanism of this transition has been unclear. However, genes
related to the control of the mycelium-yeast transition (M-Y) have recently been identified in
B. dermatitidis and H. capsulatum, including dimorphism-regulating histidine kinase (DRK1).
DRK1 is mainly expressed in the yeast phase [11] of B. dermatitidis [17], S. schenckii [18], and
T. marneffei [19] and, more recently, it was characterized in P. brasiliensis [20].

Histidine kinases (HKs) were discovered in the 1980s in Escherichia coli [21], and were
believed to be present only in bacteria. In the 1990s, they were also discovered in plants,
fungi, archaea, cyanobacteria and amoebas [22]. In fungi, the functions attributed to HKs
have not been explored very well [23]. HKs are classified based on phylogenetic analyses;
in fungi, there are 16 groups, determined by the C- and N-terminal regions and the domains
present in each group [22,24,25]. This is a signal transduction mechanism that contains
a conserved kinase domain and a conserved regulatory domain. After an extracellular
stimulus, the HK domain is autophosphorylated on a histidine residue, followed by a
phosphate group transfer to the regulatory domain in an aspartate residue, which catalyses
a downstream reaction of the effector domain that leads to downstream signalling [26].

Among the characterized pathways in fungi, we can mention the response to osmotic
stress [25], oxidative protection against phagocytic cells [27] and regulation of the dimor-
phism in pathogenic fungi [17,18,20,28]. In P. brasiliensis, DRK1 is known to be a group III
histidine kinase essential to the dimorphic transition process [20].

Since HKs are known to regulate morphological switches in P. brasiliensis, this work
aimed to characterize the PbDrk1 protein, which is involved in the transition from mycelium
to yeast. This investigation is of great interest since HKs use a phosphorylation mechanism
where the amino acid phosphoryl-receiving groups are aspartate and histidine residues,
unlike the serine, threonine and tyrosine residues that are prevalent in mammals. Thus,
knowing that these molecular sensors are absent in humans, it is extremely important to
study the components that are part of these activation pathways, as they may represent
potential molecular targets in the development of new antifungal agents.
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2. Materials and Methods
2.1. Fungal Isolates and Growth Conditions

The P. brasiliensis isolate Pb18 was grown in yeast peptone dextrose modified medium
(mYPD) (0.5% yeast extract, 1% peptone, and 0.5% glucose, pH 6.7) for 4 to 5 days at 37 ◦C
and shaking at 150 rpm. For mycelium growth, viable yeast cells were cultivated in mYPD
at 25 ◦C for 7 days at 150 rpm. Viability was assessed by Trypan blue 0.4% counting on
Neubauer’s chamber, using the formula: cell viability(%) = viable cells /total cells × 100.
All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise
mentioned.

2.2. Histidine Kinase Inhibitor Susceptibility

About 1× 106 yeast were incubated with different concentrations (100, 50, 25, 12.5, and
6.25 µg/mL) of Fludioxonil (Thermo Scientific, Waltham, MA, USA), a specific inhibitor
of class III histidine kinase (iDrk1). The inhibitor was solubilized in DMSO (dimethylsul-
foxide). Yeasts were incubated for 24 h under constant agitation of 180 rpm at 37 ◦C. Each
yeast culture was diluted (10, 50, 100, 500, and 1000 times) in YPDmod broth, and 10 µL of
each suspension was plated to YPDmod agar medium. Plates were photographed after
7 days of growth at 37 ◦C. This assay was performed in biological triplicate.

2.3. Dimorphic Transition Assay

Yeast cells of Pb18 were grown in mYPD agar (pH 6.5) at 37 ◦C for 4 to 5 days and
inoculated in mYPD broth medium (pH 6.5). Then yeasts were incubated at 25 ◦C for five
to six days to reverse yeast to mycelium entirely. After the complete transition, yeasts
were centrifuged at 3000× g and washed with PBS buffer (pH 7.2). The mycelium was
then seeded in 6-well plates and 20 µM iDrk1 (Fludioxonil) was added. The samples were
monitored every 24 h under an optical microscope (Zeiss) at 100×magnification. Every
24 h, the culture medium was supplemented with 20 µM fludioxonil (because of inhibitor
photodegradation). With each addition, a new solution was prepared to guarantee its
activity. This assay was performed in a biological duplicate.

2.4. Cell Wall Disturbing Agents Spot Test

The sensitivity of Pb18 to cell wall disruptors was investigated using the spot assay.
About 1 × 106 yeasts were incubated with iDrk1 (25 µg/mL) for 24 h at 37 ◦C at 150 rpm.
Each yeast culture was diluted (10, 50, 100, and 500 times) in YPDmod broth, and 10 µL of
each suspension was applied to mYPD agar medium supplemented with different cell wall
disrupting agents, such as: Congo Red (Congo Red) (2.5 µM), Calcofluor White (1 µg/mL)
and sodium chloride (150 mM). The plates were incubated for seven days at 37 ◦C, and
then photographed. This assay was performed in biological triplicate.

2.5. RNA Extraction and Real-Time Quantitative PCR Analysis

Pb18 yeasts were grown for four to five days in YPDmod pH 6.5 medium at 37 ◦C
and 150 rpm, counted and the volume was adjusted to 30 mL at a concentration of
1 × 106 cells/mL. Then, yeasts were incubated with 25 µg/mL of iDrk1 for 24 h at 37 ◦C.
After this incubation period, RNA extraction was performed. Samples were centrifuged
at 3000× g for 10 min at 4 ◦C and washed 3 times with PBS (pH 7.2). Then, in 15 mL
tubes, approximately 500 µL of glass beads (425–600 µm—Sigma-Aldrich, San Louis, MO,
USA) and 1.5 mL of TRizol® (Invitrogen, Waltham, MA, USA) were added to the sam-
ple. The tubes were vigorously vortexed for 6 cycles of 1 min, alternating with 1 min
on ice. RNA extraction was performed as previously described [29]. Quantification was
performed using spectrophotometry (NanoDrop 2000/2000c, Thermo Fisher Scientific,
Waltham, MA, USA). For complementary DNA (cDNA) synthesis, 500 ng of RNA was
initially submitted to the DNase I enzyme (Thermo Fisher Scientific, Waltham, MA, USA)
and then to ProtoScript First Strand cDNA Synthesis kit (New England BioLabs, Ipswich,
MA, USA), according to the manufacturer’s instructions. To assess gene expression by
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real-time quantitative PCR, the reaction was performed with SYBR® Green Master Mix
(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions.
The endogenous expression genes for ribosomal protein 60S L34 (L34r) and 18S were used
as normalizing controls. For each gene of interest and normalizer gene, a negative reaction
control was also added. The samples were prepared in triplicate to a 96-well plate (0.2 mL
MicroAmp™ Optical 96-Well Reaction Plate—Applied Biosystems) compatible with the
equipment used, and the plate was sealed with an optical adhesive (MicroAmp™ Optical
Adhesive Film—Thermo Fisher Scientific, Waltham, MA, USA). The equipment used was
the ABI StepOne Plus Real-Time PCR System (Applied Biosystems) with the following
conditions: 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C. The
dissociation curve included an additional cycle of 15 s at 95 ◦C, 20 s at 60 ◦C, and 15 s at
95 ◦C. The curves of oligonucleotides efficiency were evaluated from a cDNA obtained
previously and serially diluted (100, 10, 1, and 0.1 ng/µL). The Ct values of each dilution
point were determined and used to make the standard curve and finally calculate the
primer efficiency (E = 10(−1⁄slope)−1 × 100). The relative expression was determined based
on the 2−∆∆Ct method [30]. The sequences used for each gene are listed in Table 1.

Table 1. Oligonucleotides used for real-time quantitative PCR analysis.

Gene Sequence (5′–3′) Gene ID

L34 Foward: AAAGGAACCGCACCAAAATG
Reverse: AGACCTGGGAGTATTCACGG PADG_04402

18S Foward: CGGAGAGAGGGAGCCTGAGAA
Reverse: GGGATTGGGTAATTTGCGC ADG_12090

FKS1 Forward: GTTCCCATCACCGATCCTATTT
Reverse: GAAGGAGAGCAAGAAGACGATAC PADG_11846

KRE6 Foward: TTCCGACGAGTTCAACAAAGA
Reverse: CTGCGTCACTCCATACCAAATA PADG_07170

PHR2 Foward: ACTGAGGACAAACACCATCAG
Reverse: ACAGATCTGCAACGACGTAAA PADG_04918

GEL3 Foward: CGTTGTCAGCGGAGGTATCGTC
Reverse: AGGGCAGGTTCGGAGTTCAGTG PADG_04918

AGN1 Foward: AAATGCGGCACGGAGGAGA
Reverse: AAGGGTGGTATCAAGTGCCGAGT PADG_03169

CHT3 Foward: GCGAGGAATTGGGTGATAGAA
Reverse: AGGGTTGACGCTATCAGAAATAA PADG_08156

CHS2 Foward: CCCGAACCTACTGCACTTTATC
Reverse: TGCCCTTACCCGCTTTAATC PADG_08636

CHS3 Foward: CGCTATGGTTAAGGATCCCGAGA
Reverse: GCATCCAGGCAAGCAAGTAACA O94191_PARB

CHS4 Foward: ACCGGATGAGGCCACTATTACAGA
Reverse: GTCTGCAATCGCTGCTCAACG PADG_07911

CHS5 Foward: AGAGTATCAAGGCTGAGCTGGAACG
Reverse: CGGAAAGGACGGCTTCGGTT A9XTF9_PARBR

2.6. Quantification of Cell Wall Components

About 1 × 106 yeast cells were grown and incubated for 24 h with 25 µg/mL of iDrk1
in mYPD at 37 ◦C under stirring at 180 rpm. Then, yeasts were collected, homogenized in
blocking solution (0.5% BSA, 5% rabbit serum, 5 mM EDTA, 2 mM NaN3 in PBS, pH 7.2)
and incubated for 30 min at room temperature. Then, yeasts were incubated with 1 µg/mL
of the β-glucan binding probe for 1 h on ice. This probe corresponds to the human
Dectin-1 receptor fused to the FC portion of mouse IgG1 (Sino Biological, Beijing, China).
Samples were incubated with Alexa-488-conjugated anti-mouse IgG secondary antibody
(Molecular Probes, Eugene, OR, USA) at a 1:200 ratio for 45 min on ice. Between each
incubation, step cells were washed three times with wash buffer (0.5% BSA, 5 mM EDTA,
2 mM NaN3 in PBS, pH 7.2). Determination of chitin oligomers was performed with the
WGA (wheat germ agglutinin) marker conjugated to FITC (Sigma-Aldrich, San Louis, MO,
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USA), at a concentration of 25 µg/mL in 1 mL of PBS (pH 7.2). Mannan determination
was performed with FITC-conjugated Concanavalin A (Sigma-Aldrich, San Louis, MO,
USA), at a concentration of 25 µg/mL in 500 µL of PBS (pH 7.2). Both samples were
incubated for 1 h protected from light under agitation at 800 rpm. Next, samples were
centrifuged at 3000× g for 5 min at 4 ◦C and washed three times with 1 mL of PBS (pH 7.2).
Finally, all samples were homogenized in 500 µL of PBS (pH 7.2) and analyzed by flow
cytometry (BD FACSCaliburTM, Becton Dickinson) using the FL-1 detection channel. Each
sample was prepared in experimental triplicate. A total of 10,000 events were counted and
quantification graphs were generated from the median fluorescence intensity (MFI). The
data obtained were analyzed using FlowJo software version 10.6.2 (FlowJo, LLC, FlowJo™,
Ashland, OR, USA) [31].

2.7. Confocal Microscopy

To evaluate the exposion of β-glucan molecules through fluorescence confocal mi-
croscopy, cells were prepared as described on the previous section and then centrifuged
and homogenized in PBS:glycerol (3:1). The slides were prepared with 30 µL of the sample,
sealed and analyzed under a confocal microscope (SP8 Lightning, Leica Microsystems). Flu-
orescence intensity was quantified using ImageJ analysis software (version 1.53i) through
corrected total cell fluorescence (CTCF).

2.8. PKA Activity and cAMP Quantification

PKA activity was performed using the PKA Colorimetric Activity Kit (Thermo Fisher
Scientific, Waltham, MA, USA), according to the manufacturer’s specifications. For this
purpose, 1 × 107 Pb18 cells were incubated with or without 25 µg/mL of iDrk1 or 1 mM
H2O2 for 30 min in YPDmod at 37 ◦C and 180 rpm. Yeasts were collected and washed
with PBS (pH 7.2), centrifuged for 3000× g for 10 min and homogenized in Tris-based
lysis buffer contained in the kit. Lysis was assessed by adding glass beads and vigorous
vortexing (5 cycles of 1 min interspersed with 1 min of incubation on ice). Samples were
then centrifuged and the supernatant was recovered. For PKA activity assay, 1 mg of
protein was used. Intracellular levels of cyclic AMP (cAMP) were quantified by the
Cyclic AMP ELISA Kit (Cayman Chemical, Ann Harbor, MI, USA). Pb18 yeasts were
prepared as described above. Cellular lysis was performed according to the manufacturer’s
specifications, using 10 mM HCl and glass beads. For cAMP quantification, it was used
about 0.5 µg of protein. The total protein extracts quantification was performed by Bradford
assay [32]. Absorbance was read at 405 nm (BioTek—Synergy HT) and data were plotted
in triplicate from the standard curves absorbance values.

2.9. Glycogen Accumulation

A 10 mL suspension of 5 × 106 Pb18 yeasts/mL was incubated with or without
25 µg/mL of iDrk1 for 24 or 48 h, followed by centrifugation at 2500 rpm for 3 min (the
supernatant was discarded). The pellet was homogenized in 1 mL of iodine solution (0.2%
iodine and 0.4% potassium iodide) and incubated for 3 min at room temperature. The
samples were again centrifuged at 2500 rpm for 3 min, the supernatant was discarded
and the pellet homogenized in 30 µL of the iodine solution. The samples were plated
to a 96-well plate, 200 µL of PBS (pH 7.2) was added to each well and the samples were
photographed [33].

2.10. Phagocytosis Assay

In vitro phagocytosis was performed with the J774 macrophage cell line. About
2.5 × 105 viable cells were plated in a 24-well plate containing RPMI (Gibco, Gaithersburg,
MD, USA) supplemented with 10% FBS. A 15 mm diameter circular sterilized coverslip
was added to each well. After adhesion, macrophages were primed with 100 ng/mL
of LPS 30 min before interaction with P. brasiliensis. J774 cell line is activated by LPS
showing changes in morphology, such as cytoplasm expansion, contributing to a better
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performance in phagocytosis assays [34,35]. The interaction was carried out in a 2:1 ratio
(yeast:macrophages) and incubated for 24 h at 37 ◦C and 5% CO2. Previously, yeasts
were incubated in the presence or absence of iDrk1 25 µg/mL for 24 h at 37 ◦C. After
the interaction, each well was washed with sterile PBS (pH 7.2), coverslips were stained
with hematology dyes (Newprov, Paraná, Brazil) and the supernatant was recovered for
cytokine assay. The phagocytic index was determined from the protocol established by
Popi et al. [36]. After 48 h, wells intended to quantify colony-forming units (CFU) were
washed with 1 mL of ice-cold sterile ultrapure water and vigorously homogenized. The
supernatant was plated in BHI medium supplemented with 10% FBS, and incubated for
seven days at 37 ◦C. After growth, colony-forming units were counted. This experiment
was carried out in biological triplicate.

The phagocytosis assay was also assessed by flow cytometry. Samples were prepared
as described above. Prior to interaction, yeasts were labeled with CFSE (CellTrace™ CFSE
Cell Proliferation—Thermo Fisher). For each 1 × 107 Pb18 yeasts cells, 3 µL of CFSE
(3 µg/µL) were added, with final volume of 500 µL of PBS (pH 7.2) and 0.5% BSA. Yeasts
were incubated for 10 min at 37 ◦C, then centrifuged at 3000× g for 5 min and washed
three times with PBS (pH 7.2). After 24 h, the samples were washed and the cells were
detached from the wells using a cell scraper and homogenized in 500 µL of PBS (pH 7.2).
Data acquisition was immediately performed in a flow cytometer (BD FACSCaliburTM,
Becton Dickinson) using the FL-1 detection channel. After the first acquisition, 8 µL of
Trypan Blue 0.4% was added to each sample to quench the signal of yeasts that could be
adhered to the cell surface instead of internalized and again, the data was acquired. A
total of 10,000 events were counted for each sample and the data were analyzed using the
FlowJo software version 10.6.2 (FlowJo, LLC, FlowJo™, Ashland, OR, USA) [37].

2.11. Cytokines Determination

Supernatants from the phagocytosis assay were collected. The cytokines TNFα and
IL12p70 were measured using the DuoSet ELISA kits (R&D Systems, Mineápolis, MN,
EUA). The assay was performed in 96-well EIA/RIA plates according to the manufacturer’s
specifications with modifications. First, plates were coated with 50 µL of capture antibody
and incubated at room temperature for 16 h. Wells were blocked with 200 µL of diluent
solution (1% BSA in PBS pH 7.2) and incubated at room temperature for 1 h. Then, 50 µL
of culture supernatant were added, in triplicate, and 50 µL of the cytokine standard to
perform the standard curve. Plates were then incubated for 2 h at room temperature. Next,
50 µL of Streptavidin-HRP solution (provided in the kit) were added to each well and the
plate was incubated for 20 min protected from direct light. Finally, Tetramethylbenzidine
(TBM) substrate was added and the plates were incubated for 20 min at room temperature,
protected from light. At the end of the incubation, 50 µL of stop solution (2N H2SO4) was
added. Between each incubation step, the wells were washed three times with 200 µL of
wash buffer (0.05% Tween-20 in PBS pH 7.2). Absorbance was read at 430 nm (BioTek—
Synergy HT).

2.12. Statistical Analysis

The data contained in this work were validated with the reproducibility of at least
three independent experiments. For comparison analysis, a Student’s t-test and significance
analysis were performed, as were the one-way variance (ANOVA), followed by Tukey’s
test. Differences were considered significant when p < 0.05.

3. Results
3.1. Susceptibility of P. brasiliensis to Drk1 Pharmacological Inhibitors

Studies analysing the role of Drk1 in fungi [17,20] demonstrated that the use of
specific inhibitors of group III histidine kinases (iprodione or fludioxonil) are efficient in
promoting biological responses. Fludioxonil is a product derived from pyrrolnitrine, a
compound isolated from Pseudomonas pyrrocinia [38]. The use of this inhibitor is already
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well established in studies with pathogenic fungi [17,39–42]. Initially, a susceptibility
test was assessed with the Pb18 isolate. For this purpose, the yeasts were incubated for
24 h with different concentrations (100 to 6.25 µg/mL) of iDrk1 (fludioxonil) and then
inoculated in mYPD medium. After 7 days of incubation, it was observed that there was
no reduction in fungal viability at the concentrations tested (Figure 1A). Thus, based on
the literature data [17], which demonstrated that a concentration of 25 µg/mL was able to
inhibit the activity of Drk1 in Blastomyces dermatitidis, this concentration was established
for the following experiments (Figure 1A).
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3.2. Role of PbDrk1 in P. brasiliensis Cell Wall Maintenance

The transition from mycelium to yeast triggers the cell wall morphogenesis machinery,
which involves synthesizing several cell wall sugars and proteins critical to survival during
infection and evasion of the immune system [43]. In Penicillium marneffei pathogenic
fungus, the role of DRK1 is essential for stress adaptation, hyphal morphogenesis, and
cell wall integrity [44]. Previously, we showed PbDRK1 transcription to be phase-specific
for the yeast form and demonstrated that PbDrk1 participates in dimorphic switching in
P. brasiliensis when iprodione (another Drk1 inhibitor) is used [20]. To confirm the action
of fludioxonil (iDrk1) in the P. brasiliensis yeast-mycelium switch, a dimorphic transition
assay was performed. Initially, the fungus was cultivated in the mycelial form at 25 ◦C
and then it was incubated at 37 ◦C in the presence or absence of iDrk1. The dimorphic
transition was then followed every 24 h under an optical microscope. After 24 h at 37 ◦C,
it was possible to observe the formation of yeasts in the distal portion of the hyphae in
the control group, and at 96 h, there was a predominance of yeasts. In the group treated
with iDrk1, at 96 h, there was a predominance of hyphae. Thus, the addition of fludioxonil
also impairs the fungus’s ability to make the complete transition from mycelium to yeast
(Figure 1B).

In addition to the already known mechanism involving the dimorphic transition [17,18,20,45],
it was observed that the strain deleted for Drk1 presents with sensitivity for conidia germi-
nation [44]. Based on this evidence, Pb18 yeasts were treated with iDrk1 and inoculated in
YPDmod medium containing cell wall stressing agents such as Congo red (CR), Calcofluor
White (CFW), and sodium chloride (Figure 2A). CR and CFW dyes are classically used in
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studies involving the synthesis and organization of fungal cell wall [46]. Both molecules
have two groups of sulfonic acids that exert antifungal activity [47]. The action of CFW
and CR occurs through binding to nascent chitin chains, preventing the access of enzymes
that promote the binding of chitin with β-1-3-glucan and β-1-6-glucan chains. As a result,
the cell wall becomes weakened, which can compromise its viability [47]. Sodium chloride
promotes osmotic stress and changes the structure of the cell wall [48]. After seven days of
incubation, it was observed that, under all conditions, previous exposure to iDrk1 induced
a fairly dramatic viability reduction, especially under osmotic stress (Figure 2A). Previous
data from our group [20] showed an increase in the number of PbDRK1 transcripts when
the fungus is subjected to osmotic stress. The data show that the inhibition of Drk1 results
in an increased sensitivity to cell wall stressors and to osmotic stress.

3.3. Modulation of Cell Wall Gene Expression in P. brasiliensis

Previous data demonstrated that PbDRK1 is mainly expressed in the yeast phase [20].
However, the associated pathways remain poorly understood. Therefore, to investigate
the possible targets regulated by PbDRK1, Pb18 yeasts were incubated in the absence or
presence of iDrk1 for 24 h. Then, the RNA extraction protocol was applied, followed by a
cDNA synthesis reaction. Finally, RT-qPCR analysis of several genes involved in cell wall
synthesis was performed: CHT3, CHS2, CHS3, CHS4, and CHS5 (genes involved in the
synthesis and maintenance of chitins) and FKS1, KRE6, PHR2, GEL3, and AGN1 (genes
involved in glucan synthesis and maintenance).

As shown in Figure 2B, genes encoding chitin synthase enzymes CHT3, CHS2 and
CHS3 exhibited a 3.7-, 5.8- and 2.0-fold increase, respectively, in samples treated with iDrk1.
However, there were no significant changes in the CHS4 and CHS5 genes (Figure 2B). On
the other hand, the CHS4 and CHS5 genes were more highly expressed in the mycelial
phase of Pb18 [49]. Thus, these data suggest that iDrk1 may modulate the expression of
some chitin synthesis genes.

Significant increases in the transcript levels of several genes related to β-glucan
synthesis and cell wall integrity have been observed (Figure 2C). A 4-fold increase in the
FKS1 gene, which encodes a β-(1,3)-glucan synthase, was observed. The KRE6 gene showed
a 2.7-fold increase in expression levels when compared with the no-treatment control. This
gene is important in the β-(1,6)-glucan synthesis process and for molecules that are part
of the β-(1,3)-glucan net composition [13,50]. The PHR2 gene showed a 5.5-fold increase
in expression levels (Figure 2C). This gene is involved in the maintenance of the cell wall
and fungal virulence [51]. Finally, the expression of the GEL3 gene exhibited a fourfold
increase compared to the control without treatment. This gene is part of the process of
elongation of the β-(1,3)-glucan chains and cell wall integrity [52,53]. On the other hand,
the AGN1 gene, which is involved in the maintenance and synthesis of α-(1,3)-glucan
and highly expressed in the yeast phase [54], showed no difference in transcript levels
(Figure 2C). These findings support the hypothesis that PbDrk1 could regulate negatively
genes involved with the cell wall synthesis.

3.4. Modulation of the Cell Wall Components

As previously demonstrated, the inhibition of PbDrk1 was responsible for modulating
the expression of genes involved in the synthesis of important cell wall components, such
as FKS1. Associated with this, we observed a greater sensitivity of the fungus to cell wall
disturbances when treated with iDrk1. Therefore, we decided to evaluate the levels of
β-glucan, chitin and mannan in the Pb18 cell wall after treatment with iDrk1. For this
purpose, β-glucan labelling was performed using the Dectin-1-Fc probe. Next, chitin
levels were determined using the WGA (wheat germ agglutinin) marker conjugated with
FITC [55]. This lectin molecule has an excellent affinity for N-acetyl-β-D-glucosaminyl
residues and N-acetyl-β-D-glucosamine oligomers. Finally, to verify the mannan levels,
concanavalin A conjugated with FITC was used [31]. This molecule has a high affinity for
terminal residues of α-D-mannose and α-D-glucose.
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Figure 2. (A) Growth of P. brasiliensis in the presence of cell wall disrupting agents. A total of 1x106 
cells/mL were subjected to 25 µg/mL of iDrk1 and incubated for 24 h. Next, yeast cells were diluted, 
plated in solid mYPD medium containing different agents that disturb the cell wall, such as Calco-
fluor White (CFW), Congo Red and NaCl. Finally, cells were incubated in for seven days at 37 °C. 
Expression of cell wall morphogenesis related genes in P. brasiliensis. Pb18 cells were subjected to 
25 µg/mL of iDrk1 for 24 h and then total RNA extraction was performed. The related genes (B) 
synthesis of chitin, such as CHT3, CHS2, CHS3, CHS4 and CHS5 and (C) synthesis of glucans such 
as FKS, KRE6, PHR2, GEL3 and AGN1 were analyzed, where p-value ≤ 0.01 (**), p-value ≤ 0.001 (***) 
and p-value ≤ 0.0001 (****). 

  

Figure 2. (A) Growth of P. brasiliensis in the presence of cell wall disrupting agents. A total of
1 × 106 cells/mL were subjected to 25 µg/mL of iDrk1 and incubated for 24 h. Next, yeast cells were
diluted, plated in solid mYPD medium containing different agents that disturb the cell wall, such as
Calcofluor White (CFW), Congo Red and NaCl. Finally, cells were incubated in for seven days at
37 ◦C. Expression of cell wall morphogenesis related genes in P. brasiliensis. Pb18 cells were subjected
to 25 µg/mL of iDrk1 for 24 h and then total RNA extraction was performed. The related genes
(B) synthesis of chitin, such as CHT3, CHS2, CHS3, CHS4 and CHS5 and (C) synthesis of glucans
such as FKS, KRE6, PHR2, GEL3 and AGN1 were analyzed, where p-value ≤ 0.01 (**), p-value ≤ 0.001
(***) and p-value ≤ 0.0001 (****).

Yeasts were incubated for 24 h in the presence or absence of iDrk1. Then, labelling
was performed for each fluorescent marker described above. Fluorescence analyses were
obtained through flow cytometry, where 10,000 events were obtained for each sample.
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Quantification was performed using the median fluorescence intensity (MFI). Figure 3A,B
show a significant increase in β-glucan and chitin levels after 24 h of treatment with iDrk
compared to the untreated control. On the other hand, no change in mannan levels was
observed. In addition to the flow cytometry measurements, β-glucan localization was
also evaluated by confocal microscopy. Yeast labelling was performed as described in the
previous section using the Dectin-1-Fc probe and a secondary antibody anti-mouse IgG
conjugated to Alexa 488. This assay made it possible to observe an increase in labelling in
the fungus previously incubated with iDrk1 compared to the control. Most of the marking
was observed on the yeast surface (Figure 3C). Fluorescence quantification (Figure 3D) was
obtained from the corrected total fluorescence values (CTCF). These results indicate that
PbDrk inhibition increases the β-glucan levels in P. brasiliensis yeast cells.
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25 µg/mL of iDrk1 for 24 h and then labeled with fc-Dectin-1 and Alexa 488 for dosage of β-glucan, WSA conjugated with
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FITC for dosage of chitin oligomers and Concanavalin A conjugated with FITC for mannan dosage. (A) Histograms from
each cell wall component by flow cytometry, where negative control is represented as yeast that were not fluorescence
labelled. (B) Quantification through the median fluorescence intensity (MFI) where p-value ≤ 0.004 (**). Evaluation
of β-glucan exposure in P. brasiliensis cell wall after incubation with iDrk1. Cells of Pb18 were subjected to 25 µg/mL
of iDrk1 for 24 h and then labeled with fc-Dectin-1 and Alexa 488. (C) Confocal microscopy analysis. (D) Corrected
quantification of total fluorescence (CTCF) from confocal microscopy analysis where p-value ≤ 0.01 (**), p-value ≤ 0.001
(***) and p-value ≤ 0.0001 (****).

3.5. Inhibition of PbDrk1 Induces Increased Phagocytosis of P. brasiliensis and Alters Cytokine
Production by Macrophages

Fungal cell wall β-glucan is also an important pathogen-associated molecular pattern
(PAMP). To avoid the innate immune response, many fungal pathogens depend on the
synthesis of the cell wall α-glucan, which functions as a stealth molecule to mask the
β-glucans itself or links other masking structures to the cell wall [56]. As demonstrated in
the previous results, when we inhibited the PbDrk1 pathway, the Pb18 yeast underwent
changes in their cell wall composition. Under normal conditions, the main components
of the outermost layer of the Pb18 cell wall are α-glucan molecules [13,57]. Thus, we
determined whether the increase in β-glucan would make the fungus more susceptible to
recognition by cells of the immune system. To answer this question, a phagocytosis assay
was performed with J774 murine macrophages. After 24 h of interaction, the supernatant
was collected for subsequent cytokine dosage. In this assay, it was possible to observe
that fungi treated with iDrk1 had a higher phagocytic index than the untreated control
(Figure 4A). To confirm these observations, a phagocytosis assay was performed using
flow cytometry [37]. The sample treatment was performed as described above, but before
the cell-yeast interaction, the Pb18 yeasts were labelled with the intracellular dye CFSE.
This result is similar to that observed in the previous experiment. In Figure 4B, we can see
the greater signal intensity in the sample where the fungus was previously treated with
iDrk1. Furthermore, we observed a reduced number of colony-forming units (CFUs) in
the group treated with iDrk1 (Figure 4C). This dataset suggests that PbDrk1 inhibition of
P. brasiliensis may have contributed to an increase in phagocytosis and in the susceptibility
of fungal cells to macrophage elimination.

The quantification of the proinflammatory cytokines TNFα and IL-12p70 was eval-
uated by ELISA. Before the phagocytosis assay, J774 cells were primed with LPS. As a
control, the supernatant from the macrophages activated only with LPS was analysed.
In Figure 4D, we can see a significant increase in TNFα levels in the supernatant of cell
cultures incubated with P. brasiliensis yeasts previously exposed to iDrk1. The same result
was observed for the cytokine IL-12p70 (Figure 4E).

3.6. Regulation of cAMP-PKA and Glycogen Accumulation in P. brasiliensis

Perception of the environment is fundamental for fungal survival in the host. The
cyclic AMP-dependent protein kinase A pathway (cAMP-PKA) is highly conserved and is
involved in several biological processes, both in human pathogenic and phytopathogenic
fungi [58]. In addition, it also contributes to gene expression regulation and cell wall
remodeling [59]. Through stimuli external to the cell, the enzyme adenylate cyclase
converts ATP to adenosine 3′,5′-cyclic monophosphate (cAMP), an important secondary
messenger that binds to the catalytic subunit of protein kinase A (PKA). This generates
a conformational change that releases PKA catalytic subunits and activates transcription
factors and other signalling pathways involved in cell wall integrity, stress response and
virulence [58,60,61]. Thus, Pb18 yeasts treated or not with iDrk1 for 24 h were lysed, and
the protein extract was used to quantify the PKA activity and cAMP dosage. As shown
in Figure 5A, it was possible to verify a reduction in PKA activity after exposure to iDrk1.
As a positive control for the reaction, P. brasiliensis was subjected to oxidative stress with
300 mM hydrogen peroxide (H2O2) for 30 min. This condition is known to generate an
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increase in PKA activity [62]. It was also possible to observe no significant difference in the
dosage of cAMP levels between the treated and control samples (Figure 5B).
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Figure 4. Phagocytosis assay. 2.5 × 105 J774 cells (MΦ) were plated in RPMI medium supple-
mented with 10% FBS. Then the cells were primed for 30 min with LPS 100 ng/mL. In parallel,
P. brasiliensis yeasts were subjected to 25 µg/mL of iDrk1 for 24 h. The interaction was carried out
in a 2:1 ratio (yeast:macrophages) for 24 h at 37 ◦C and 5% CO2. After this period, the cells were
stained and visualized under an optical microscope to count the internalized yeasts. (A) Phagocytic
index was calculated, where p-value ≤ 0.005 (**). (B) Phagocytosis assay performed by labeling
P. brasiliensis yeasts with CFSE prior to interaction with macrophages. Fluorescence quantification
was performed by flow cytometry and relative quantification was obtained through the median
intensity (MFI) where p-value ≤ 0.005 (**). (C) CFU determination from yeasts recovered from
macrophages, where p-value ≤ 0.0001 (****). Cytokine assay from J774 cell supernatant after inter-
action with P. brasiliensis submitted or not with iDrk1. Macrophages were plated in RPMI medium
supplemented with 10% FCS. Then, cells were primed for 30 min with LPS 100 ng/mL. In parallel,
P. brasiliensis yeasts were subjected to 25 µg/mL of iDrk1 for 24 h. The interaction was carried out
in a 2:1 ratio (yeast:macrophages) for 24 h at 37 ◦C and 5% CO2. After this period, the supernatant
was collected and the cytokines (D) TNFα, (E) IL-12p70 were measured, where p-value ≤ 0.05 (*),
p-value ≤ 0.01 (**).
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The cell stress response is orchestrated by connecting several pathways that converge
to promote cell survival. As previously described, the cell wall integrity pathway also
activates responses that bind to cAMP-PKA. Activation of PKA regulates cellular functions
related to glycogen metabolism [63], and it antagonizes its intracellular accumulation [64].
Thus, Pb18 yeasts incubated in the presence or absence of iDrk1 for 24 and 48 h were
stained with iodine solution and photographed (Figure 5C). The greater the accumulation
of intracellular glycogen, the darker the sample becomes [33]. In Figure 5C, there was an
accumulation of intracellular glycogen in relation to the control. Combined with the gene
expression analysis and quantification of the cell wall components, this result suggests
that iDrk1 may modulate the cell wall component synthesis, generating a cellular response
that leads to a decrease in PKA activity. This decreased activity may lead to intracellular
glycogen accumulation [65,66].

4. Discussion

Currently, the number of antifungal substances available for the treatment of phy-
topathogens is approximately nine times greater than those available for the treatment of
mycoses in mammals [67]. In this scenario, it is important to emphasize the need for studies
that unravel the mechanisms of fungal pathogenicity. With a better understanding of these
pathways and the discovery of new targets, it will be possible to develop new drugs with
antifungal potential. Thus, this study aimed to understand better the role of a histidine
kinase (PbDrk1), an important regulator in the dimorphic switch and morphogenesis of
the cell wall of P. brasiliensis.

We evaluated pharmacological inhibitors as a strategy to elucidate the role of PbDrk1.
The inhibitors iprodione and fludioxonil (both group III histidine kinase inhibitors) are
substances widely used in agriculture to combat phytopathogens [68]. Molecular biology
and cell signalling studies have shown that these molecules act specifically on group III
histidine kinases through interactions with HAMP domains, which are present only in this
group of kinases [39,69]. In Saccharomyces cerevisiae, group III histidine kinases are absent.
When an orthologous gene to histidine kinase group III of Neurospora crassa is introduced,
S. cerevisiae becomes sensitive to pyrrolnitrine [68,70]. Other pathogenic fungi with group
III histidine kinases, such as B. dermatitidis and Candida albicans, were submitted to this
inhibitor and presented various sensitivities [17]. For Pb18 yeast cells, fludioxonil was used
at 100 µg/mL, showing no reduced cell viability. Thus, the concentration established in
the other tests at 25 µg/mL was selected since it is an intermediate concentration and was
already established in B. dermatitidis [17].

The fungal cell wall plays a fundamental role in the host-parasite interaction since
its composition can influence the immune response [13]. In Paracoccidioides spp., during
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the dimorphic transition, the cell wall morphogenesis machinery is activated to remodel
its components. In H. capsulatum and B. dermatitidis, it was shown that DRK1 acts as a
regulator of dimorphism and virulence. A study carried out in B. dermatitidis silenced the
DRK1 gene and demonstrated a blockade of the dimorphic transition from mycelium to
yeast at 37 ◦C. Furthermore, this silencing impaired the expression of BAD1 (a virulence
gene activated during transition) [11]. In H. capsulatum, Drk1 regulates genes specifically
expressed in the yeast phase, such as CBP1, YPS-3 and AGS1 [11]. In C. albicans, the
deletion of NIK1, a group III histidine kinase, makes yeast incapable of transitioning from
yeast to hyphae, consequently making it less virulent [71]. In Penicillium marneffei, the
deletion of the DRKA and SLNA genes was also essential for the dimorphic transition
during macrophage infection and conidial germination, respectively [44].

The ability of Paracoccidioides spp. to cause PCM depends on its dimorphic transition
and establishment in the host, either by the resistance and evasion of the immune response
machinery or by its ability to be a facultative intracellular parasite [8]. The use of iDrk1 (flu-
dioxonil) in P. brasiliensis cultivated in the form of mycelium prevented it from performing
the dimorphic transition efficiently, confirming previous findings [20]. A study carried out
in Penicillium marneffei showed the importance of DRK1 in cell wall morphogenesis. Strains
deleted for this gene were not able to grow in a medium supplemented with cell wall
stressors (Congo red) and osmotic stress agents (NaCl and sorbitol) [44]. In that same study,
DRK1 mutant hyphal growth and conidial germination were affected, and transmission
electron microscopy images showed significant thickening of the cell wall [44]. These
data support the results obtained in Pb18. In this work, yeasts submitted to iDrk1 and
later inoculated in culture medium supplemented with cell wall stressors had severely
impaired growth.

In Paracoccidioides spp. the cell wall chitin content represents a significant fraction of
the cell dry weight [49]. The CHT3, CHS2, and CHS3 genes showed significant increases
compared with the control that was not treated with iDrk1. In C. albicans, it was observed
that overexpression of CHT3 induces greater sensitivity to cell wall stressors, and the CHS2
gene acts as an important regulator [72,73]. In P. brasiliensis, it is known that the CHS3 gene
is mainly expressed in the yeast phase [49] and is related to cell growth [74]. These results
suggest that PbDrk1 inactivity may modulate the expression of some genes involved in
chitin synthesis, leading to cell wall instability.

In addition to chitin, one of the main elements that comprise the cell wall of
Paracoccidioides spp. are glucan molecules. As already mentioned, the predominance
of β-glucan during the mycelial phase is reverted to α-glucan in the yeast phase [2]. This
mechanism is seen as one strategy to evade the immune system. The level of α-glucan
in the cell wall can be related to the degree of virulence [14]. Among the genes analysed,
AGN1 was characterized as phase-specific in P. brasiliensis yeasts, regulating the synthesis
of α-(1,3)-glucan [54]. Our data showed that PbDrk1 does not participate in the modulation
of this gene. On the other hand, genes involved in the synthesis and maintenance of
β-(1,3)-glucan and β-(1,6)-glucan chains, such as FKS1, KRE6, PHR2, and GEL3, showed
significant increases after exposure to iDrk1. These results indicate that PbDrk1 regulates
the expression of cell wall synthesis genes directly related to the dimorphic transition. The
expression data were confirmed by evaluating the levels of β-glucan and chitin in Pb18
treated with a Drk1 inhibitor. The glucan modulation transition is essential for masking
β-glucan molecules, as the host’s immune system directly recognizes these molecules by
phagocytic cells.

In the host, the fungus is initially recognized by PRRs and PAMPs [75]. Among
the receptors that may be involved, we highlight the Dectin-1 receptor that specifically
binds to β-glucan [76]. Chitin molecules are also recognized by the immune system via
TLR-2, inducing the production of cytokines and the recruitment of phagocytic cells by the
recognition by Dectin-1 [77]. The outermost region of the P. brasiliensis cell wall comprises a
thick layer of mannan [2]. This layer is believed to protect fungal cells from immunological
recognition, hiding the main immunogenic molecules [78]. Confocal microscopy assays
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indicated an increase in β-glucan labelling. These images showed that yeasts treated with
iDrk1 showed greater fluorescence intensity when labelled with the Dectin-1 receptor.
Thus, the increase in β-glucan and increased expression and synthesis of chitin in cells
treated with iDrk1 indicate that this pathway may be related to virulence and fungal cell
wall architecture.

In parallel, the cAMP-PKA pathway also plays a role in cell wall remodeling. In
Cryptococcus neoformans, PKA is involved in the phosphorylation of components that,
when translocated to the nucleus, regulate the expression of genes involved in cell wall
integrity [59]. In fungi, this pathway is related to cell growth, differentiation, stress
response, pathogenicity, and cell wall integrity, among others [61]. In C. neoformans, it was
shown that the deletion of several genes involved in cell wall integrity led to impairment
of the cAMP-PKA pathway [79]. In C. albicans, this pathway plays a central regulator
of its morphological transition and, consequently, pathogenicity [80]. In P. lutzii, it was
reported that the specific inhibition of PKA impedes dimorphic transition [81]. Recently,
Garcia et al.; (2017) showed a new insight into the signalling pathways involved in the
regulation of cell wall integrity. Alterations of the β-1,3-glucan network in the fungal
cell wall induced the activation of the CWI pathway and in parallel inhibited the PKA
signalling [33]. Thus, when submitting Pb18 yeasts to iDrk1, we observed a reduction in
PKA activity, supporting literature data on the PKA influence on cell wall gene expression
and glycogen accumulation [33,59] and a possible correlation with the PbDrk1 pathway.

On the other hand, there was no significant difference in cAMP levels in the presence
or absence of iDrk1. Cyclic AMP is a secondary messenger whose intracellular levels are
regulated by adenylate cyclase and the phosphodiesterase enzyme balance [65]. Both are
regulated by other signalling pathways and not exclusively via PKA [82]. Thus, it is possible
to infer that PbDrk1 modulates PKA activity but does not correlate with cAMP levels. In
this case, the maintenance of cAMP levels can be regulated by other pathways, such as
calcineurin, MAP kinases, and G protein subunits [80,83]. Finally, we can infer that PbDrk1
modulates intracellular levels of intracellular glycogen via PKA. In Aspergillus fumigatus,
deletion of the PKA catalytic subunit led to an increase in intracellular glycogen levels [65].
Furthermore, in S. cerevisiae, it was found that glycogen is present in two fractions, one
of them in the cell cytosol in its soluble form and the other associated with cell wall
components, covalently linked specifically to β-(1,3)-glucan and β-(1,6)-glucan [84]. This
evidence complements the observed results of increased β-glucan exposure on the surface
of P. brasiliensis after exposure to iDrk1. Together, the results obtained thus far point to the
participation of PbDrk1 in the P. brasiliensis cell wall modulation.

During the immune response in a fungal infection, the action of pro- and anti-
inflammatory cytokines is essential to determine disease progression and/or pathogen
clearance [85]. Host resistance to infection by Paracoccidioides spp. is associated with
a Th1 response, which induces macrophage activation and actively controls fungal dis-
semination [86]. The individual’s susceptibility to the disease is associated with a Th2
response [87]. It is known that the participation of the Dectin-1 receptor together with
TLR in the recognition pathway of Paracoccidioides spp. triggers the production of several
proinflammatory cytokines [88], such as TNFα. This molecule is produced by cells involved
in the immune system, including activated macrophages and regulatory T cells, acting as
central mediators in inflammation and the regulation of the immune response [89]. It is
possible to observe the increased production of this cytokine by macrophages that phago-
cytosed yeasts exposed to iDrk1, indicating a more exacerbated proinflammatory response
when compared to the control. Furthermore, a significant increase in the expression of the
cytokine IL12p70 was also observed, produced by monocytes, macrophages, and dendritic
cells, and it is an important element in the activation of the Th1 response [90].

5. Conclusions

The data obtained during this work will contribute to a better understanding of a
regulatory pathway that has not yet been explored in this model. The PbDrk1 protein has
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already been shown to be a key element in the dimorphic transition pathway [20]. It is now
possible to state that it is a likely virulence factor in regulating cell wall genes. The activity
of PbDrk1 negatively modulates the synthesis of molecules such as chitin and β-glucans,
contributing to its masking and favouring the pathogenicity of P. brasiliensis. Histidine
kinases are proteins absent in mammals, and the inhibition of their activity makes fungal
cells susceptible to immune system cells. In other fungal models, the loss of this gene
represents a decrease in virulence. Finally, the study of PbDrk1 and associated pathways
would enable a different approach to the development of new antifungal drugs.
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