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Abstract: The planetary gearbox is at the heart of most rotating machinery. The premature failure
and subsequent downtime of a planetary gearbox not only seriously affects the reliability and
safety of the entire rotating machinery but also results in severe accidents and economic losses
in industrial applications. It is an important and challenging task to accurately detect failures
in a planetary gearbox at an early stage to ensure the safety and reliability of the mechanical
transmission system. In this paper, a novel method based on wavelet packet energy (WPE)
and modulation signal bispectrum (MSB) analysis is proposed for planetary gearbox early fault
diagnostics. First, the vibration signal is decomposed into different time-frequency subspaces using
wavelet packet decomposition (WPD). The WPE is calculated in each time-frequency subspace.
Secondly, the relatively high energy vectors are selected from a WPE matrix to obtain a reconstructed
signal. The reconstructed signal is then subjected to MSB analysis to obtain the fault characteristic
frequency for fault diagnosis of the planetary gearbox. The validity of the proposed method is
carried out through analyzing the vibration signals of the test planetary gearbox in two fault cases.
One fault is a chipped sun gear tooth and the other is an inner-race fault in the planet gear bearing.
The results show that the proposed method is feasible and effective for early fault diagnosis in
planetary gearboxes.

Keywords: Wavelet Packet Energy (WPE); Modulation Signal Bispectrum (MSB); time-frequency
subspaces; planetary gearbox

1. Introduction

Planetary gearboxes are widely used in wind turbines and other large machines and are an
important feature of mechanical transmission systems. As planetary gearboxes usually work under
heavy loading and severe environment, their failure may cause accidents and result in higher
maintenance costs [1,2]. Early diagnosis of planetary gearbox contributes to the normal operation
of mechanical equipment [3,4]. One of the most widely used methods to diagnose planetary
gearbox failure is vibration-based analysis, because it is easily measured and contains plenty of
fault information [5]. By applying advanced signal processing methods, one can extract the features
of the faulty components from the measured vibration signals [6,7]. Therefore, it is important to
investigate an effective and feasible method to accurately extract fault features from vibration signals
to detect planetary gearbox failures.
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At present, fault diagnosis methods could mainly be divided into two categories as model-based
and data-driven [8]. The model-based method requires extensive system knowledge and related
dynamics, which is difficult to implement in practically complex applications [9]. By contrast,
the data-driven method has been widely used in rotating machinery fault diagnosis because detailed
physical system dynamic knowledge is not required [10–12]. Moreover, many regular analysis
methods for fault feature extraction have been applied to planetary gearbox fault diagnosis [13–15],
such as envelope analysis (EA), maximum correlated kurtosis deconvolution (MCKD), Wigner–Viller
distribution (WVD), empirical mode decomposition (EMD), etc. Despite the above method having been
widely applied to the fault diagnosis of planetary gearboxes, all methods have limitations. For example,
EA needs to choose center frequency and bandwidth for the bandpass filter in advance [13]; MCKD is
restricted by its parameter selection, which will affect the denoising result [14]; WVD is subjected to
cross term interference [15]; and EMD is often affected by boundary effects and modes mixing [16,17].

Different from these regular analysis methods Wavelet Packet Energy (WPE) is an alternative
method formed by linear combinations of usual wavelet functions [18]. WPE can be used to reveal the
energy distribution information of the vibration signal in each time-frequency subspace and highlight
the energy concentrated subspaces. According to the failure mechanism of bearing, the energy level
of the vibration signals related to the fault will be increased and concentrated in a certain frequency
band when a fault occurs [19]. Therefore, the frequency band with high energy level in the divided
time-frequency subspaces which are decomposed by WPE is more related to the fault and can be
used to indicate the fault features. WPE has received much attention in the area of machinery fault
diagnosis [20–23]. He proposed a novel method to probe the WPE flow characteristics of vibration
signals by using the manifold learning technique [20]. Wang et al. proposed a novel method based
on WPE and manifold learning to extract the weak signature and outperform the Kurtogram-based
methods [21]. Gómez et al. calculated WPE as an effective fault feature to detect railway axle cracks,
then classify and identify fault features through artificial neural network (ANN) [22]. Zhou et al.
proposed a hybrid method that the WPE value of the first several intrinsic mode functions (IMFs)IMFs
decomposed by EMD is taken as the fault feature, and then classified and identified by support vector
machine (SVM)SVM [23]. The results of the above studies have indicated that WPE could effectively
diagnose machine failures. However, the reconstructed signal from the relatively high energy vector of
the WPE matrix still has noise and modulation components.

Recently, Modulation Signal Bispectrum (MSB) has appeared in fault diagnosis thanks to its ability
to effectively reveal modulation characteristics and suppress noise. Gu et al. explored a novel analysis
method for motor broken rotor bar diagnosis using the MSB-based motor current signal analysis
(MCSA) [24]. Zhang attested MSB-MCSA is an effective and precise method to monitor gear wear [25].
Tian demonstrated that an MSB-based method can produce more exact and robust test results for the
fault diagnosis of bearings in some scenarios [26]. However, the frequency implementation of MSB
could limit MSB noise suppression performance because of spectral smearing.

In this paper, a new analysis method based on WPE and MSB for planetary gearbox fault diagnosis
is proposed. First, the signal energy will be decomposed into different time-frequency subspaces by
WPT, forming a WPE flowing from the low layer to the high layer. Then, the energy concentrated
time-frequency subspaces are selected from WPE, and an inverse WPT is applied to the selected
bands to obtain a reconstructed signal. Finally, MSB is used to suppress the noise and demodulate
the modulation components from the reconstructed signal, and then extract the fault characteristic
frequency for the fault diagnosis of planetary gearboxes. The results indicate that the proposed
approach performs excellently in the early extraction of planetary gearbox fault characteristics.

The rest of the paper will be organized as follows. Section 2 briefly introduces the theoretical
background on the WPE feature extraction. Section 3 describes the fundamental theory of MSB and
its application on sideband estimation. Section 4 presents the process of the proposed method based
on WPE and MSB for planetary gearbox fault diagnosis. The proposed method is verified by two
planetary gearbox application cases in Section 5. The conclusions are given in Section 6.
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2. Wavelet Packet Transform and Energy Feature Extraction

Let V0,0 is a vector space of Rn, which is the node 0 of in the parent tree. The vector space could
be split into two mutually orthogonal subspaces at each level and be expressed as [27]:

Vj,k = Vj+1,2k ⊕Uj+1,2k+1 (1)

where j and k are the layer of the tree and index of the node in layer j respectively, and k = 0, . . . , 2j − 1.
The decomposition process of WPT is depicted as follows. First, the WP function Wn

j,k(t) can be
expressed as [28]:

Wn
j,k(t) = 2j/2Wn

(
2jt− k

)
(2)

where j indicates the scale, k represents the translation parameters, and n = 0, 1, . . .. When j = k = 0,
the first two wavelet packet functions Φ(t) and Ψ(t) are the scaling function and mother wavelet
function respectively, and they can be expressed as follows:

W0
0,0(t) = Φ(t) (3)

W1
0,0(t) = Ψ(t) (4)

The remaining WP functions of n = 2, 3, . . . can be defined by the following recursive relationships:

W2n(t) =
√

2 ∑
k

h(k)Wn
1,k(2t− k) (5)

W2n+1(t) =
√

2 ∑
k

g(k)Wn
1,k(2t− k) (6)

where h(k) = 1/
√

2〈ϕ(t), ϕ(2t− k)〉 is the filter coefficient of low-pass filter and g(k) =

1/
√

2〈Ψ(t), Ψ(2t− k)〉 is the filter coefficient of high-pass filter. They are orthogonal to the relationship
g(k) = (−1)kh(1− k). Here, 〈., .〉 indicates the inner product operator. The wavelet packet coefficients
Qn

j,k can be calculated through the signal x(t) and the wavelet packet functions Wn
j,k, as [29]:

Qn
j,k = 〈x, Wn

j,k(t)〉 =
∫ +∞

−∞
x(t)Wn

j,k(t)dt (7)

where Qn
j.k and k are the nth set of WP coefficients at the jth scale parameter and translation

parameter, respectively.
As a result, at the jth layer, the signal x(t) is separated into 2j packets with the order n = 1, 2, . . . , 2j.

The nodes can be indexed by (j, n) in the binary tree structure, and the tree structure of the WPT
comprises nodes with equal bandwidth for each scale parameter j. After reconstructing the coefficients
at each node layer by layer in the tree structure, a waveform feature space is obtained.

For a discrete signal x(t) with N(N = 2n0) points, the reconstructed signal of wavelet coefficients
in node can be expressed using {Rn

j (k), k = 1, 2, . . . , 2n0}. If assuming the WP node (j, n) is a container
in the area of 2n0 , the waveform featured distributed in the container can be represented by Rn

j . Then
the waveform feature (WF) space for the (j, n)th layer can be expressed as follows [21]:

WFj =



x(t) , j = 0
n=1,2,··· ,2j︷ ︸︸ ︷[

R1
j

]
2n0×1

. . .
[

Rn
j

]
2n0×1

. . .
[

R2j

j

]
2n0×1

 ∈ R2n0×2j
, j ∈ (1, J) (8)
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Put WFj from layer 0 to J, then the WF is expressed as follows:

WF =

 n=1,2,··· ,2j︷ ︸︸ ︷
[WF0]2n0×20 . . . [WFn]2n0×2n . . . [WF0]2n0×2J


T

∈ RD×2n0 (9)

where D = 20 + 21 + . . . + 2J , which is the dimension of the WF space.

3. Modulation Signal Bispectrum

For a discrete time series x(t) with corresponding discrete fourier transform X( f ), the modulation
signal bispectrum (MSB) can be expressed in the frequency domain as [24]:

BMS( f1, f2) = E〈X( f1 + f2)X( f1 − f2)X∗( f1)X∗( f1)〉 (10)

where BMS( f1, f2) is the bispectrum of signal x(t), E <> indicates the expectation operator, f1 is carrier
frequency, f2 is the modulating frequency, ( f1 + f2) and ( f1 − f2) are the higher and lower sideband
frequencies. The bispectral peak of BMS( f1, f2) can represent the modulation characteristics.

To quantify the sideband amplitude more accurately, the MSB is modified via removing the effect
of f1 through magnitude normalization. The MSB sideband estimator is defined as [26]:

BSE
MS( f1, f2) =

BMS( f1, f2)√
|BMS( f1, 0)|

(11)

where BMS( f1, 0) represents the squared power spectrum estimation at fx = 0.
In order to obtain more robust results, the estimator is improved based on the average of several

suboptimal MSB slices, and can be denoted by:

B( f2) =
1
N

N

∑
n=1

BSE
MS( f n

1 , f2) ( f2 > 0) (12)

where N indicates the whole number of selected f1 suboptimal slices, the number of which relies on
the significance of the peaks themselves.

To get suboptimal f1 slices, the BSE
MS
(

f n
1 , f2

)
is defined as the compound MSB slice B( f1), calculated

by averaging the main MSB peaks in the incremental direction of the f2:

B( f1 ) =
1

M− 1

M

∑
m=2

BSE
MS( f1,m∆ f ) (13)

where ∆ f denotes the frequency resolution in the f2 direction.

4. The Proposed Method Based on WPT and MSB

Based on the advantages of WPE and MSB, the WPE–MSB for fault diagnosis of planetary gearbox
is proposed. The scheme of the proposed method is briefly illustrated in Figure 1 and depicted
as follows:

Step 1: Carry out WPT to process the vibration signal in order to separate it into different
time-frequency subspaces.

Step 2: Calculate the WPE matrix in time-frequency subspaces.
Step 3: Select relatively high energy vectors from the WPE matrix.
Step 4: Apply an inverse WPT to the selected bands to obtain reconstructed signal.
Step 5: Calculate MSB of the reconstructed signal to extract the fault characteristic frequency.
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Figure 1. Flowchart of the proposed method.

5. Experimental Verification

5.1. Experimental Setup

The vibration signal was recorded based on the planetary gearbox test rig shown in Figure 2.
The rated torque of the test planetary gearbox was 670 Nm, and the maximum input speed was
2800 rpm with a resulting output speed of 388 rpm. The accelerometer with a sensitivity of
28.7 mV/ms−2 was mounted on the outer housing of the ring gear along the position of the test
planetary gear bearing. The collected data were sampled at 96 kHz with a resolution of 24 bits in the
measurement system as shown in Figure 3. The fault modes include sun gear chipped and planetary
gear bearing with inner-race fault, as illustrated in Figure 4a,b, respectively. The structural and
kinematical parameters of the test planetary gearbox and planetary gear bearing are listed in Tables 1
and 2.Sensors 2018, 18, x FOR PEER REVIEW  6 of 12 
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Table 1. Structural parameters and kinematical parameters of the planetary gearbox.

Gear Number of Teeth Characteristic Frequency (Hz)

Sun gear 10 24.10 fs f
Planet gears(number) 26(3) 9.77 fp f

Ring gear 62 3.89 fr f
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Table 2. Specification and characteristic frequency of the planetary gear bearing.

Bearing
Designation

Ball Numbers
d (mm)

Pitch Diameter
Dm (mm)

Ball Number
z

Contact Angle
β

12 54 7.9 0
◦

6008
fo fi fb fc

49.25 65.17 33.60 4.10

5.2. The Fault Diagnosis of the Sun Gear Chipped Tooth

The measured vibration signal under the sun gear chipped tooth fault and the corresponding
spectrum are shown in Figure 5a,b. It is difficult to find the characteristic frequency of the sun gear
chipped due to the heavy noise.
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Figure 5. The raw vibration signal of the sun gear chipped: (a) the waveform, and (b) frequency spectrum.

The proposed method is used to analyze the measured vibration signal in Figure 4a. First, the WPT
method is applied to extract fault features from the separated signals. The db 10 wavelet function is
used for 4-layers decomposition, then 16 decomposition bands are obtained [30,31] and the frequency
range of the 4-layers wavelet packet are shown in Table 3. Then the WPE matrix is calculated, and the
energy distribution proportional histogram of the vibration signal of the sun gear chipped is shown in
Figure 6. It is clear that the ratios of the energy distribution are higher at the node [4,2] and [4,3] than
other nodes. Therefore, the above two bands are selected to reconstruct a signal. Envelope analysis is
then applied to process the reconstructed signal, and the obtained normalized envelope spectrum is
show in Figure 7. The results are thus not persuasive enough. Although some fault feature frequencies
can be recognized, there are still many noise and modulation components.
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Table 3. The frequency range of 4-layer wavelet packet decomposition.

Serial Number Node Situation Frequency/Hz

1st node [4,0] 0–6000 Hz
2nd node [4,1] 6000–12,000 Hz
3rd node [4,2] 12,000–18,000 Hz
4th node [4,3] 18,000–24,000 Hz
5th node [4,4] 24,000–30,000 Hz
6th node [4,5] 30,000–36,000 Hz
7th node [4,6] 36,000–42,000 Hz
8th node [4,7] 42,000–48,000 Hz
9th node 4,8] 48,000–54,000 Hz

10th node [4,9] 54,000–60,000 Hz
11th node [4,10] 60,000–66,000 Hz
12th node [4,11] 66,000–72,000 Hz
13th node [4,12] 72,000–78,000 Hz
14th node [4,13] 78,000–84,000 Hz
15th node [4,14] 84,000–90,000 Hz
16th node [4,15] 90,000–96,000 Hz

In order to solve the above problem, MSB is then applied to suppress the noise and decompose the
modulated components. The normalized analysis results of vibration signal for the sun gear chipped
based on the proposed method are shown in Figure 8: Some peaks correspond exactly to sun gear
rotation frequency frs, sun gear characteristic frequency fs f , and the combination fs f ± frs. The result
demonstrates that the proposed method can get more effective and accurate fault features than the
envelope analysis for sun gear fault diagnosis.
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5.3. The Fault Diagnosis of the Planetary Gear Bearing

Figure 9a,b shows the waveform and spectrum of the measured vibration signal under the
condition of planetary gear bearing with inner-race fault. It is difficult to identify the fault characteristic
frequencies from the spectrum in Figure 9b. On the basis of the proposed method, the WPT is applied
to decompose the vibration signal into a group of WP nodes with a complete binary tree form. Then the
WPE matrix is calculated. The energy distribution proportional histogram of the vibration signal of
the bearing inner-race fault is shown in Figure 10.
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According to the WPE analysis results in Figure 10, ratios of the energy distribution at the
node [4,0], [4,1], [4,2] and [4,3] are selected as the eigenvalues for the bearing inner-race fault signal.
Then, the above four corresponding frequency bands are used to generate the reconstructed signal.
Envelope analysis is then applied to analyze the fault signal; the corresponding normalized envelope
spectrum is shown in Figure 11. It is obvious that the envelope analysis result does not present
the characteristic frequencies of the bearing inner-race fault effectively owing to the strong noise
interference. To deal with the problem, we took advantage of MSB to suppress noise and decompose
modulations. The normalized results of the propose method is shown in Figure 12. It can be seen
from the analysis results that the inner-race fault characteristic frequency fi and its harmonics can be
clearly identified. In conclusion, the proposed method obtains more accurate results than the envelope
analysis for the planetary gear bearing fault diagnosis.
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6. Conclusions

This paper proposes a new analysis method based on WPE and MSB for planetary gearbox fault
diagnosis. WPE reveals the energy distribution of the vibration signal in different time-frequency
subspaces for the reconstructed signal obtained. MSB is used to enhance the reconstructed signal
with relatively high energy vectors and highlight the fault features due to the effectiveness of MSB
in demodulating modulation components and removing noise. Its efficiency has been evaluated on
the experimental signals measured from planetary gearbox with sun gear chipped and planetary gear
bearing with inner race fault. The results show that the proposed method is an effective and reliable
method for early planetary gearbox faults diagnosis. However, the layers selection for the WPT and the
spectral smearing of MSB would affect the diagnosis results of the proposed method. Hence, effective
methods need to be studied to deal with the above issues in future works.
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