
ORIGINAL PAPER

Assessment and parameter identification of simplified models
to describe the kinetics of semi-continuous biomethane production
from anaerobic digestion of green and food waste

Raymond O. Owhondah1 • Mark Walker2 • Lin Ma2 • Bill Nimmo2 •

Derek B. Ingham2
• Davide Poggio1 • Mohamed Pourkashanian2

Received: 12 February 2016 / Accepted: 18 February 2016 / Published online: 9 March 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Biochemical reactions occurring during anaer-

obic digestion have been modelled using reaction kinetic

equations such as first-order, Contois and Monod which are

then combined to form mechanistic models. This work

considers models which include between one and three

biochemical reactions to investigate if the choice of the

reaction rate equation, complexity of the model structure as

well as the inclusion of inhibition plays a key role in the

ability of the model to describe the methane production

from the semi-continuous anaerobic digestion of green

waste (GW) and food waste (FW). A parameter estimation

method was used to investigate the most important phe-

nomena influencing the biogas production process. Exper-

imental data were used to numerically estimate the model

parameters and the quality of fit was quantified. Results

obtained reveal that the model structure (i.e. number of

reactions, inhibition) has a much stronger influence on the

quality of fit compared with the choice of kinetic rate

equations. In the case of GW there was only a marginal

improvement when moving from a one to two reaction

model, and none with inclusion of inhibition or three

reactions. However, the behaviour of FW digestion was

more complex and required either a two or three reaction

model with inhibition functions for both ammonia and

volatile fatty acids. Parameter values for the best fitting

models are given for use by other authors.

Keywords Anaerobic digestion (AD) � Modelling � Food
waste (FW) � Green waste (GW) � Parameter estimation �
Parameter identification

Introduction

The increase in the urban population worldwide has led to

an increase in urban solid waste generation. The conven-

tional method of waste disposal by landfilling is not

favourable and no longer viable in many places due to lack

of suitable sites, fugitive methane emissions, and ground-

water pollution, which has led to strong legislation in some

countries. Anaerobic digestion (AD) technology offers an

alternative disposal route for organic waste with several

inherent advantages, such as energy production through

biogas (methane and carbon dioxide) and the production of

nutrient rich liquid by-products that can replace synthetic

fertilisers. This has led to the development of various

reactor designs, as well as research into optimal operating

conditions and the microorganisms involved [1].

AD is a complex degradation process consisting of a

diverse population of microorganisms converting a wide

range of long chain organic molecules into simpler com-

pounds, eventually resulting in complete conversion of the

degradable carbonaceous material into methane and carbon

dioxide. From a mathematical point of view the system is

inherently non-linear in nature and easily influenced by

changes in the process parameters and operating environ-

ment. To better understand the process for the purpose of

design, optimisation and control, the IWA developed the

anaerobic digestion model no. 1 (ADM1) [2] which con-

tains 26 dynamic states, including nine microbial popula-

tions catalysing 12 biochemical reactions, the ionic balance

governing pH and the liquid–gas transfer process. The
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complexity of the model contributes to its major setback as

it makes the identification of parameters very difficult, thus

leading to structural weaknesses in the model [3, 4]. The

application of ADM1 model sometimes involves the

modification of the model structure for different types of

feedstock and to extend the model to processes that were

not included when the model was developed [3].

Over the years, several simplified models of the AD

process have being proposed with the aim of reducing the

complexity in terms of the number of parameters to be

identified and also for specific problems, including the

development of a framework for monitoring and control-

ling [5]. Other applications of these simplified models

include; the optimization of methane production [6], the

dynamic modelling of the behaviour of AD processes such

as the comparisons of different reactor combinations [7],

the simulation of dynamic behaviour of a two stage AD

process [8] and the AD of microalgae [9]. The models can

be classified in three ways; by the number of fractions that

describe the complex organic matter, by the number of

populations of microorganisms that catalyse the reactions,

or by the number of biochemical reactions taking place.

These models cannot describe many of the more complex

interactions and process occurring during AD such as the

effect of moisture content, application of leachate recir-

culation, mixing intensity, aeration, gas mixing, foaming,

changes in feedstock characteristics (physical and chemi-

cal), effect of micronutrients and shifts in the populations

of the microorganisms.

The simplest models involve a single population of

microorganisms and one biochemical reaction where the

inlet organic matter, described by a single state variable is

converted directly to methane [10, 11]. The shortfall of

these simple dynamic models is that they can only, at best,

capture the most basic kinetic behaviours exhibited by an

AD system. However, promising results can come from

slightly more complex models involving two biochemical

reactions that represent fermentation and methanogenesis

[5–7]. Three reaction models consist of hydrolysis, acido-

genesis and methanogenesis [8, 12] or consist of two

hydrolysis stage reactions followed by the methanogenesis

reaction [9]. However, it should be noted that in almost all

cases, these models have been applied to wastewater

treatment plant and liquid substrate from various industrial

processes rather than solid waste as in this paper.

Going forward, this study is an assessment of the sim-

plified AD models in their ability to reproduce the kinetics

of methane production from the digestion of solid waste.

Model structures similar to those proposed by Bernard

et al. [5] and Mairet et al. [9] were used to assess the use of

alternative kinetic equations to describe reactions rates. We

have used parameter estimation as a tool to fit the models

to a rich experimental dataset, using a number of model

structures, combinations of kinetic equations and simple

inhibition descriptions. The closeness of the fit can be used

to give an insight into the important phenomena exhibited

by the AD system as well as to assess the simplest model

required to satisfactorily describe the digestion kinetics of

complex solid wastes, such as food waste (FW) and green

waste (GW).

Moreover, the kinetic descriptions used in the previous

studies have been mainly implemented as either Contois or

first-order for the hydrolysis step and Monod and/or Hal-

dane for the acidogenesis, acetogenesis and methanogen-

esis steps of the AD process [5, 7]. However, other reaction

kinetic equations show promise in replicating the observed

process kinetics and the comparison of different kinetic

models using linear and non-linear regression techniques to

fit the experimental date from a USAB digester have been

explored [13]. Hence, in the present study, a variety of

kinetic combinations is considered including, the less

commonly used Moser and Tessier kinetics [14].

Methodology

Experimental method

Segregated household GW and FW were collected at a

local recycle centre (Todmorden, UK) and stored in the

laboratory at a temperature of 5 �C. Within 24 h, the

samples were examined and large pieces of bone, plastic,

metal, wood were removed to avoid damage to the

homogenisation equipment and reduce sampling errors

during later analysis. The samples were then homogenised

using a commercial food mincer and sampled for physio-

chemical analysis. The remainder of the biomass samples

was stored in a freezer with a temperature of around

-18 �C and thawed before feeding to the digesters.

The semi-continuous study into the production of biogas

from GW and FW was performed in two 2-l laboratory

digesters. The temperature of the digester was maintained

at 37 �C by immersion in a water bath and mixing was

provided by a vertical stirrer operating at 60 RPM for 30 s

every minute. The inoculum for the experiment was

obtained from a homogenised sample of laboratory diges-

tate from other digestion experiments, which originated

from a mesophilic digester treating primary and secondary

sludge at a wastewater treatment plant.

The two digesters were fed chemical oxygen demand

(COD) equivalent pulses of GW and FW over a period of

112 and 176 days, respectively, with a gradual increase in

organic loading until failure of the process occurred, as

shown in Fig. 1. In the case of GW, the experiment was

terminated early due to excessive foaming in the digester.

The methane production of the digesters was monitored
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continuously and samples for offline analyses were taken

intermittently during the feeding operations.

The pulsed and irregular feeding of the experimental

system is usual in AD research, especially for solid waste

and in small scale digesters in rural areas [15] and it is

applied in the present study. This approach was chosen for

two reasons; (1) the data produced is richer in kinetic

information when compared with steady organic loading

rate (OLR) experiments, and (2) the feeding profile is more

representative of small scale systems which are manually

operated and which was the focus of the larger research

programme.

Analytical methods

Measurement of the methane production for the laboratory

digesters was performed using an AMPTSII gas flowmeter

(Bioprocess Control, Lund, Sweden). In this system the

produced biogas was scrubbed into a 3 M NaOH alkaline

solution to remove the carbon dioxide and hydrogen sul-

phide, and its volume was determined using a multichannel

volumetric measurement device with a resolution of 10 ml.

Methane production was then calculated assuming a

scrubber efficiency of 98 %, taking into account the

overestimation caused from the initial flush gas content

(nitrogen), subtracting the concentration of water vapour

and reporting the volumes at STP (0 �C and 1 atm), as per

the manufacturer’s guidelines.

The total solids (TS) and volatile solids (VS) were

measured as per standard methods [16]. The concentration

of volatile fatty acids (VFA) was measured using an Agi-

lent 7890A gas chromatograph, with a DB-FFAP column

of high polarity designed for the analysis of VFA columns,

as per the manufacturer’s guidelines. Elemental analysis

was determined using an elemental analyser (Flash

EA2000, CE Instruments) equipped with a flame photo-

metric detector (Flash EA 1112 FPD, CE Instruments). The

theoretical chemical oxygen demand (CODth) was calcu-

lated from the empirical formula obtained from elemental

analysis, considering the organic matter to be fully oxidised

to carbon dioxide and water, with nitrogen being reduced

to ammonia and sulphur oxidised to sulphuric acid [17].

Model description

Three simplified models of AD have been considered in this

paper. The models included a one reaction model (1R), a two

reaction model (2R) and a three reaction model (3R) and were

based on the work of Donoso-Bravo et al. [10], Bernard et al.

[5] and Mairet et al. [9], respectively, with some minor

modifications as discussed below. It should be noted that

parameters of the model, unless calibrated as part of this

work, were maintained as per the original citations and

therefore there are some differences in units as described in

the nomenclature section and appendices. In general the

nomenclature was maintained as per Bernard et al. [5]. As

part of the model screening in this work, hydrolysis was

modelled using the first-order, Contois and Monod equations,

and methanogenesis by Monod, Haldane, Tessier and Moser

equations as described in Sect. ‘‘Kinetics of reaction’’.

Using these simplified models to describe the complex

AD process requires several assumptions;

• The AD process can be simplified by a limited number

of reactions. For the study we consider only the

hydrolysis stage and the methanogenesis stage with

the other stages in the process being incorporated into

the above reactions.

• The organic matter in the substrate can be represented

by either a single lumped fraction in the case of the 1R

and 2R models, or two fractions in the case of the 3R

model.

• Inhibition only occurs in the methanogenic stage.

• The methane produced is immediately transferred into

the gas phase without undergoing the liquid–gas transfer

process, in contrast to ADM1 which calculation of the

gas–liquid mass transfer rate and therefore includes both

the dissolved and headspace gases as dynamic states.

• The digester is completely mixed and the biomass

concentration is homogeneous.

The use of a completely mixed model (i.e. no spatial varia-

tion) is common in AD modelling even where solid substrates

are fed to the system [18–20], and in which cases there will

undoubtedly be stratificationof the solid componentswithin the

system. We used an intermittent mixing regime for technical

reasons (as recommended by the manufacturer) and observa-

tion of the experimental setup confirmed that the digester

contents were sufficiently mixed at all times.

One reaction model (1R)

The 1R model used in this paper is a generic mass balance

involving a single substrate (S1) that is converted to

methane and carbon dioxide by the action of a single

population of microorganisms (X1). The dynamic model is

fully described in the following equations:

Fig. 1 Organic loadings to the 2–l experimental digesters for both

GW and FW
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dX1

dt
¼ r1 � DX1 ð1Þ

dS1

dt
¼ k1r1 þ d S1;in � S1

� �
ð2Þ

Methane flowrate:

qm ¼ k3r1 ð3Þ

The reaction stoichiometry is given by Eq. 4.

AD reaction:

k1S ! X þ k2CO2 þ k3CH4 ð4Þ

Two reaction model (2R)

The 2R model includes a single lumped fraction of par-

ticulate organic matter (S1). The hydrolysis and acidogen-

esis/acetogenesis stages are considered together and the

particulate organic matter is converted into VFA (S2) by

the action of the hydrolytic microorganisms (X1):

Hydrolysis:

k1S1 ! X1 þ k2S1 þ k4CO2 þ k1knN ð5Þ

The methanogenic step involves the uptake of the VFA

by the action of methanogenic microbes (X2) to produce

methane:

Methanogenesis:

k3S1 ! X2 þ k5CO2 þ k6CH4 ð6Þ

The rate of methane production is directly related to the

rate of the methanogenesis reaction by the coefficient k6
(20.29 L g-1) which has been modified from the original

work to give the total methane flow rate in L day-1: the

matrix description of the dynamic model is shown in

Eqs. (7) and (8) and all the stoichiometric parameters in

Eq. (5) and (6) can be found in Bernard et al. [5].

dn
dt

¼ Kr nð Þ þ D nin � n
� �

ð7Þ

qm ¼ k6r2 nð Þ ð8Þ

where

K; r; n and D are expressed as shown in Eq. (9):

n ¼

X1

X2

S1

S2

C

N

Z

2

666666666664

3

777777777775

; r nð Þ ¼
r1 nð Þ
r2 nð Þ

� �
; K ¼

1 0

0 1

�k1 0

k2 �k3

k4 k5

knk1 0

0 0

2

666666666664

3

777777777775

;

D ¼ I6d

ð9Þ

An important modification from the original model

formulation is the inclusion of an additional dynamic

state that represents the ammonia concentration in the

digester (N). This was included to allow ammonia inhi-

bition to be implemented the model screening process

since this is an important phenomenon in AD of solid

wastes [21]. The reaction stoichiometric coefficient for

ammonia (kn) was calculated from the elemental com-

position of the waste multiplied by an estimated

degradability coefficient (0.5 and 0.7 for GW and FW,

respectively) and calculated as 1.033 and 1.842 mmol/g

VS for GW and FW, respectively. Note that in the

original model formulation, a pH variable was included

and calculated as a function of the alkalinity, carbon and

VFA state variables (Z, C and S2). However, this cal-

culated variable had no impact on any other aspect of

the model in terms of feedback inhibition and therefore

this was omitted from this implementation.

Three reaction model (3R)

The 3R model includes a fractionation of the particulate

organic matter into carbohydrates/fats (S1a) and proteins

(S1b) and the hydrolysis stage consists of two reactions,

namely hydrolysis of carbohydrate/lipid (10) and hydrol-

ysis of protein (11). Each reaction produces VFA (S2) by

the action of hydrolysis biomass (X1a and X1b):

Hydrolysis of carbohydrates/fats:

k1S1a þ k2N ! X1a þ K3S2 þ k4CO2 ð10Þ

Hydrolysis of proteins:

k5S1b ! X1b þ k6S2 þ k7N þ k8CO2 ð11Þ

The methanogenic stage involves the conversion of

VFA by the methanogenic population (X2) to methane as

shown in Eq. (12):

Methanogenesis:

k9S2 þ k10N ! X2 þ k11CH4 þ k12CO2 ð12Þ

The methane flow rate is obtained using Eq. (13):

Methane flowrate

qm ¼ k11r2 ð13Þ

It should be noted that the Eqs. (10), (11), (12) and (13)

have been adapted from [9]. As with the 2R model,

Eq. (1) describes the general dynamics of the three reac-

tions model with K; r;n and D expressed as shown in

Eq. (14):
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n ¼

X1a

X1b

X2

S1a

S1b

S2

C

N

Z

2

66666666666666664

3

77777777777777775

; r nð Þ ¼
r1a nð Þ
r1b nð Þ
r2 nð Þ

2

64

3

75;

K ¼

1 0 0

0 1 0

0 0 1

�k1 0 0

0 �k5 0

k3 k6 �k9

k4 k8 k12

�k2 k7 k10

0 0 0

2

66666666666666664

3

77777777777777775

; D ¼ I7d ð14Þ

Furthermore, the methane production coefficient for the

3R model (k11) has been modified to allow direct com-

parison with the experimental data of Sect. ‘‘Experimental

method’’ (13.44 L g-1). For the stoichiometric parameters

in Eqs. (10), (11) and (12), see Mairet et al. [9].

Kinetics of reaction

It has being reported in the literature that the first-order

kinetic and Contois models are able to best describe the

hydrolysis process [22], while the Monod kinetic equa-

tion has predominantly been used for soluble substrates

with Haldane being frequently chosen to represent the

methanogenesis reaction due to its sensitivity to VFA [5,

7]. In addition, the kinetic model for the growth of the

microbial population by Tessier and Moser [14] is con-

sidered for the methanogenesis stage in the present

investigation. Expression for biochemical conversion

rates [2, 5, 7, 14] is shown in Eqs. 15–20 and the

expressions for the ammonia and VFA inhibition factors

(IN and Ivfa), applied by the multiplication by the rate of

methanogenesis (r2), are shown in Eqs. 21–22 (modified

from Batstone et al. [2]):

First-order:

r ¼ khydS ð15Þ

Contois:

r ¼ lmax

S

ks þ S
X ð16Þ

Monod:

r ¼ lmax

S

ks þ S
X ð17Þ

Haldane:

r ¼ lmax

S

ks þ Sþ s2

ki

X ð18Þ

Moser:

r ¼ lmax

Sk

ks þ Sk
X ð19Þ

Tessier:

r ¼ lmax 1� e�
S
ks

� �
X ð20Þ

Ammonia inhibition:

IN ¼ 1
ki;N
N
þ N

ð21Þ

VFA inhibition:

Ivfa ¼
1

ki;vfa
S2

þ 1
ð22Þ

Inorganic species

The non-organic compounds, including the inorganic carbon

and nitrogen are included in the presented model. For a

detailed description of the equilibrium expression for inor-

ganic carbon, VFA and nitrogen, as well as the charge bal-

ance associated with the dissociation of the ions the reader

should refer to Bernard et al. [5] and Mairet et al. [9]. Since

the present work only considers the methane production rate

for comparison with the experimental data the CO2 pro-

duction and inorganic carbon state variable, as well as the

alkalinity have not been reported since they have no math-

ematical influence on the methane production.

Model summary

In Sects. ‘‘One reaction model (1R), Two reaction model

(2R), Three reaction model (3R), Kinetics of reaction,

Inorganic species’’, descriptions have been given for three

AD model structures (1R, 2R, and 3R), a range of the

kinetic rate equations that can be used to describe the

reaction rates and two common inhibition functions. These

model components can be combined to make a large

number of different AD system models with varying

complexity and ability to describe different phenomena.

The ability of these models to reproduce the behaviour

exhibited in the experimental results is tested to determine

their suitability for modelling GW and FW digestion.
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Modelling methodology

The equations describing the dynamic variables of each

model structure, the reaction kinetics and the inhibition

function were implemented in Simulink (Mathworks, MA,

USA) and solved numerically by employing a fourth-order

Runga-Kutta method using the stiff solver ode15 s with a

maximum step size of 0.002 days. Feeding pulses were

represented as trapezoids in the dilution rate (d) with a

duration of 0.004 days (*6 min) and height such that the

integral of the flowrate for each pulse was equal to the

volume of substrate added during each loading event as

shown in Fig. 1.

The initial condition for the simulations was obtained by

a simple parameter estimation performed on a batch

incubation of the inoculum. In this method the sum of the

concentration of particulate organic matter (S1) and

hydrolytic (X1) and methanogenic organisms (X2) was

assumed to be the measured VS of the sample

(14.4 kg m-3). The methane production from the batch

was then used to estimate the initial conditions and this

method yielded the following conditions which were used

in the semi-continuous simulations; S1 = 0.17 kg m-3,

X1 = 7.75 kg m-3 and X2 = 6.48 kg m-3. The initial

ammonia concentration of 75 mmol L-1 was based on a

measured concentration of 1.28 gNH3 L
-1 in the inoculum.

As mentioned both in Sect. ‘‘Inorganic species’’, C and Z

had no impact on the model outputs of interest and were

therefore not simulated. The descriptions of the green and

food wastes are shown for each model in Table 1 including

a justification for their selection.

Parameter estimation and parameter uncertainty

The parameter estimation technique used the non-linear

least square method as supplied with the optimisation

toolbox in Matlab (Mathworks, MA, USA). A multi-start

strategy was employed where several different initial

parameter sets were used to avoid the minimisation algo-

rithm reaching a local minimum [23]. Despite using sim-

plified models, in all cases investigated, except the 1R

model, the number of parameters prohibits the estimation

of a full parameter set. Therefore, the focus of this paper

has been on identifying and assessing the suitability of a

model by varying the parameters describing the reaction

kinetics and inhibition rather than stoichiometry.

The exclusion of stoichiometric parameters (kn, b) from
the estimation method can be justified since they should not

significantly impact on the nature of the feedstock or pro-

cess conditions. The exception to this is parameter(s) that

expresses the yield of VFA from the degradation of the

feedstock (k1 in the 2R model and b1 and b2 in the 3R

model) since, for solid wastes, this can be highly variable

due to two main factors; the concentration of non-

biodegradable substances including water, and the bio-

chemical makeup of the organic material (e.g. lignin, fats,

carbohydrates, etc.). Therefore, in the present investigation

these parameters were critical to allowing a good fit of the

model. Further, it should be noted that previous authors did

include these parameters in their identification procedure

and therefore this could be seen as a shortfall of these

works [1, 6, 8].

In summary, the parameters that were estimated were

the biomass to VFA stoichiometric parameters (k1, b1, b2),
the kinetic parameters (khyd, kx, ks, lmax, k) and the inhi-

bition parameters (ki, ki,vfa, ki,N). This means that the

parameters estimated for each model combination varied

between 2 in the simplest case (1R with the first-order

kinetics and no inhibition) and 11 in the most complex

model (3R with Contois hydrolysis, Moser methanogene-

sis, and VFA and ammonia inhibition).

Parameter sets for the mechanistic model of AD systems

are not generic and are developed for specific cases, makes

the estimation of its parameters specific for the case under

examination. The standard for the decision on which the

model best describes the physical phenomena involves

finding the optimal solution of the model parameters based

on a cost function. In this case, the cost function is given by

Eq. (23), this is simply the sum of the square between the

model and the experimental data points, and it is com-

monly used for parameter estimation studies in this field

[13, 23, 24]. Nevertheless, to measure the extent of the

deviation of the model results from observed value

obtained from experimental investigations, the relative root

Table 1 Feedstock description

in the 1–3 reaction models (*b1
and b2 are part of the parameter

estimation method)

State variable Food waste ninð Þ Green waste ninð Þ Notes

Model 1R 2R 3R 1R 2R 3R

X1,1a,1b,2 0 0 0 0 0 0 Assumed no X in substrate

S1 274 274 N/A 275 275 N/A Based on measured VS

S1a N/A N/A 440b1 N/A N/A 392b1 Based on measured VS and CODth

S1b N/A N/A 440b2 N/A N/A 392b2 Based on measured VS and CODth

S2 N/A 197.7 12.65 N/A 72.1 4.61 Based on measured VFA

N N/A 0 0 N/A 0 0 Assumed no NH3 in substrate
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mean square error (rRMSE) is implemented since this

allows comparison of the data obtained from different

experiments and it is expressed as a percentage of the time-

based mean of the measured methane flow rate (rqm,exp).

It should be noted that only the measurements for

methane flowrate are used for parameter estimation, rather

than including other offline measurements, e.g. VFA. This

choice was made because the flowmeter provided contin-

uous online measurement and therefore many thousands of

data points for use in parameter estimation whereas offline

data only provided a small number of data.

j ¼ min
Xn

i¼1

qm;exp � qm
� �2 ð23Þ

rRMSE %ð Þ ¼ 100

ffiffiffiffiffiffi
j
n

� �q

rqm;exp

ð24Þ

The standard errors associated with the parameter esti-

mation technique were calculated as the diagonal elements

of the square root of the inverse of the Hessian matrix with

respect to the cost function (Eq. 23).

Results and discussion

Experimental results

The two laboratory digesters were fed the equivalent OLR,

on a COD basis, of GW and FW, respectively, which were

characterised as presented in Table 2 including the calcu-

lation of CODth. Despite the same OLR, the behaviour of

the digesters, both in terms of the methane production rate

and the mode of failure, was strikingly different due to the

different compositions and degradability of the organic

wastes. For the GW and FW fed systems, respectively, the

average methane production over the course of the exper-

iment was 0.67 and 2.38 L day-1 and the specific methane

production was 0.114 and 0.233 L g-1 CODadded (0.176

and 0.404 L g-1 VSadded).

The aim of the experiment was to produce rich kinetic

data of the methane production rate and eventually a failure

of the system due to organic overload. However, in the case

of GW, the system failed due to excessive foaming before

there were any signs of organic stress (increased VFA,

reduced specific methane production), at about day 110 and

a maximum OLR of 5.52 g COD L-1 day-1 (experimental

average 2.90 g COD L-1 day-1). For the FW system the

organic failure of the system was observed with an increase

in the VFA concentration to 18 g COD L-1 at day 160 and

a reduction in the methane production despite continued,

albeit reduced, organic loadings. The maximum and

experimental OLR in this case were 15.03 and 5.15 g COD

L-1 day-1, respectively, and the experiment was termi-

nated after 175 days.

The methane production rate from the two systems is

shown in Fig. 2 and these data form the basis, and the sole

input, for the parameter estimation and assessment the of

model suitability. The number of data points was 4073 and

23644 for GW and FW, respectively, and it should be noted

that although data were collected by intermittent sampling

for VFA, TS and VS, these did not form input into the

parameter estimation method.

Suitability assessment of model structures, reaction

kinetics and inhibition models

The assessment criteria for the suitability of a model to

represent the experimental data were the minimum

rRMSE between the experimental data and the model with

the best fitting parameter set as found by the parameter

estimation method. For each broad model structure (1R,

2R, 3R), different reaction kinetics are shown in the

Sect. ‘‘Kinetics of reaction’’ and these were tested along

with VFA and ammonia inhibition in the cases of the 2R

and 3R models. The results of the 2R parameter estima-

tion for each of the kinetic combinations are shown in

Tables 3 and 4 for GW and FW, respectively, and the best

fit parameters for each model structure is shown in

Table 5. The simulated methane production predicted by

best fitting case of each model is plotted against excerpts

of the experimental data in Figs. 3 and 4 for GW and FW,

respectively.

1R model

Results obtained from the 1R model parameter estimation

reveals that the Moser kinetic equation was most suit-

able for describing the GW methane production with an

rRMSE of 22.9 %. Tessier, Contois, Monod and first-order

kinetic equation gave an rRMSE of 23.5, 23.6, 23.6 and

Table 2 Measured feedstock characteristics

Characteristic Unit GW FW

TS g L-1 402 301

VS g L-1 275 274

Ash % of TS 34.88 10.27

C % of TS 34.66 49.15

H % of TS 4.50 7.56

N % of TS 1.98 3.35

S % of TS 0.03 0.03

O % of TS 23.95 29.64

CODth g COD g-1 VS 1.55 1.73

VFA g COD L-1 4.61 12.65

Bioprocess Biosyst Eng (2016) 39:977–992 983

123



25.1 %, respectively. For FW the best fit was the Contois

kinetic equation with an rRMSE of 35.3 %, whereas the

rRMSE for the Moser, Tessier, Monod and first-order were

37.6, 38.1, 39.6 and 39.7 %, respectively. It is not easy to

draw a strong conclusion from this since the results are not

strongly dependent on the choice of the kinetic equation.

2R model

When the model complexity was increased by the addition

of another reaction (2R) it was found that in the case of

GW there was a slight reduction in the minimum rRMSE to

21.9 % when using the combination of first-order/Moser

kinetic for Hydrolysis and Methanogenesis, respectively.

Again the results of the parameter estimation procedure

showed low sensitivity to the choice of the reaction kinetics

suggesting that all of the kinetic rate equations could

describe equally well the phenomena exhibited in the GW

experimental data, as shown in Table 3. Furthermore no

significant improvement in model fitting was found by the

introduction of two common forms of inhibition in AD

systems, namely VFA and ammonia. We can use this to

deduce that it was unlikely that inhibition by either species

was affecting the kinetics of biomethane production, at

Fig. 2 Experimental methane production for the digestion of a GW and b FW

Table 3 rRMSE (%) between

experimental and model data for

the 3R model with combinations

of reaction kinetics and

inhibition for the AD of GW

(*Model chosen as most

suitable)

Inhibition Methanogenesis Monod Haldane Moser Tessier

None Hydrolysis First order 22.6 NA 21.9* 22.5

Contois 22.6 NA 21.9 22.7

Monod 22.6 NA 21.9 22.5

NH3 First order 22.6 NA 22.0 22.5

Contois 22.6 NA 22.0 22.5

Monod 22.5 NA 21.9 22.4

VFA First order 22.5 22.2 26.8 22.5

Contois 22.6 22.5 23.3 22.5

Monod 22.5 22.2 21.9 22.4

VFA & NH3 First order 22.5 22.3 21.9 22.5

Contois 25.8 22.6 23.6 22.5

Monod 22.5 22.3 21.9 22.5

Table 4 rRMSE (%) between

experimental and model data for

the 2R model with combinations

of reaction kinetics and

inhibition for the AD of FW

(*Model chosen as most

suitable)

Inhibition Methanogenesis Monod Haldane Moser Tessier

None Hydrolysis First order 34.9 NA 34.6 34.8

Contois 35.2 NA 37.3 35.3

Monod 38.1 NA 34.6 34.8

NH3 First order 37.0 NA 33.6 35.2

Contois 33.7 NA 36.3 33.9

Monod 36.9 NA 33.6 35.0

VFA First order 61.8 34.9 36.0 37.9

Contois 35.2 29.5 30.4 29.0

Monod 33.0 33.9 39.1 38.4

VFA and NH3 First order 72.3 64.3 37.3 31.8

Contois 27.9 27.2* 27.3 38.8

Monod 28.2 28.1 32.1 37.7
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least by a mechanism that could be replicated by the

Eqs. (21) and (22). This hypothesis can be supported, in the

case of ammonia inhibition, by the low nitrogen content

measured in the feedstock, and the low biodegradability

measured in the methane production data which together

mean that limiting ammonia conditions were unlikely in

the GW fed system. In the case of VFA inhibition, the

measured VFA concentration in the effluent from the GW

system never reached more than 0.1 g COD L-1.

The ability to describe the fermentation of ethanol by

employing the Moser kinetics has been reported in the

literature [25]. In the case of GW it was found that all of

the best fitting model combination used the Moser kinetic

equation for the methanogenic reaction. Of the kinetic

combinations producing the lowest rRMSE (21.9 %) the

first-order/Moser combination was chosen for further

analysis since it is the simplest, as the first-order kinetic has

only a single parameter, and additionally that first-order has

been traditionally used for the description of hydrolysis

organic matter [2] and this has been validated experimen-

tally [26] as well as for surface related processes [22].

When assessing the suitability of the 2R model to

reproduce the FW methane production data, it was found

that the minimised rRMSE was greatly reduced compared

with the 1R model, to 27.2 % when both ammonia and

VFA inhibition were included and the Contois/Haldane

combination was used. The selection of Contois as the best

performing hydrolysis can be attributed to the fact that it

allows the hydrolysis rate to be controlled by both the

substrate and microorganism concentration, i.e. both the

mass transfer limitation governed by available surface area,

and the growth limited condition during periods of high

Table 5 Parameter values for

GW and FW digestion for the

best fitting models with 1R, 2R

and 3R structures

Model GW FW 

1R rRMSE (%) 23.0 rRMSE 35.2 
Kine�c Moser Kine�c Contois 
Parameter Value Std. Error (%) Parameter Value Std. Error (%) 
k1 26.5 2.2 k1 11.2 0.23 
μ1,max 0.279 6.5 μ1,max  0.136 1.18 
ks2 9.87 11.3 kx1 1.40 8.12 
λ 2.11 7.2    

2R rRMSE 21.9 rRMSE 27.2 
Hydrolysis kine�c 1st order Hydrolysis kine�c Contois 
Methanogenesis kine�c Moser Methanogenesis kine�c Haldane 
Inhibi�on None Inhibi�on VFA+NH3 
Parameter Value Std. Error (%) Parameter Value Std. Error (%) 
k1 38.2 2.5 k1 15.0 0.25 
k1,hyd 1.15 15.6 μ1,max  0.851 1.21 
μ2,max 0.0176 7.9 kx1 15.3 0.73 
ks2 280 14.2 μ2,max 0.128 0.23 
λ 2.14 7.8 ks2 0.0364 1.04 
   ki 95.9 1.21 

   ki,N 138.3 0.13 
3R rRMSE 22.1 rRMSE 27.0 

Hydrolysis kine�c 1st order Hydrolysis kine�c Contois 
Methanogenesis kine�c Moser Methanogenesis kine�c Haldane 
Inhibi�on None Inhibi�on VFA+NH3 
Parameter Value Std. Error (%) Parameter Value Std. Error (%) 
β1 0.486 2.4 β1      0.588 0.01 
β2 0.0313 18.1 β2 0.315 0.03 
k1a,hyd 3.19 18.2 kx1a 6.60 0.32 
k1b,hyd 4.74 21.9 μ1a,max 0.653 0.40 
μ2,max 0.0214 2.5 μ1b,max 0.487 0.21 
ks2 4.91 23.2 kx1b 19.9 0.06 
λ 3.12 8.3 μ2,max 0.141 0.00 
   ks2 0.0624 0.32 
   ki 5.95 0.42 
   ki,N 84.2 0.00 
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feeding rates or changes in OLR [27]. This is especially

relevant since there are large changes in OLR in the FW

experiment which could have caused the first-order model

for hydrolysis to be deficient. The use of the Contois

equation for the representation of hydrolysis stage of AD

has been extensively reported in the literature [28–30]

which agree with our findings. Further, the Haldane type

kinetic model has been used extensively for modelling the

methanogenic stage of anaerobic digestion process, since it

incorporates the effects of inhibition by VFA [2, 9].

Standard errors associated with the estimated parameters

were increased compared with the 1R model, in the case of

GW, to a maximum of 15.6 % (c.f. 11.3 % for 1R) whereas

the errors for FW remained low with a maximum of

1.21 %. For GW, the increased uncertainty in the param-

eters estimated in this way could indicate several related

issues; that the dataset is not sufficiently rich such that the

parameter values can be confidently estimated, or that the

number of parameters estimated and/or model complexity

leads to no distinct solution in the case where parameters

are co-correlated with the output data (over-parameterised).

For FW, there are several factors which can explain the low

levels of uncertainty associated with the parameter values:

First the dataset is larger than for GW both in terms of

length of the experiment and in terms of number of gas

flow data points, since the biogas production from FW was

Fig. 3 Methane flowrate for digestion of green waste showing the best fitting model combinations (1R, 2R, 3R) and experimental data for

periods a 4–10, b 54–60, c 65–71 and d 103–109 days

Fig. 4 Methane flowrate for digestion of food waste showing the best fitting model combinations (1R, 2R, 3R) and experimental data for periods

a 4–10, b 65–71, c 84–90 and d 150–156 days
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higher; second the degradation kinetics are more complex.

This is the case both in terms of the characteristic shape of

the methane flowrate after feeding which indicates some

temporary inhibition of the methane production, and also in

the period of severe inhibition during the organic failure of

the system. Together these factors meant the dataset was

more rich in information, especially regarding these addi-

tional phenomena, which in turn ensured that errors asso-

ciated with the parameters remained low while the ability

of the more complex model to reproduce the experimental

data increases as shown by the reduced rRMSE.

3R model

To avoid an exhaustive screening procedure, the applica-

tion of the 3R model was limited to the best fitting kinetic

combinations and inhibition models, as found in the 2R

model study. In the case of GW, there was a minor

reduction in the quality of fit compared with the 2R model

(rRMSE = 22.1 % c.f. 21.9 %) and observation of the best

fit parameters shown in Table 5 show that the parameter

estimation algorithm found an optimum solution using only

one of the two substrate fractions. This is demonstrated by

the low value of b2 compared with b1, meaning that the

degradation of the predicted protein fraction had very little

influence on the simulated methane production. This can

also be seen in Fig. 3 where the predictions of the 2R and

3R model are almost identical showing that, using the

model structures provided, the characteristic kinetic of

methane production cannot be better represented by two

particulate fractions degrading with differing kinetic

behaviours. This is in contrast to the results of Batstone

et al. [31]. As in the case of the 2R parameter estimation,

the standard errors associated with the 3R GW case are

rather high (maximum 23.2 %) indicating that the model is

somewhat over-parameterised given the richness of the

dataset. In this case the increased uncertainty combined

with no improvement in goodness of fit indicates that the

2R or 1R model should be recommended.

In contrast to the results for GW, there was a slight

improvement of the fit when comparing 3R with 2R

(rRMSE = 27.0 % c.f. 27.2 %) for the FW data, and

additionally the improvement was associated with the

prediction of two distinct particulate fractions as shown in

the values of b1 and b2 (0.588 and 0.315). The effects of

this particulate fractionation can be seen in the methane

Fig. 4b, c where the methane flow predicted by the 3R

model shows slightly improved fit of the complex kinetic

behaviour shown in the experimental data shortly after

each feeding. This can be related back to the Contois

kinetic degradation of the two fractions which have dif-

fering saturation constants. Note that the standard errors

associated with the parameters using the FW data remain

low, with a maximum of 0.4 %, owing to the richness of

the dataset as previously discussed and the use of the 3R,

along with the 2R model can be recommended above the

1R model.

Model descriptions and qualitative fit

A detailed, but qualitative, examination of the fit between

the different models and experimental data allows assess-

ment of the phenomena that each model is able to repro-

duce and therefore some recommendations may be made.

Along with the full description of the methodology used,

the results shown in Table 5 and the discussion below will

allow other researchers to make an informed assessment of

whether the presented parameter values suit the needs of

future modelling work.

Start-up

All of the models investigated show a poor fit with the

experimental data at the start of the experiment, namely

during the period 0–15 days, as shown in Figs. 3a and 4a.

This is likely to be due to the inoculum being disturbed

during its collection, transport and processing in the labo-

ratory and also being poorly acclimatised to the chemical

makeup of the new substrate (FW or GW) since the

inoculum was originally sourced from a sewage sludge

digester. Recent studies have argued the need for adequate

monitoring and analysis of the microbial diversity for the

purpose of gaining a better understanding of the com-

plexity of the AD process since the current methods of

analysis are lacking and/or are specific to a particular set of

microorganisms [9, 32]. Generally, anaerobic microor-

ganisms, especially methanogens, require a stable temper-

ature for their continued effectiveness and a disruption of

this state destabilises their overall activity in a new envi-

ronment. Further, the contamination of the process by

oxygen ingress during processing could also contribute to

the poor model fit with the experimental data, particularly

at the beginning of the experiment, and perhaps more

importantly, during the development of a rebalancing of

the microorganism populations caused by the new substrate

composition [33]. The phenomena of temperature depen-

dence, oxygen stress and population acclimatisation are not

modelled and therefore these complex behaviours cannot

be captured, and therefore, the use of these models is not

recommended for the simulation in the initial start-up

phase of an AD system.

Green waste model fit

The model fitting during the remaining phase of the GW

experiments (Fig. 3b–d) is qualitatively better than at the
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start of the experiment presumably because the experi-

mental system was not experiencing the population shifts

associated with acclimatisation and also not under stress

for organic overload or inhibition. The differences between

the 1-3R model predictions are relatively small, but it can

be observed that the 2R and 3R model tend to fit slightly

better in two aspects; first in the initial build-up of methane

production after a feeding event, and second in the sub-

sequent decay in methane production. The former is true

because the structure of the 2R and 3R models allows the

delay in methane production due to the formation of the

intermediate volatile fatty acid species, whereas the 1R

model instantly shows methane production based on the

current particulate substrate concentration. The differences

in the decay in methane production can be seen most

clearly in the period of no feeding between 65 and 71 days

where 2R and 3R models show a more sustained methane

production. In the physical system, this phenomenon has

two components; (1) the substrate contains a very slowly

degradable fraction which continues to release soluble

matter over long periods of time and thus contributing to a

long term, albeit low, production rate of methane, and, (2)

the death of microorganisms gives the living population a

continuous (but dwindling) supply of fresh substrate.

Whilst the first of these could be captured by the 3R model

the estimation method has not identified this as an optimal

solution for GW as shown by the very low value of b2. The
latter of these phenomena cannot be captured by the 1-3R

models as formulated in this work whereas this is included

in ADM1 where the decay of the microorganism popula-

tions is recycled back to form new degradable organic

matter.

Since the methane flow data for the GW experiment did

not contain information relating to an organic overload

event (in contrast to the FW experiment), the use of these

models/parameters to predict the behaviour of a system in

these conditions is not recommended. However, it is clear

that the predominant failure mode for the GW digester was

foaming, and the 1-3R GW models continue to fit well to

the experimental data until the repeated foaming events

caused the experiment to be terminated. This shows the

inadequacy of the simplified models to predict complex

phenomena outside of their scope.

Food waste model fit

The modelled methane flow rate during the ‘acclimatised’

period for the FW experiments is shown in Fig. 4b, c, d.

This shows distinct qualitative differences between the 1-3R

models in their quality of fit to the experimental data, thus

agreeing with the quantitative assessments described in

Sect. ‘‘Suitability assessment of model structures, reaction

kinetics and inhibition models’’. The 3R and 2R models

appear to capture the organic overload condition during the

latter parts of the experiment (Fig. 4d), which corresponds to

the accumulation of VFA and inhibition by ammonia.

However, the distinction between the 3R and 2R models was

that the 3R model was better able to capture the character-

istic shape in the degradation kinetics for the period fol-

lowing a feeding event and even during the long period

without feeding during the days 65–71. This is because the

parameter estimation algorithm identified a solution that

described the FW with a two distinct particulate fractions

that behaved differently, due to their saturation constants,

directly following a feeding event, leading to better fit of the

initial methane flow peak, and additionally in the subsequent

decay in methane production. Clearly, this is closer to reality

than the single input fractions used for the 1R and 2R

models since both show characteristic exponential decay

curves in the methane production rate after a feeding event

which does not follow the experimental data.

Model validation

For model validation the goodness of fit between the

experimental data and the model output was evaluated by

the calculation of the coefficient of determination. This was

calculated using the same experimental datasets of the

methane flow used for the parameter estimation. In the case

of green waste (GW), the model showed a strong correla-

tion for all three models; r2 = 0.91, 0.92 and 0.89 for 1R,

2R and 3R, respectively. While for food waste FW;

r2 = 0.70, 0.80 and 0.70 for 1R, 2R and 3R, respectively.

While the 3R model captured some key phenomena for the

degradation of FW and showed a lower rRMSE, it did not

show such a strong correlation when checked against the

experimental data. Additionally it is interesting to note that

the 2R model predicted well the concentration of the VFA

in the system in Fig. 5. This shows a good agreement in

both the rise and fall in the VFA (S2) and this gives some

validation to the parameter set found in the 2R model for

Fig. 5 Model and experimental VFA data for AD of FW with 2R

model
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FW under organic/ammonia stress since the VFA data did

not form part of the estimation method and its closeness of

fit is purely down to the mechanistic nature of the model

and the parameters estimated from methane production.

Model fit summary

The models presented in the study have shown the ability

to represent some of the major phenomenon in AD, albeit

to variable degrees, and hence may be suitable for some

modelling applications depending on the objectives. For

GW the 1R or 2R models are more suitable when consid-

ering the quality of fit and parameter uncertainty, and

inclusion of inhibition by ammonia or VFA shows no

improvement. For the FW a more complex 2R or 3R model

is needed along with VFA and ammonia inhibition. These

main results can be related back to both the characterisa-

tion work that was presented in Table 2 and the known

degradation characteristics of the two biomass feedstock

samples used. GW contains a high fraction of non-

degradable organic matter in the form of lignocellulose and

a relatively low nitrogen content which combined with the

low degradability leads to reduced ammonia release upon

degradation compared with other feedstocks. This means

that neither VFA inhibition, associated with organic over-

load conditions, nor ammonia inhibition, associated with

elevated ammonia concentrations, should be important

phenomena in the degradation of GW in AD under normal

operating conditions, which is in agreement with the results

of this study. On the other hand FW is more degradable,

contains a mixture of both rapidly (e.g. sugars, fatty acids)

and slowly degradable components (e.g. cellulose, hemi-

cellulose) and a higher degradable nitrogenous fraction

which leads to higher concentrations of ammonia upon

degradation. The combined result is that the degradation

kinetics are more complex and that inhibition by both VFA

and ammonia are important. Again the physical model

agrees with the modelling outcomes of this study. How-

ever, the characteristics of degradation of the feedstock

cannot be predicted from the feedstock analysis given in

Table 2 alone since these only give some physical and

chemical analysis and no information is presented here

regarding the overall degradability and the associated rate

of degradation, which both have a large impact on the AD

process.

The applications of these models could be for online

monitoring and control of AD processes due to the vastly

reduced computational cost and effort relative to large

complex models [5, 9] as well as the ease of recalibrating

the dynamic state variables in real time. The models are

flexible in that new state variables can easily be

introduced based on the objectives of the modeller, e.g. if

long-term methane production (between feeding events) is

of interest then a microorganism decay mechanism could

be added. The limitations of these models have been

elucidated here and they need to be understood before

their application.

Sensitivity analysis

For AD systems, the sensitivity analysis is local in nature

and it is usually presented as the variation in the output

signal with respect to the parameters [24]. In fact the

analysis performed by Bernard et al. [5] showed that the

kinetic parameters (ks and lmax) stoichiometric yield

coefficients (k1, k2, k3, k6), and the Inhibition constant (ki)

were the most important parameters in terms of methane

production sensitivity. In fact this list was used to choose

the parameters for estimation in this study, neglecting the

stoichiometric yields beyond k1 (k2–6) as these could be

considered fixed. For the purpose of this work a local

sensitivity analysis was performed by exploring the

parameter space surrounding the ‘optimum’ parameter set

as located by the parameter estimation method (popt), thus

giving some insight into the relative importance of each

parameter at the chosen operating point. Figure 6 shows

the results obtained from the best fitting 2R models, for

both FW and GW, with the sensitivity being expressed as

the average of methane flowrate (qm) and VFA concen-

tration (S2) over the experimental period. In the case of

GW it was found that the degradation factor (k1), the

maximum uptake rate of VFA (l2,max) and the index of the

substrate concentration (k) were the most influential

parameters, while the solution was much less sensitive to

the first-order coefficient (khyd) and the half saturation (ks).

Similarly, for food waste, the parameters with the most

significant influence on the solution were the ammonia

inhibition constant (ki,N), the VFA inhibition constant (ki)

and the uptake rate of VFA (l2,max). The less sensitive

parameters include the degradation factor, the uptake rate

of the hydrolysis stage (l1,max), the Contois half saturation

constant (kx) and the half saturation constant for the VFA

degradation (ks).

Further, to verify the results of the local sensitivity

analysis, a global sensitivity analysis was performed,

focusing only on the estimated parameters, using a Monte-

Carlo method with the variation in each parameter

being ±50 % with a uniform probability distribution and

2000 sampling points. The results obtained are shown in

Table 6 and are represented by correlation coefficients

between the average methane flow and each parameter.

Upon inspection, the analysis gives a similar outcome to

Bioprocess Biosyst Eng (2016) 39:977–992 989

123



the local analysis in terms of the relative sensitivity of the

average methane flow rate to the parameter variations.

It is worth emphasising that in this paper, the model

parameter(s) representing the overall stoichiometry of the

first reaction step (k1 in 1R and 2R models, b1 and b2 in 3R

model) was included in the parameter estimation method,

and this is in contrast with some other similar work. This

can be easily justified by the outcome of the sensitivity

analyses, which shows that the model outputs have a high

dependence on these parameters. Further to this, these

parameters are largely dependent on the characteristics of

the feedstock being digested since they must describe both

the moisture content as well as the fraction of the organic

material that is degradable. This implies that they should be

considered, along with the kinetic parameters, to be feed-

stock specific.

Conclusion

The main results reveal that AD models containing up to

three biochemical reactions are able to fit experimental

methane production from solid waste samples of both GW

and FW with a minimum rRMSE of 22 and 27 % over

experimental periods of 112 and 176 days, respectively. It

was observed that the model structure, both in terms of the

number of reactions, and inhibition, plays a key role in the

ability to accurately describe the experimental data, rather

than the choice of kinetic equation to determine the reaction

rate. In the case ofGW, the results showed that either a one or

two reaction model could fit the experimental data with no

improvements from the addition of a third reaction or inhi-

bition effects. The situation with FWwas more complex and

increasing the number of reactions, aswell as the inclusion of

inhibition by VFA and ammonia improved the quality of fit.

The two reaction model was able to reproduce the elevated

levels of VFA during a period of organic overloading.
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Fig. 6 Local sensitivity

analysis of the best fit

parameters set (p_opt ±50 %)

for the simulation results of the

average methane flow (qm) and

VFA concentration (S2) over the

whole experimental period for

(a, b) GW and (c, d) FW

Table 6 Global Sensitivity analysis correlation coefficients (r2)

between parameter values and average methane flowrate for the best

fitting two reaction models for FW and GW

GW FW

Parameter r2 Parameter r2

k1 -0.76 k1 -0.40

k1,hyd 0.03 l1,max 0.04

l2,max 0.30 kx1 -0.08

ks2 -0.15 l2,max 0.60

k 0.49 ks2 0.04

ki,vfa 0.14

ki,N 0.47
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Appendix: nomenclature
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