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Abstract

Ancestral sequence reconstruction (ASR) iswidely used to formulate and test hypotheses about the sequences, functions, and
structures of ancientgenes. Ancestral sequences are usually inferred froman alignmentof extant sequences using amaximum
likelihood (ML) phylogenetic algorithm, which calculates themost likely ancestral sequence assuming a probabilisticmodel of
sequence evolution and a specific phylogeny—typically the tree with the ML. The true phylogeny is seldom known with cer-
tainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood
of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic
uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both
simplified and empirically derived conditions to compare the accuracy of ASR carried out usingML and Bayesian approaches.
We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ances-
tral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are
robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty alsomake the
ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different
inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce
accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is nei-
ther necessary nor beneficial.

Key words: ancestral state reconstruction, phylogenetic analysis, maximum likelihood, Bayesian, simulation, gene
reconstruction.
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Introduction
The properties and evolution of ancient genes and pro-
teins can seldombe directly studied because suchmolecules
are rarely preserved intact over very long periods of time.
Pauling and Zuckerkandl (1963) proposed that ancestral
molecules could one day be “resurrected” by inferring their
sequences and then synthesizing them. Decades later, the
methods of ancestral sequence reconstruction (ASR) have
emerged as important tools for examining the trajectory
of molecular sequence evolution and testing hypotheses
about the functional evolution of ancient genes (Thornton
2004; Dean and Thornton 2007; Liberles 2007). Among nu-
merous examples, ASR has been used in the last decade
to investigate the evolution of elongation factor proteins
(Gaucher et al. 2003, 2007), steroid hormone receptors
(Thornton et al. 2003; Bridgham et al. 2006; Ortlund et al.
2007), visual pigments (Chang et al. 2002; Shi andYokoyama
2004), fluorescent proteins (Ugalde et al. 2004), and alcohol
dehydrogenases (ADHs; Thomson et al. 2005).

Although the first ASR practitioners used parsimony
methods (e.g., Jermann et al. 1995), most modern studies
use maximum likelihood (ML) (Yang et al. 1995; Koshi and
Goldstein 1996; Pupko et al. 2000). ML begins with an align-
ment of extant gene sequences, a phylogeny relating those

sequences, and a statisticalmodel of evolution. For each in-
ternal node in the phylogeny and each site in the sequence,
the likelihood of each possible ancestral state—defined as
the probability of observing all the extant states given that
ancestral state, the tree, and the model—is calculated. The
ML ancestral state is the state with the highest likelihood.
Confidence in any ancestral state inference is typically ex-
pressed as its posterior probability (PP), defined as the like-
lihoodof the state (weightedby its priorprobability) divided
by the sum of the prior-weighted likelihoods for all states.

The ML approach to ancestral reconstruction assumes
that the alignment, tree, model, and model parameters are
known a priori to be correct. In practice, this assumption is
often not valid; for many real-world data sets, alternatives
to the ML tree and parameter values cannot be ruled out.
To accommodate these sources of uncertainty, Bayesian
methods have been proposed. Whereas ML assumes the
most likely estimate of the tree and model parameters,
Bayesian approaches incorporate uncertainty by summing
likelihoods over a distribution of possible trees or parameter
values, each weighted by its PP. Pagel et al. (2004) proposed
a Bayesian method for integrating topological uncertainty
into inference of ancestral states for binary and other
discrete characters. Schultz and Churchill (1999) proposed
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a Bayesian method to integrate uncertainty about the pa-
rameters of the evolutionary model into discrete character
reconstructions. For inference of ancestral DNA andprotein
sequences, Huelsenbeck and Bollback (2001) developed a
Bayesian method to integrate uncertainty about the tree
topology, branch lengths, and model parameters.

It is not known how Bayesian approaches affect the ac-
curacy of reconstructed ancestral sequences. Here, we focus
on the specific effects of one source of uncertainty—the
phylogeny. There have been a few attempts to character-
ize the robustness of reconstructed ancestral sequences
with respect to phylogenetic uncertainty in specific cases:
Gaucher et al. (2003) reconstructed ancestral elongation
factor proteins on two plausible phylogenies, and Bridgham
et al. (2006) reconstructed the ancestral corticosteroid re-
ceptor on all treeswithin the 95%confidence interval froma
Bayesian phylogenetic analysis. In both cases, the maximum
a posteriori ancestral sequences changed very little when
different phylogenies were assumed, and the functions of
the reconstructed proteins in experimental assays were also
unchanged. Huelsenbeck and Bollback (2001) used simula-
tions to show that integrating uncertainty about the phy-
logeny, branch lengths, andmodel parameters can affect the
PPs of ancestral states, but they did not study the effect of
integration on the inferred maximum a posteriori state or
the accuracy of those inferences.

To determine the causal effects of integrating over phy-
logenetic uncertainty on ASR accuracy, we implemented
a topological empirical Bayesian method for ancestral
reconstruction that is identical to theML algorithm, except
that it integrates over topologies. This approach allows us
to directly infer the effects of incorporating phylogenetic
uncertainty on ASR accuracy. We simulated and recorded
the evolution of sequences under a variety of simplified and
empirically derived conditions and inferred ancestral states
from the evolved alignments; we characterized the accu-
racy of each approach to ASR by comparing inferred ances-
tral sequences to the “true” ancestors recorded during the
simulation.

Materials and Methods
Ancestral State Reconstruction Algorithms
The ML method for ASR, also called the empirical Bayes
method (Yang et al. 1995), calculates the PP that some an-
cestral node contained state a at a sequence site of inter-
est, given the observed sequence data d , an evolutionary
modelm , a topology t̂ , and a set of branch lengths and other
model parameters θ̂; the topology andparameters are those
that maximize the likelihood over all data columns in the
alignment. The conditional likelihood of a is the probabil-
ity of observing d given a , m , t̂ , and θ̂. The prior-weighted
conditional likelihood of a is the conditional likelihood of
a multiplied by the prior probability of observing a , which
is given by πa , the equilibrium state frequency of a . The PP
of a equals the prior-weighted conditional likelihood of a
divided by the sum of the prior-weighted conditional likeli-

hoods for all possible ancestral state assignments (4 for nu-
cleotides or 20 for amino acids) (eq. 1).

P (a |d ,m , t̂ , θ̂) =
P (d |a ,m , t̂ , θ̂)πa∑

a

P (d |a ,m , t̂ , θ̂)πa
. (1)

The ML state assignment is the state with the highest prior-
weighted likelihood (andnecessarily the highest PP, as well).
The ML sequence is the string of ML states. To reconstruct
ML ancestral sequences, we used PAML v.4.1 (Yang 1997,
2007).

The topological empirical Bayes (TEB) approach to ASR
differs from ML only by integrating ancestral reconstruc-
tions over a distribution of trees (eq. 2). The TEB PP of an-
cestral state a is the weighted average of the PP of a over
all possible trees, where the weights are given by the em-
pirical Bayes PP of each tree t . The empirical Bayes PP PEB
of a tree assumes the ML estimate of branch lengths and
other model parameters θ̂t on each tree (Kolaczkowski and
Thornton 2008, 2009):

PTEB(a |d ,m) =
∑

t

P (a |d , t ,m , θ̂t )× PEB(t |d ,m , θ̂t ).

(2)
Equation (2) takes a different form from but is equivalent to
(see supplementarynote 1, SupplementaryMaterial online)
the expression used by others (Huelsenbeck and Bollback
2001; Pagel et al. 2004) for ancestral state reconstructions
integrated over topologies:

PTEB(a |d ,m) =

∑

t

P (d |a , t ,m , θ̂t )πaP (t)

∑

t

∑

a

P (d |a , t ,m , θ̂t)πaP (t)
. (3)

The ML method also has an empirical Bayesian interpreta-
tion because equation (1) calculates a PP and uses priors on
ancestral states. For simplicity, we will refer to the approach
that uses only the ML tree as the “ML method” and the ap-
proach that integrates over trees as the “TEB method.”

One issue with estimating ancestral states from a distri-
bution of trees is that every topology contains different an-
cestral nodes. We accommodate this problem by defining
an ancestral node to be reconstructed as the most recent
common ancestor of a specified set of descendants (Pagel
et al. 2004). On any rooted tree, the clade descending from
the specified ancestor will contain all members of this set;
additional sequences may also be included in that clade, de-
pending on the topology. A similar approach can be used to
describe internal nodes on unrooted trees in relation to the
split that places a specified set of terminal sequences into
the smallest possible partition of the tree.

We implemented both the TEB and ML methods in our
own software called Lazarus. This package spawns, man-
ages, and then parses large batches of parallelized PAML
jobs, one for each of a set of user-specified topologies. For
each topology, branch lengths and model parameters are
optimized by ML, the ML of the tree is calculated, and the
PP of each ancestral state is calculated on that topology.

1989



Hanson-Smith et al. · doi:10.1093/molbev/msq081 MBE

FIG. 1. Four-taxon simulation conditions. (A ) We seeded randomly
generated amino acid sequences at the root of an ultrametric tree
with four terminal branches. We simulated the ancestral sequences
evolving across the branches to produce four descendant sequences
(including one outgroup descendant). Simulations were performed
under a variety of conditions by adjusting the internal branch length
r and the overall height of the descendant clade h. (B ) For each set
of replicate sequences, we estimated the ML branch lengths and cal-
culated the PP of all three possible topologies. (C ) Sequences were
also simulated using nonultrametric four-taxon trees with terminal
branch lengths drawn from the uniform interval [0.25, 0.75] and in-
ternal branch lengths from the interval [0.01, 0.1].

Lazarus then parses these results to calculate the PP of each
ancestral state integrated over topologies. Lazarus includes
a modular Python API with object classes for quickly ab-
stracting ancestral reconstruction data and is available at
http://markov.uoregon.edu/software/lazarus/.

Simulations
We compared the ancestral states reconstructed by the ML
and TEB methods on data simulated under both controlled
and empirically derived conditions. The correct evolution-
ary model was assumed for all ancestral reconstructions.

Four-Taxon Phylogenetic Uncertainty
We simulated sequence evolution on four-taxon ultramet-
ric trees of variable height and internal branch length
(fig. 1A ) and on four-taxon trees with randomly gen-
erated branch lengths. We examined ultrametric trees
because they can be described by specifying only the
total height of the tree and the lengths of the inter-
nal branches; the limited number of free parameters
allows a detailed investigation of ancestral reconstruc-
tion methods as phylogenetic signal varies. Furthermore,
ultrametric trees represent the most difficult conditions for
ASR. For a pair of terminal branches with any given sum
of lengths descending from an internal node, the ultramet-
ric case represents the greatest total loss of character infor-
mation about the ancestor; conversely, as some branches

descending from an ancestral node become longer and oth-
ers shorter, the information in the short branch has a more
determinative effect on the inferred ancestral state. In the
limit as one descendant branch length approaches zero,
the ancestral state is inferred without ambiguity or error as
the state in the sequence at the end of that branch.

On ultrametric trees, the internal branch length (labeled
“r ” in fig. 1A ) was varied from (0.01, 0.02, 0.03, 0.05, 0.1, 0.2),
and the overall height of the descendant clade (labeled “h ”
in fig. 1A ) was varied from 0.25 to 0.75 substitutions per
site in intervals of 0.125. For each combination of r and h ,
we used Seq-Gen (Rambaut and Grassly 1997) to generate
100 sets of replicate descendant amino acid sequences of
length 400 sites, using the JTT evolutionary model (Jones
et al. 1991). For the nonultrametric simulations, 1,000 four-
taxon trees were generated by randomly drawing an inter-
nal branch length from the uniformdistribution U[0.01, 0.1]
and drawing four terminal branches from the uniform dis-
tribution U[0.25, 0.75]. Seq-Gen was then used to simulate
the evolution of sequences 400 amino acids long on each
tree (fig. 1C ).

For each replicate, we used ML and TEB ASR to infer
the PP of reconstructed ancestral states in the most recent
common ancestor of taxa {A , B , C}, of {A , B}, of {A , C},
and of {B , C}. Depending on the tree, some of these ances-
tors are the same. For example, on the tree ((A , B ),C , D ),
the ancestor of {A , C} is the same node as the ancestor
of {A , B , C}. However, on tree ((A ,C ), B ,D ), the ances-
tors for {A , B ,C} and {A , C} are unique. We compared
the maximum a posteriori ancestral state from TEB andML
to each other and to the true state, which was recorded at
all nodes during the simulation. We analyzed the concor-
dance and accuracy of TEB andML ancestral states across all
replicates and in relation to the values of r and h, the state
pattern in descendant taxa, and whether the set of taxa in
the clade descending from the ancestral node of interest in
the ML tree is identical to that set in the true tree. With re-
spect to the last criterion, the membership may be correct,
a spurious taxonmay be included as a descendant (mem+),
or a taxon may be incorrectly excluded from the clade
(mem−).

Empirically Derived Phylogenetic Uncertainty
We also compared the accuracy of ML and TEB recon-
structions inferred from sequences simulated on empiri-
cally derived trees. We used phylogenies inferred from the
extant sequences of ADH proteins (Thomson et al. 2005),
steroid hormone receptors (Bridgham et al. 2006), green
fluorescent–like proteins (GFPs) (Kelmanson and Matz
2003; Ugalde et al. 2004), and Tu family elongation factor
(EF-Tu) proteins (Gaucher et al. 2003). For each gene fam-
ily, the phylogeny andbranch lengths were calculated byML
using Phyml version 2.4.4 (Guindon and Gascuel 2003). The
PPs of phylogenies in the 95% credible set (1,195 trees for
ADH, 3,335 for steroid hormone receptors, 655 for GFP, and
544 for EF-Tu) were inferred using empirical Bayes Markov
chain Monte Carlo, which integrates over topologies, each
of which is assigned its ML branch lengths (Kolaczkowski
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FIG. 2. Empirical phylogenies used for simulations. Internal nodes are labeled with their empirical Bayes PP; circles indicate nodes at which ancestral
sequences were reconstructed. Scale bars indicate mean per-site substitution probability. (A ) Steroid hormone receptors (Bridgham et al. 2006).
The tree and branch lengths were inferred from empirical protein sequences using the JTT + G model. (B ) ADHs (Thomson et al. 2005). The tree
and branch lengths were inferred from empirical DNA sequences using GTR + G. (C ) GFPs (Kelmanson and Matz 2003). The tree and branch
lengths were inferred from empirical DNA sequences using GTR + G. (D ) EF-Tu (Gaucher et al. 2003). The tree and branch lengths were inferred
from empirical protein sequences using JTT + G.

andThornton 2007). TheML phylogenies for ADH, GFP, and
EF-Tu (fig. 2) differ only slightly from the originalML phylo-
genies shown in those data sets’ correspondingpublications.
On each ML phylogeny, 100 replicates of protein sequences
400 amino acids longwere then evolved by simulation, using
the JTT model of evolution, to yield terminal descendant

sequences. For each replicate, ancestral sequences at all in-
ternal nodes were then reconstructed using ML and TEB.
We examined only the uncertain nodes (with Bayesian PP
less than 1.0) and their immediate neighboring nodes; nodes
with PP = 1.0 have no uncertainty over which to integrate,
so the TEB andML reconstructions are identical.
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FIG. 3. Integrating over phylogenetic uncertainty rarely changes ASRs. (A ) Proportion of sites simulated under a variety of conditions at which
ML and TEB methods inferred the same or different states. (B–D ) Details of similarity between ML and TEB reconstructions for the ultrametric
four-taxon simulations. (B ) Proportion of sites at which ML and TEB infer identical states is shown in terms of descendant state patterns and
types of phylogenetic error. Each row presents results for sites in which the descendant taxa A, B, and C have the specified state pattern (where
pattern xxx corresponds to AAA, CCC, GGG, or TTT and xxy corresponds to AAC, AAG, AAT, . . . , or TTG). Columns indicate whether the set of
taxa descending from the reconstructed node in theML tree corresponds to those in the true tree: “clade ok” means the descendant membership
is correct, “mem.+” means the ML descendant set spuriously includes an extra taxon, and “mem.−” means the ML descendant set incorrectly
excludes a taxon. (C ) Similarity between ML and TEB reconstructions is plotted against the height of the descendant clade (“h ” in fig. 1). (D )
Similarity between ML and TEB reconstructions is shown versus the length of the internal branch (“r” in fig. 1).

State Pattern Analysis
To illustrate how integrating over topologies affects ances-
tral reconstruction for different data patterns under specific
conditions, we performed ASR using ML and TEB and cal-
culated the probability of each ancestral state for each of
the possible state patterns of four nucleotides. We simu-
latedDNAsequences 50,000nucleotides longusing the JC69
model on four-taxon ultrametric trees with high phyloge-
netic uncertainty (h = 0.3, r = 0.01) or virtually no phylo-
genetic uncertainty (h = 0.3, r = 0.2). We then examined
the PP of each ancestral state inferred usingML and TEB for
each of the possible state patterns for four-state data. Char-
acter state patterns are indicated using variables represent-
ing nucleotides of the same type: for example, pattern xyxy
for the four-taxon case stands for the realizations ACAC,
AGAG, ATAT, CACA, . . . , TGTG at that site in the four leaves,
respectively.

Statistical Analysis
The correspondence between PPs and the frequency of
correct inferences for TEB and ML were analyzed by bin-
ning inferences according to their PPs and calculating the
mean PP(x ) and the fraction of correct reconstructions (y)
in each bin. The fit of the resulting points to the func-
tion y = x was evaluated using a chi-square distribution
with degrees of freedom equal to the number of bins. The
significance of the difference between ML and TEB in fit
to the function y = x was assessed by evaluating the ra-

tio of the chi-square statistics for the two methods us-
ing an F -distribution with degrees of freedom equal to the
number of bins. To compare the differences in mean ac-
curacy of the ML and TEB reconstructions, we conducted
a paired two-sample t -test against the null hypothesis
of no significant difference in accuracy between the two
methods.

Results
Effect of Incorporating Phylogenetic Uncertainty
To determine how incorporating topological uncertainty
affects ASR, we first examined the extent to which ances-
tors inferred using ML and TEB differ from each other un-
der a range of conditions. We found that integrating over
trees only rarely affected the inferred state at ancestral
nodes (fig. 3A ). In simulations on ultrametric four-taxon
trees with varying levels of phylogenetic noise, the ances-
tral states inferred by ML and TEB differed at only 0.4%
of sites. On nonultrametric trees, they differed at 0.7% of
sites. On larger trees derived from empirical data sets of
four gene families previously analyzed using ASR—steroid
hormone receptors, ADHs, GFPs, and EF-Tu proteins—
ML and TEB reconstructions differed by 1% or less
(fig. 3A ).

To determine whether certain phylogenetic conditions
cause integrating over topological uncertainty to have a
stronger effect on inferred ancestral states, we decomposed
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FIG. 4.ML and TEB infer different ancestral states only when PPs are low. In each pair of plots, the left plot (A1, B1, etc.) compares the PP of the
maximum a posteriori state inferred byML to that inferred by TEB. Black points show sites at whichML and TEBmethods inferred the same state;
green diamonds indicate that the two methods inferred different states. The right plots (A2, B2, etc.) are histograms of the green points in the
left plot: we grouped all ASR inferences into 5%-sized bins based on their PP and counted the proportion of sites at which ML and TEB inferred
different states. Results are shown for simulations on ultrametric four-taxon trees (A1,A2), nonultrametric four-taxon trees (B1,B2), and the steroid
hormone receptor (C1,C2), ADH (D1,D2), GFP (E1,E2), and EF-Tu phylogenies (F1,F2).

the results of the ultrametric four-taxon simulations accord-
ing to the state patterns in the terminal sequences that de-
scend from the reconstructed ancestor, the length of the
branches on the tree, and the ways (if any) that the ML
tree differs from the true tree (supplementary table S2, Sup-
plementary Material online). There were no state patterns
that resulted in differences between ML and TEB ancestors
greater than 0.5%. The effect of integratingover uncertainty
was slightly greater for divergent state patterns in which
all ingroup descendants have different states (pattern xyz)
than for patterns that contain phylogenetic signal (xxx or
xxy ; fig. 3B ). Similarly, no branch length conditions exam-
ined caused ML and TEB to differ by more than 0.5%; ML
and TEB ancestors differed least when the total root-to-
tip branch length was short, and they differed to a slightly
greater extent as the terminal branches became very long
(fig. 3C ). When the ML tree was correct (as it was in the
majority of cases), integrating over uncertainty had a par-
ticularlyweak effect on the inferred ancestor; however, even
when the ML phylogeny erroneously inferred a spurious se-
quence as a descendant of the ancestor of interest or ex-
cluded a true descendant, the two methods still produced
identical inferences at >99% of sites (fig. 3B ). Together,

these data indicate that integrating over topological uncer-
tainty per se does not strongly affect ancestral reconstruc-
tions; the effects are weak under conditions that cause the
traces of the ancestral state to be lost in descendant se-
quences and virtually nonexistent under those that preserve
phylogenetic signal about the ancestral state.

We next analyzed whether integrating over topological
uncertainty tends to affect sites that are strongly or weakly
supported by ML. Most ASR practitioners examine the
support for ancestral state inferences and experimentally
characterize the robustness of their inferences to alter-
nate reconstructions that have PP above some defined
plausibility cutoff (Chang et al. 2002; Ugalde et al. 2004;
Thomson et al. 2005; Bridgham et al. 2006; Ortlund et al.
2007). We found that ML and TEB reconstructions dis-
agreed only at sites that were already ambiguous in the
ML reconstruction (fig. 4). In both ultrametric and nonul-
trametric four-taxon simulations, the ML and TEB recon-
structions agreed at all sites at which the ML reconstruc-
tion had PP greater than 0.70. In the ADH, GFP, and EF-
Tu simulations, the two methods agreed at all sites with PP
greater than 0.76, 0.63, and 0.71, respectively. In the steroid
hormone simulation, the methods agreed at all sites with
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FIG. 5.ASR error rates, measured as the proportion of sites at which themaximum a posteriori reconstructions differ from the true ancestral state.
(A ) Results from the four-taxon and empirically derived conditions are averaged over all replicates. None of the differences between ML and TEB
are statistically significant. (B ) Results from the ultrametric four-taxon simulation are shown versus the height of the descendant clade (where
height equals “h ” in figure 1. Error bars for ML and TEB are nearly identical. (C ) Detailed results from the ultrametric four-taxon simulation. Each
cell reports two values: the proportion of sites incorrectly reconstructed by ML (top) and TEB (bottom). Bold values indicate the method with
higher accuracy. Data are sorted according to the same criteria in figure 3B .

PP greater than 0.87, and they disagreed at only 0.003%
of all sites reconstructed with PP >0.80. Over all four-
taxon reconstructions, the maximum a posteriori ances-
tral state from TEB was different from the first- or second
best state using the ML method at only 0.001625% of sites.
These data indicate that integratingover topological uncer-
tainty virtually never causes inferred ancestral states that
are strongly supported by ML to be revised. Rather, TEB in-
ferred a state different from the ML state only when that
state was ambiguously reconstructed anyway, switching
the favored state from one weakly supported possibility to
another.

Effect of Incorporating Phylogenetic Uncertainty on ASR Ac-
curacy
Although the ML and TEB methods inferred the same state
at most sites, it is possible that TEB might produce more
accurate reconstructions at the rare sites where the two
methods differ. We measured accuracy as the proportion
of sites at which the reconstructed state was identical to
that of the true ancestor, which we recorded during each

simulation. In the four-taxon and GFP simulations, ML was
slightly, but not significantly, more accurate than TEB (fig.
5A and supplementary table S7, Supplementary Material
online). In the ADH, steroid hormone receptor, and EF-Tu
simulations, there was no difference in accuracy between
the methods. The accuracy of both ML and TEB declined
as terminal branch lengths grew longer, causing multiple
substitutions to occur (fig. 5B ). ML’s superiority to TEB was
greatestwhen the membership of the descendant cladewas
correct (fig. 5C ), presumablybecausewhen theML topology
is the true tree, integrating phylogenetic uncertainty serves
only to introduce error. Even when the ML tree was incor-
rect, however, TEB generally decreased accuracy; integrat-
ing over uncertainty improved accuracy only under the rare
condition that the descendant state pattern was xyz and a
spurious taxon had been included as a descendant of the
node of interest. Under these conditions, bothmethods per-
formedpoorly because little or no phylogenetic signal of the
ancestral state was retained in the descendants. For all other
state patterns and forms of phylogenetic error, ML had ac-
curacy equal to or slightly greater than that of TEB.
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FIG. 6. Relationship of the PP of inferred ancestral states to the probability that those states are correct. For both ML and TEB, we grouped all
ancestral state inferences by their PP into 5%-sized bins. Within each bin, we calculated the proportion of inferred states that match the true state.
Bins with fewer than 50 members were excluded. Data are shown for simulations on (A ) ultrametric four-taxon, (B ) nonultrametric four taxon,
(C ) ADH, (D ) steroid hormone receptors, (E ) GFP, and (F ) EF-Tu phylogenies.

Effect of Incorporating Phylogenetic Uncertainty on ASR PPs
We next examined whether TEB or ML yielded more ac-
curate estimates of statistical confidence in inferred ances-
tral states. For all simulations, we binned reconstructed an-
cestral states by their PP and counted the proportion of
accurate inferences in each bin (fig. 6). If PP is an accu-
rate predictor of the probability that an inferred state is
correct, the mean PP in that bin should equal the pro-
portion of correct ancestral state inferences. We observed
that the ML and TEB methods generally produced similar
PP values, and both types of PP were good predictors of
mean accuracy. The major exception to this pattern was
the four-taxon simulation on ultrametric trees in which
integrating over trees slightly inflated support for recon-
structions with PP > 0.5 (fig. 6A ); a chi-square test indi-
cates that ML’s PPs fit the ideal better than TEB’s PPs do,
but the difference is small and does not reach statistical
significance (P = 0.16, supplementary table S1, Supple-
mentary Material online). When the ML tree was correct,
ML’s PPs were more accurate than TEB, but TEB was more
accurate when the ML tree was wrong; because the for-
mer conditions are more frequent than the latter, however,
ML’s accuracy was higher overall. For the empirically de-
rived conditions, ML’s PPs were slightly more accurate, but

the difference was again small and not statistically signifi-
cant (supplementary tables S3–S6, SupplementaryMaterial
online).

An Intrinsic Trade-off Explains Why Incorporating Uncer-
tainty Does Not Affect ASR
To understand why integrating over phylogenies has such
a weak effect on ancestral reconstruction, we examined the
relationship between the plausibility of alternate phyloge-
nies and the dependence of the reconstructed state on the
assumed phylogeny. We conjectured that as phylogenetic
uncertainty increases, the same state will be reconstructed
on the plausible trees. To test this hypothesis, we grouped all
the replicates from our ultrametric four-taxon simulations
according to the PP of their ML tree. For each replicate, we
counted the proportion of sites at which the inferred an-
cestral state differs between the ML tree and the tree with
the next highest PP (fig. 7A ). We observed that when the
ML tree was uncertain (PP<1.0), the ancestral states among
trees rarely disagreed. In contrast, when theML tree was ab-
solutely certain (PP = 1.0), the ancestral states on the ML
tree and the second best tree disagreed at up to 25% of
sites; however, because the PP of the second tree was so
low, it contributed virtually zero weight to the TEB recon-
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FIG. 7. Phylogenetic uncertainty versus alternate ancestral reconstructions. Each point corresponds to one set of replicate descendants in the
ultrametric four-taxon simulation. Tree uncertainty for each replicate is measured as 1.0 minus the PP of the ML tree. (A ) Tree uncertainty is
plotted versus the proportion of sites at which the most likely ancestral state on the ML tree disagrees with the most likely ancestral state on the
second best tree. (B ) Tree uncertainty is plotted versus the average absolute difference between the PP of the most likely state on theML tree (x)
minus the PP of this same state on the second best tree.

struction. Supportmeasures showed a similar trade-off: only
when there was little or no uncertainty about the tree did
the PP of an ancestral reconstruction differ among phyloge-
nies. These results indicate that there is a trade-off between
phylogenetic uncertainty and the extent to which ancestral
state reconstruction depends on the phylogeny assumed.

To understand this trade-off in detail, we examined an-
cestral reconstructions under two contrasting four-taxon
conditions with different degrees of phylogenetic uncer-

tainty (fig. 8). In one condition, the true phylogeny had a
long internal branch, so the ML tree was inferred with no
uncertainty (PP = 1.0); in the other, the true phylogeny
had a very short internal branch, so the ML tree was in-
ferred with considerable uncertainty (PP = 0.384). For each
state pattern, we reconstructed the ancestral state on all
three possible topologies. We found that when there was
no phylogenetic uncertainty, the probability of an ancestral
state can differ radically given different trees; for three of the

FIG. 8. The conditions that produce phylogenetic uncertainty result cause ancestral state inferences to be identical across trees. (A ) We simu-
lated sequences on trees with long (top) and short (bottom) internal branches. On each, we randomly generated an ancestral sequence 50,000
nucleotides long and simulated sequence evolution. (B ) From the descendant sequences, we inferred the empirical Bayes posterior distribution of
the three trees, each with its ML branch lengths. (C ) On each tree, we used the true model to reconstruct the common ancestor of descendants
A, B, and C for all possible descendant state patterns (xxxx, xyxx, wxyz, etc.). Each bar corresponds to the PP of the best ancestral state on the ML
tree (blue), the PP of the same state on the alternate trees (yellow and red), and the PP of that state integrated over all trees (green). Stars indicate
state patterns for which the maximum a posteriori ancestral state on one of the alternate trees is different from that on theML tree.
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state patterns, the maximum a posteriori ancestral state in-
ferred on the ML tree differed from that inferred on alter-
nate trees. Because the internal branch was long, however,
these alternate trees had zero PP, so incorporating them
into TEB reconstruction produces ancestral state inferences
and PPs identical to theML inference. In contrast, when the
internal branch was short and the phylogeny was uncertain,
all three topologies were close to being star trees. In this
case, the probability of the ancestral state inferred on the
ML tree was almost identical to the probability of that state
given any other tree. Because the inferred ancestral state did
not differ among phylogenies, TEB andML again yielded the
same reconstruction.

Discussion
Our results demonstrate that a Bayesian approach to in-
corporating uncertainty about the underlying phylogeny is
not necessary for ancestral state reconstruction. By com-
paring two methods of ASR that differ only in that one as-
sumes the ML phylogeny while the other integrates over
phylogenies, wewere able to determine the specific effect of
incorporating phylogenetic uncertainty on ancestral state
inferences, their statistical support, and their accuracy. We
found that usingTEBvirtuallynever changes the inferredan-
cestral state; when it does, the reconstruction was already
ambiguous using ML. ML has slightly higher accuracy, and
its PPs provide a slightly better predictor of the probability
that an ancestral state inference is correct.

Our analyses show that incorporating phylogenetic un-
certainty only weakly affects ASR because the conditions
that cause phylogenetic uncertainty also make the ances-
tral state the same across trees. This phenomenon occurs
because when internal branches are short, the distance in
tree space is small between the ancestor on the ML tree
and the ancestoron the secondbest tree (Felsenstein2004).
At the limit, the true tree is a star tree with a zero-length
internal branch, and all resolved topologies have equal PP,
leading to maximal phylogenetic uncertainty; however, the
ancestral nodes on the different topologies are identically
located in tree space. In contrast, under the conditions
that cause inferred ancestral states to differ among trees,
there is typically no phylogenetic uncertainty to integrate
over.

Prior work has shown that ASR is generallymost accurate
on star-like trees because the descendant sequences contain
maximum mutual information about the ancestral state
when those descendants are completely independent phy-
logenetically (Blanchette et al. 2004; Lucena and Haussler
2005). Those studies, however, assumed that the true phy-
logeny was known a priori, which is particularly unlikely
for star-like trees with short internal branches. Our work
shows that phylogenetic uncertainty, which is inevitable un-
der these conditions, is not expected to undermine the ac-
curacy of ancestral state reconstruction on star-like trees.
These results underscore the potential to accurately recon-
struct ancestral sequences at the base of rapid phylogenetic
radiations despite phylogenetic uncertainty, such as the an-

cestors of all mammals (Blanchette et al. 2004) or all meta-
zoans (Rokas et al. 2005).

Previous work by Huelsenbeck and Bollback, like ours,
showed a close relationship between ancestral PPs es-
timated using the ML tree and integrating over trees
(Huelsenbeck and Bollback 2001). Those authors did sug-
gest, however, that uncertainty in the phylogeny might
lead to significantly different interpretations of the ances-
tral state. This suggestion was illustrated using trees with
arbitrarily assigned branch lengths and PPs; for all topolo-
gies in the illustration, the internal branch lengths were of
significant length and the PPs were substantial. In reality, it
is unlikely that any data set would support such a distribu-
tion of PPs over this set of tree/branch length combinations
because nontrivial PPs on “next best” trees typically arise
onlywhen internal branches are short.Our results show that
when the PPs on trees are derived fromsequencedata rather
than arbitrarily assigned, integrating over uncertainty has a
negligible effect on ancestral sequence inference and a neg-
ative impact, if any, on accuracy.

Our results should not be interpretedas an endorsement
for sloppy analysis. Although incorporating phylogenetic
uncertainty does not improve the accuracy of ancestral re-
construction, this does not mean that the phylogeny is
unimportant. Because ancestral reconstructions can vary
across trees under some conditions, arbitrarily choosing an
incorrect and implausible phylogeny could yield inaccurate
reconstructions.Our results indicate thatwhen the true tree
is well-resolved, assuming the wrong topology can change
the inferred ancestral state for some state patterns (fig. 4).
This finding is consistent with a prior study, which found
that an arbitrary topological error on a tree with long inter-
nal branch lengths can slightly reduce ASR accuracy at some
nodes (Zhang and Nei 1997).

Our findings should not be taken as evidence that ances-
tral reconstruction never errs. There are numerous potential
sources of error that we did not evaluate, including use
of incorrectly parameterized evolutionary models, which
could yield incorrect (and strongly supported) inferences of
phylogeny (Kolaczkowski and Thornton 2004) or incorrect
ancestral state reconstructions even when the true tree is
assumed. ASR practitioners should continue to use rigor-
ous statistical practices, such as formal evaluation of a wide
range of models that incorporate evolutionary heterogene-
ity (Posada 2001; Lartillot and Philippe 2004; Kolaczkowski
and Thornton 2008) and dense targeted taxon sampling
(Hillis 1998; Pollock et al. 2002; Heath et al. 2008). Our ex-
periments specifically addressed phylogenetic uncertainty
caused by a lack of phylogenetic signal.Whether integrating
over phylogenetic uncertaintymight improve ASR accuracy
in the face of model violation or other causes of phyloge-
netic error warrants future study. Our analyseswere specific
to Bayesian integration over uncertainty about the underly-
ing phylogeny: we did not address the effect on ancestral re-
constructions of integrating over uncertainty about branch
lengths, the substitutionmodel, or its parameters. Whether
a Bayesian approach to these sources of uncertainty would
improve or degrade ASR accuracywarrants further research.
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In summary, incorporating phylogenetic uncertainty by
integrating over topologies does not improve the accuracy
of ASR because the conditions that cause phylogenetic un-
certainty make the ancestral state the same across trees.
Using the ML tree will typically yield the best ancestral
reconstruction, even when the ML tree is uncertain. A
Bayesian approach to phylogenetic uncertainty is intuitively
appealingbut computationallydemanding and, in this case,
unnecessary.

Supplementary Material
Supplementary note 1 and tables S1–S7 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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