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Abstract: Occult hepatitis B infections (OBI) represent a reservoir of undiagnosed and untreated
hepatitis B virus (HBV), hence the need to identify mutations that lead to this phenotype. Functionally
characterizing these mutations by in vitro studies is time-consuming and expensive. To bridge this
gap, in silico approaches, which predict the effect of amino acid (aa) variants on HBV protein function,
are necessary. We developed an algorithm for determining the relevance of OBI-associated mutations
using in silico approaches. A 3 kb fragment of subgenotypes A1 and D3 from 24 chronic HBV-infected
(CHB) and 24 OBI participants was analyzed. To develop and validate the algorithm, the effects of 68
previously characterized occult-associated mutations were determined using three computational
tools: PolyPhen2, SNAP2, and PROVEAN. The percentage of deleterious mutations (with impact on
protein function) predicted were 52 (76.5%) by PolyPhen2, 55 (80.9%) by SNAP2, and 65 (95.6%) by
PROVEAN. At least two tools correctly predicted 59 (86.8%) mutations as deleterious. To identify
OBI-associated mutations exclusive to Botswana, study sequences were compared to CHB sequences
from GenBank. Of the 43 OBI-associated mutations identified, 26 (60.5%) were predicted by at least
two tools to have an impact on protein function. To our knowledge, this is the first study to use in
silico approaches to determine the impact of OBI-associated mutations, thereby identifying potential
candidates for functional analysis to facilitate mechanistic studies of the OBI phenotype.

Keywords: HBV; mutations; occult hepatitis B virus; in-silico analysis; Botswana; Hepatitis B; Africa

Genes 2018, 9, 420; doi:10.3390/genes9090420 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-3821-4592
https://orcid.org/0000-0003-2630-7513
https://orcid.org/0000-0001-6006-3765
https://orcid.org/0000-0003-2876-3811
http://www.mdpi.com/2073-4425/9/9/420?type=check_update&version=1
http://dx.doi.org/10.3390/genes9090420
http://www.mdpi.com/journal/genes


Genes 2018, 9, 420 2 of 16

1. Introduction

Occult hepatitis B infections (OBI) represent a significant reservoir of undiagnosed and untreated
hepatitis B virus (HBV) infection. OBI is described as detectable HBV deoxyribonucleic acid
(DNA) in the absence of detectable hepatitis B surface antigen (HBsAg) in the liver or serum [1,2].
OBI is characterized by very low viral loads, <200 IU/mL [2]. HBsAg negative infections with
HBV DNA levels >200 IU/mL are deemed false OBI [2]. OBI prevalence ranges from 0% to 89.5%,
although these cannot be compared directly because of differences in the sensitivity of laboratory tests
used and testing algorithms [3–9]. In Botswana, HBsAg positivity rates ranging from 3.1% to 10.6%
have been reported in Human Immunodeficiency Virus (HIV) positive individuals [10–14]. There is
sparse data on the HIV negative group, with one study reporting a HBsAg positivity of 1.1% in HIV
negative pregnant women [14]. On the other hand, OBI have been reported on 26.5% of HIV infected
participants [15] and 5.7% of HIV positive pregnant women [14]. The latter study reported 7.4% OBI
prevalence in HIV negative pregnant women [14]. The differences in prevalence might be due to
differences in the cohorts and immune status of the participants. The clinical relevance of OBI has been
demonstrated in several studies [16]. HBV from OBI can be transmitted through blood transfusions
and solid organ transplantations resulting in either chronic or OBI [17–20]. OBI can also lead to serious
clinical conditions such as hepatocellular carcinoma (HCC) and cirrhosis [21–26].

HBV, a DNA virus which belongs to the family Hepadnaviridae, replicates via an RNA
intermediate [27,28]. The reverse transcriptase enzyme has no proof-reading capabilities,
hence nucleotide misincorporation occurs during replication leading to sequence diversity [27,29].
HBV has been divided into at least nine genotypes (A-I) with a putative 10th genotype (J) [29,30].
The classification is based on nucleotide divergence of >7.5% at whole genome level [29,30].
These genotypes have been divided further into more than 35 subgenotypes based on the intragenotype
divergence of 4–8% [29,31–34]. These genotypes, and in some cases subgenotypes, display a distinct
geographic distribution, disease prognosis, and response to alpha interferon treatment [29,31,35].
Genotype recombination has been demonstrated between genotypes A/D, B/C, and C/D [36].
The circulating genotypes in Africa are A, D, and E. Similarly, genotypes A1, D3, and E have also been
reported in Botswana [12,14,37].

There are several co-infections and mechanisms that may lead to the development of OBI [38],
including coinfection with HIV [39–41] and hepatitis c virus (HCV) and multiple mutations in the HBV
genome associated with OBI [42,43]. Even though a considerable number of OBI-associated mutations
have been identified, functional studies on the consequences of these mutations are quite limited and
those conducted to date focused primarily on the surface gene [16]. These studies have demonstrated
that occult-associated mutations reduce HBV replication, increase retention of HBsAg within infected
cells, alter post-transcriptional modification of HBsAg mRNA, and decrease the diagnostic ability to
detect HBsAg [44–52]. In addition, studies of other HBV open reading frames (ORFs) have shown that
the mutations and deletions are responsible for the OBI phenotype. For example, deletions in the basal
core promoter region decrease replication and HBsAg expression [53] and may also affect the functions
of HBx in the overlapping region. In the X region, these mutations may lead to a truncated HBx,
thereby reducing the viral replication and secretion of HBsAg [54,55]. Mutations in the RT region of Pol
may also affect the S gene as there is considerable overlap between these ORFs, causing a decrease in
HBV replication competence, HBsAg secretion and antigenicity [56–58]. Several studies have identified
mutations in the RNase H that also lead to a decrease in HBV replication [16].

In vitro functional analysis is the current gold standard for determining biological functions of
proteins and their mutations. However, there are several bioinformatics tools that are used to predict
such functions from amino acids (aa) or nucleotides [59,60] in silico. These include I-TASSER [61],
SWISS MODEL [62], PSIRED [59], Phyre2 [63], and ROBETTA [64] server, which predict protein
structure. The Phyre2 tool performs mutational analysis to determine whether an aa substitution
has any impact on the biological function of the protein [63]. The Protein Variation Effect Analyzer
(PROVEAN) also predicts aa substitutions, deletions, and insertions on the biological function of
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a protein [65]. Several of these tools were utilized in previous HBV studies but only to predict
structures. I-TASSER was used to predict changes made by OBI-associated mutations on HBsAg
structure [66], ROBETTA has been used to predict the effects of aa mutations on the structure of the S
gene [67], while the MFOLD web server predicted the RNA secondary structure of a mutant OBI strain
versus the wild strain around the 5’ splice site [68]. Bioinformatics tools use different designations to
determine the impact of mutations on protein biological function. For example, PROVEAN classifies
mutations with a negative impact on protein biological function as deleterious [65]. On the other
hand, PolyPhen2 describes those with negative impact on protein function as damaging and those
with no impact as benign [69], whereas SNAP2 uses ‘effect’ or ‘neutral’ to indicate the presence or
absence of change in protein function caused by a mutation [70]. Despite their availability, these tools
are rarely used to study HBV mutations [63,65]. Most HBV studies only predict structural changes
caused by aa substitutions [66–68]. Nonetheless, a number of HBV mutational studies have been
published recently, and most report the existence of occult-associated mutations without conducting
any functional characterization either in vitro or in silico [42–44,71]. For example, a total of 235
OBI-associated mutations were reported [42] but only 7 were characterized in subsequent in vitro
analysis. Thus, there is a need to bridge the gap between HBV mutational studies and in vitro
functional studies by identifying the best possible candidates for subsequent functional analysis using
robust bioinformatics tools.

Many OBI mutations have been identified, although only very few have been functionally
characterized, and there are no data regarding the use of these bioinformatics tools to identify
OBI-associated mutations for additional functional analysis. Here, we developed an algorithm for
determining the relevance of some occult associated mutations in the OBI phenotype using an in
silico approach and tested the use of these tools in OBI-associated mutations identified in HBV strains
from Botswana.

2. Materials and Methods

2.1. Population

Nearly whole genome sequences (3 kb) of HBV isolated from 24 CHB and 24 OBI participants
were utilized for this study. The isolates were from baseline samples from two previous studies
conducted at Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana: The Botswana
National Evaluation Models of HIV Care (Bomolemo study) and The Effects of HIV and ARV Exposure
on Child Health and Neurodevelopment (Tshipidi study), which were conducted between 2009 and
2012 [15,72]. The 48 sequences included 12 subgenotype A1 and 12 subgenotype D3 samples per group
(CHB and OBI).

2.2. Determination of OBI-Associated Mutations

The sequencing of the HBV genomes was reported in detail elsewhere [73]. Briefly, nearly whole
HBV genome was successfully sequenced from 50 of 109 participants (37 CHB and 72 OBI positive)
using big dye sequencing chemistry. The nearly whole genome fragment (3 kb excluding the precore
region) was amplified by nested PCR [73]. Online databases were used to determine the genotypes;
Geno2pheno available at https://hbv.geno2pheno.org/ and Stanford HBV database available at
https://hivdb.stanford.edu/HBV/HBVseq/development/HBVseq.html. To confirm the genotypes,
phylogenetic trees were constructed utilizing a Bayesian Markov Chain Monte Carlo (MCMC) in the
Bayesian Evolutionary Analysis by Sampling Trees (BEAST) v1.8.2 program with a chain length of
100,000,000 and sampling at every 10,000th generation [74]. Simplot software version 3.5.1 was used to
check for recombination [75]. None of the sequences were identified as intergenotypic recombinants.

https://hbv.geno2pheno.org/
https://hivdb.stanford.edu/HBV/HBVseq/development/HBVseq.html
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2.3. Ethical Considerations

The study was approved by University of Botswana Institute Review Board and the Health
Research Development Committee (HRDC) at the Botswana Ministry of Health and Wellness.

2.4. In Silico Methods

Three programs were used to determine if OBI mutations have any impact on the biological
function of the protein: The Protein Variation Effect Analyzer (PROVEAN) [65], PolyPhen2 [69], and
Screening for Non-Acceptable Polymorphisms (SNAP2) [70] programs. Phyre2 was used to depict the
positions of OBI-associated mutations in the core region [63]. Briefly, PROVEAN is a bioinformatics
tool utilizing an alignment-based score to predict the functional deleterious effects of a single aa
mutation, multiple aa mutations, deletions, as well as insertions in both human and non-human
proteins [65]. Alignment scores are used to gauge sequence similarity in pairwise sequence alignments.
An alteration in the alignment score caused by a mutation corresponds to the impact of that mutation
in the function of the protein. Results are described as either deleterious (negative impact) or neutral.
The PROVEAN program process is freely available at http://PROVEAN.jcvi.org [65].

PolyPhen-2 is a method for predicting the effects of human missense mutations and is available
at http://genetics.bwh.harvard.edu/pph2/. This method uses a self-operating sequence alignment
procedure in which the selected homologs and the calibre of the multiple sequence alignment (MSA)
have a major impact on the final results. In brief, after user input, (non-synonymous single nucleotide
polymorphism (nsSNP) and protein accession or sequence) homologues are searched by BLAST+ and
aligned utilizing MAFFT, the alignment is then refined by Leon software to remove substandard parts.
The Secator algorithm administered in ClusPack software is ultimately employed to cluster the now
quality aligned sequences [69]. Results are described as ‘damaging’, ‘possibly damaging’, ‘probably
damaging’, and ‘benign’ indicating varying degrees of the negative impact and lack of impact on
protein function by the mutation.

The SNAP2 is a method which can differentiate neutral aa substitutions from those that have
an effect in both human and non-human proteins [70]. It uses aa features, predicted role, and the
structure of the protein to predict the effect of mutations [70]. However, SNAP2 can predict the effects
even without the structure and it can forgo the use of evolutionary information in its prediction.
The results span a range of −100 to +100 depicting a strongly neutral to a strongly predicted effect
of variants respectively [70]. Results are described as ‘effect’ or ‘neutral’ indicating the absence
or presence of change in molecular function caused by a mutation. SNAP2 is freely available at
http://www.rostlab.org/services/SNAP2.

2.5. Data Analysis

A total of 48 whole genome/nearly full-length sequences were aligned with their corresponding
subgenotype references from GenBank using ClustalX software version 2.1 [76]. The reference
sequences included were all HBV whole genome sequences from HBsAg positive individuals compiled
from http://hvdr.bioinf.wits.ac.za/alignments [77]. Additional information regarding the HBsAg
status of the individual from which the sequence was derived was obtained from GenBank entries
and the original publications. The 24 subgenotype A1 sequences from Botswana were aligned with
107 full-length subgenotype A1 references. The 24 subgenotype D3 sequences from Botswana were
aligned with 85 subgenotype D3 full-length reference sequences from GenBank. Sequences were then
trimmed to the same length using BioEdit version 7.2.5. Subsequently, the Babylon Translator tool [78]
was utilized to extract each protein and translate the sequences into amino acid regions corresponding
to the Pre S1, Pre S2, S, X, PreC, core, or Pol region. The HBV sequences isolated from OBI participants
were first compared with those from CHB positive participants for each respective subgenotype and
then compared to the reference sequences (references from other parts of the world followed by those
from South Africa). Mutations that were unique to HBV isolated from OBI participants without

http://PROVEAN.jcvi.org
http://genetics.bwh.harvard.edu/pph2/
http://www.rostlab.org/services/SNAP2
http://hvdr.bioinf.wits.ac.za/alignments
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appearing in any sequences from CHB participants or GenBank references from CHB were classified
as OBI-associated mutations [42].

PROVEAN, PolyPhen2, and SNAP2 were used to predict whether the OBI-associated mutations
have any impact on the biological function of the viral protein. To identify the best combination of
these tools to use for final result interpretation, 68 mutations, previously described in the literature,
that have been functionally characterized and known to have a deleterious effect in the S region of
HBV, were used [16]. These mutations were tested in silico in the same genotype background as the
one used in the respective in vitro studies. Most studies only mentioned the serotype of the genetic
background used in the functional studies. However, some serotypes like adw2 (genotypes A, B, G, I)
are linked to multiple genotypes [79]. It was important to test the mutation in the correct background
as the same mutation might have a different effect across distinct genotypes [49,80]. Depending
on the input requirements, a wild type consensus sequence and the mutations (PROVEAN and
PolyPhen2) or just a wild type consensus sequence (SNAP2) were submitted to the three bioinformatics
tools [65,69,70]. From a wild type consensus sequence, SNAP2 provides the impact of other aa in all
positions (all possible results combinations) [70]. The results of the prediction tools were compared,
and the mutation was considered as correctly predicted if noted as deleterious by at least two of the
three prediction tools. Damaging, possibly damaging, and probably damaging results from PolyPhen2
were changed to deleterious, whereas benign was changed to neutral for uniformity in reporting
results for the three tools. In SPAN2, the result ‘Effect’ was changed to deleterious also for uniformity
of results between the three in silico tools. Phyre2 was used to show positions of study mutations on C
region structure.

3. Results

The baseline demographics have been compared in detail elsewhere. There was no statistically
significant difference in the baseline samples in CD4+ T cell counts, HIV viral load, liver enzymes,
FIB4, and other clinical parameters based on HBsAg status [14,15]. The HBV viral loads were low in
the OBI group with the median of 57.4 copies per mL versus 3.1600 copies per mL in the CHB group
and 68.1% of OBI patients having HBV viral loads <116.4 copies per mL as reported elsewhere [15].

PolyPhen2 and SNAP2 were used to predict the effects of the 68 functionally characterized
mutations, located within the surface region that were known to be deleterious based on the available
literature. These tools detected 52 mutations (76.5%) as possibly or probably having a negative impact
and 55 (80.9%) as altering the molecular function of the protein, respectively. PROVEAN also predicted
52 mutations (76.5%) as deleterious at the default cut-off of −2.5 but detected 65 (95.6%) at the lowest
cut-off allowed by the assay (−1.300). When combining the three prediction tools (−2.5 cut-off for
PROVEAN), 34 mutations were predicted as having an effect by all three tools, whereas a further
22 were predicted by at least two tools. Collectively, 56 mutations (82.4%) were correctly predicted
as having an effect on protein function by at least two tools. Three mutations—sA159G, sI126S, and
sL98V—were not identified by any of the prediction tools. On the other hand, at a PROVEAN cut-off
of −1.3, 46 mutations were correctly predicted by all three tools as deleterious, while a further 13
were predicted by at least two tools. Thus, 59 (86.8%) were correctly detected (Table 1, Figure 1).
Only 1 mutation (sI126S) was predicted as neutral by all three tools. PolyPhen2 gives specificity for
each result and all values were ≥78%, whereas the average of expected accuracy for SNAP2 results
was 73%. The accuracy for PROVEAN was found to be >73% when supporting sequences used were
≥50 [65], and >50 homologues were used for all the predicted results in this study. Two additional tools
were tested but found to not be appropriate (data not shown). The ‘Sorting Tolerant From Intolerant’
(SIFT) tool was used to analyze the mutations, but it returned predictions with very low confidence,
stating that the sequences used to make the prediction ‘might not be diverse enough’. Phyre2 can
also perform mutational analysis, but it failed to analyze the HBV ORFs with the exception of the
core region.
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Table 1. Predicted effects of functionally characterized deleterious mutations of the surface region of
hepatitis B virus (HBV) from literature.

Variant Genotype PROVEAN
Prediction #

PROVEAN
Prediction *

SNAP2
Prediction PolyPhen2 References

sN146D, sC147Y, sY100C,
sG130R, sC138Y, sP142S,
sG145R, sG145E, sN146S,
sC147R, sC149Y, sD144G

A 4 4 4 4 [81,82]

sS132P, sT114R, sT115A,
sK141E A 4 4 4 [71,81]

sC121A, sC124A, sQ129H,
sC147A A 4 4 4 [81]

sP120T A 4 4 4 [81]
sP127S A 4 4 [81]
sC149A A 4 4 [81]

sC124R, sS136P, sC139R,
sT140I, sD144A, sG145R,
sG145A, sG145W, sG145I,
sG145P, sG145N, sG145D,

sK122I

B 4 4 4 4 [49] [83] [61]

sK141E, sK160N, sT123N B 4 4 4 [49,84]
sQ129R B 4 [49]
sP120T B 4 4 4 [49]
sA159G B 4 [84]

sG119R, sC124R, sC124Y,
sS136P, sC139R, sK141E,
sL21R, sT131I, sP142S

C 4 4 4 4 [49] [85] [86]

sG145R, sG145A C 4 4 4 [86]
sL95W C 4 4 4 [85]
sD144A C 4 4 4 [49]

sT140I, sP120T, sE2G C 4 4 [49] [85]
sL98V C 4 4 [85]
sD99G C 4 4 4 [87]
sQ129R C 4 [49]
sM133T C 4 4 [88]
sI126S C [49]

sT116N D 4 4 4 [66]
sP120T D 4 4 4 [80]

sR122P, sG145R D 4 4 4 [66] [85]
sT125M D 4 4 4 4 [89]

Total (Effect) 52 (76.5%) 65 (95.6%) 55(80.1%) 52 (76.5%)
Total (Neutral) 16 3 13 16

S: Surface: 4 Indicates an effect in protein function; empty cells denotes a neutral effect of the aa variant;
# cut-off = −2.5; * cut-off = −1.3.
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Figure 1. Percentage of mutations previously shown to be deleterious that were identified by the
various prediction tools.

The three prediction tools were also used to predict mutations that were functionally characterized
and found to be neutral in literature. PROVEAN predicted 18 out of 32 mutations (56.3%) to be neutral
at a cutoff of −2.5, whereas 8 (25%) were neutral at a cutoff of −1.3. PolyPhen2 and SPAN2 predicted
23 (71.9%) and 11 (34.4%) as neutral, respectively. In total, 16 (50%) and 10 (31.3%) mutations were
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predicted by at least two prediction tools as neutral at PROVEAN cut off −2.5 and −1.3. (Table 2).
The prediction scores on the neutral aa variants were low because it depends on the assays, which were
used and most of the times studies are not exhaustive.

Table 2. Predicted effects of functionally characterized neutral mutations of HBV from literature.

Variant Region Genotype PROVEAN
Prediction #

PROVEAN
Prediction * SNAP2 PolyPhen2 Reference

sM103I S A 4 4 [44]
sK122R S A [44]
tpP100S TP A 4 4 4 [45]

sP111S, sS154P, sK122P,
sK122W S B 4 4 4 4 [83,90]

sG112E, sG119E, sW165R,
sK122G, sK122L, sK122D S B 4 4 4 [83,90]

sQ129R S B 4 [90]
sI150T S B 4 4 4 [90]

sK122M, sK122H S B 4 4 4 [83]
sK122Q S B [83]

sK122T, sK122E, sK122N S B 4 4 [83]
tpQ177H TP B 4 [45]
tpR27L TP B 4 4 [45]
sC121Y S C 4 4 4 4 [87]

sR24K, sT47A, sT47K,
sI126S, sF134Y S C [85–87]

sQ101R S D 4 [66]
sS167L S D 4 4 4 [66]
sS143L S D 4 4 [66]

total 18 (56.3%) 8 (25%) 11 (34.4%) 23 (71.9%)

S: Surface; TP: Terminal protein; 4 Indicates an effect in protein function; empty cells denotes a neutral effect of the
aa variant; # cut-off = −2.5; * cut-off = −1.3.

OBI-Associated Mutations Phenotypic Results

The algorithm developed above was used to determine the impact of 43 OBI-associated mutations
from Botswana, which have been described in detail elsewhere [73]. Several of these mutations
have been characterized in vitro previously, while others have been reported but not functionally
characterized in vitro. Twenty-six were novel mutations that had never been reported nor characterized
previously. Each of the OBI associated mutations was found in only one of the OBI sequences (Table 3).
The 6 OBI-associated mutations in the S region, 2 in the PreS2 region, and 1 in the PreS1 region were
all predicted to be deleterious by at least two prediction tools. Similarly, 2 of the 7 OBI-associated
mutations in the X region, 4 out of 12 in the Pol region, and 11 out 15 mutations in the core region were
predicted as deleterious (Table 3).

Table 3. Results of predicted effects of study occult hepatitis B infection (OBI)-associated mutations on
different regions of HBV.

Variant ORF Genotype Final Result

sL97P, sT114I, sC124Y *, sN131K *, sP217L * S A1 Deleterious
sQ129H * S D3 Deleterious
PreS1S78N PreS1 D3 Deleterious

PreS2F22P, PreS2F22H PreS2 D3 Deleterious
xS11A, xV15I X A1 Neutral

xS31A, xS101P, xL116V X D3 Neutral
xP11S, xQ87L X D3 Deleterious

cS26P, cD32G, cP45S, cE46D, cR127H Core A1 Deleterious
cI59L Core A1 Neutral

cV74N, cS87N, cF97I Core D3 Neutral
cD2A, D4Y, cI3R, cE64K, cW102V, cF103V Core D3 Deleterious

tpN120Y, tpK155R Pol-TP A1 Deleterious
spS91T, spS133G Pol-Spacer A1 Neutral
rtL140I, rtA329T Pol-RT A1 Neutral

rtT225A Pol-RT A1 Deleterious
rhI81M Pol-RH A1 Neutral

spW64R, spP103S Pol-Spacer D3 Neutral
rtY257F Pol-RT D3 Neutral
rtT128I Pol-RT D3 Deleterious

*: Functionally characterized in literature and found to affect OBI phenotype. Novel OBI-associated mutations are
shown in bold. Non-bold non-asterisk means mutations reported in literature but not functionally characterized
in vitro. ORF: Open reading frame; S: surface; PreS1: Pre Surface 1, PreS2: Pre Surface 2 Pol: Polymerase,
TP: Terminal protein, RT: Reverse transcriptase, RH: RNase H.



Genes 2018, 9, 420 8 of 16

Phyre2 Results

Phyre2 was used to illustrate mutation positions within the core structure (Figures 2 and 3).
This was done to determine whether OBI-associated mutations from this study were concentrated in
certain areas in the protein structure. Core was chosen for this analysis because Phyre2 was able to
predict its structure as opposed to the other reading frames for which no structure was available or the
confidence of the prediction was too low.
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using the wild type amino acid (designated by a letter) and the number represents the position of
the mutation.
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4. Discussion

Multiple OBI-associated mutations have been identified in several studies. Powell et al.
identified 235 OBI-associated mutations in South Africa [42]. However, the functional studies
required to elucidate the effects of these mutations in the viral phenotype are both expensive and
time-consuming [91]. Identifying potential candidate mutations with possible functional relevance is
necessary to reduce the number included in in vitro studies.

In silico analyzes have been used to predict disease-causing single nucleotide variants in humans,
and their use has been extended to other organisms. For example, Dakal et al. used PROVEAN,
PolyPhen2, and SIFT to predict the functional effects of aa variants in the interleukin 8 gene [92],
whereas Desai et al. utilized the same tools to identify deleterious variants in methylenetetrahydrofolate
dehydrogenase 1 [93]. The prediction tool predicts whether the aa variant is likely to have an effect in
protein function or not [65,69,94]. However, to date this approach has not been utilized for studies of
HBV isolated from occult HBV infection.

To the best of our knowledge, this study represents the first in silico analysis of OBI-associated
mutations conducted to identify possible candidates for functional studies. Using three prediction
tools, 86.8% of aa variants that have been functionally characterized and confirmed to have an impact
in HBV surface gene function were correctly predicted by at least two of these tools. A combination of
in silico approaches has been used to develop algorithms for phenotype predictions. Ou et al. used a
combination of bioinformatics tools and achieved 94% sensitivity in identifying potential single aa
variants with functional relevance in investigating mucopolysaccharidosis type I disease [95]. In our
study, PolyPhen2 detected 76.5% of the deleterious mutations; Sadowski et al. reported 88.9% in
the categorization of aa variants in BRCA1/2 [96]. The difference may be attributable to the fact
that the latter study conducted a prediction in human genetics and these tools perform better as
they were originally designed to predict disease causing variants in humans [69]. On the other
hand, PROVEAN and SNAP2 were designed to also predict the impact of mutations in non-human
sequences [65,70]. The sI126S mutation was not detected by all three tools as deleterious even though
it has been shown to reduce extracellular HBsAg and reduce viral secretion in vitro and in vivo. [49].
These results indicate that in silico approaches can also be used to predict potential candidates
for functional analysis of OBI-associated mutations. The algorithm was also employed in neutral
mutations but did not perform as well as in deleterious mutations. This might be because it is difficult
to find functionally characterized neutral HBV mutations in the literature as some mutations might be
reported as having no effect in biological function of the protein just because certain aspects where
not tested. For example, one study reported sP120T [87] as neutral on genotype C, but it was found
to decrease HBsAg antigenicity and extracellular HBsAg by two other studies using both genotype
B and C [49,81]. sG145R and sR160G were also reported as having no impact on genotype C [87];
yet, multiple studies associate it with decreased HBsAg antigenicity, immunogenicity, extracellular
HBsAg, and viral secretion on genotypes A–C [49,50,81,83,86,97]. In fact, sG145R is the classical HBsAg
detection escape mutant.

In the current study, we report for the first time the presence of OBI-associated mutations with
potential effects on protein function in HBV isolated from Botswana. Of the 43 OBI-associated
mutations identified in this study, 26 were predicted to have an impact on protein function. Most of
the predicted deleterious OBI-associated mutations appeared in the surface and core regions. Several
mutations in the core region were located in functionally relevant regions such as the CD4+ T cell
epitopes (cD2A, cV13R, cD4Y, cE64K, and cR127H) [98].

In summary, an in silico approach has been used for the first time to predict OBI-associated
mutations that have an impact on protein function. This strategy will allow for the identification of
possible candidates for in vitro functional analysis in OBI studies. There are many OBI-associated
mutations that have been identified, and it might be expensive and time consuming to functionally
characterize them all. Some of the OBI-associated mutations reported in the literature might just be
lineage specific polymorphisms [16,31]. Some of the OBI-associated mutations from Botswana were



Genes 2018, 9, 420 10 of 16

predicted as having an impact on protein function; hence, they may account for phenotypes associated
with OBI, including undetectable HBsAg and low HBV viral loads. Some of the deleterious mutations
might be affecting protein function but not necessarily leading to the OBI phenotype.

A limitation of this study is that the prediction tools were evaluated using a limited set of
OBI-associated mutations because there are very few functionally characterized OBI-associated
mutations compared to characterized human disease-causing variants. Another limitation was that
there are few neutral OBI-associated variants because studies are not exhaustive (a mutation may be
reported as neutral because other aspects were not studied). The variant is usually regarded as having
no impact because of the limitations of the assays performed or because phenotypic systems are in
isolation hence might not detect the impact of some compensatory mutations. The other limitation
is that the tools used could only predict protein changes that may have an effect on protein function.
However, OBI can also be the result of mutations acting at the transcriptional level. Furthermore
in vitro studies have shown that mutations can work together to change the protein function and some
mutations can reverse the effects of other mutations; however, the effects of multiple mutations were
not tested in this study as only PROVEAN could analyze multiple mutations. Hence, even mutations
classified as neutral might have an impact when in combination with other mutations. Additionally,
the impact of mutations in overlapping regions like RT and S could not be analyzed. Lastly, a limited
number of prediction tools were used as some of the other tools could not give a prediction or the
confidence of the prediction was too low. Discrimination between diagnostic OBI and true OBI was
not performed because most of the OBI participants had HBV viral loads <200 IU/mL with only 6 out
of 72 having viral loads >200 IU/mL. Population sequencing was used to generate the sequences,
in cases with multiple nucleotides occurring at a frequency of 20% or above in the same position,
ambiguity codes were used to cater for the polymorphism. We cannot rule out the presence of variants
at frequencies of less than 20%, which would usually not be picked by populations sequencing.

Future studies employing more in silico mutation prediction tools to predict the impact of
OBI-associated mutations are crucial and are a necessity. The structural-based prediction tools were
unable to predict the effects of several mutations because of the lack of homology structures in the
database. Also, functional analysis studies should be performed on the OBI-associated mutations that
were predicted as having deleterious impacts on protein function in order to elucidate how they affect
protein function and contribute to the OBI phenotype.
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