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Abstract

Background: Prediction models in autosomal dominant polycystic kidney disease (ADPKD) are useful in clinical settings
to identify patients with greater risk of a rapid disease progression in whom a treatment may have more benefits than
harms. Mayo Clinic investigators developed a risk prediction tool for ADPKD patients using a single kidney value. Our aim
was to perform an independent geographical and temporal external validation as well as evaluate the potential for
improving the predictive performance by including additional information on total kidney volume.

Methods: We used data from the on-going Swiss ADPKD study from 2006 to 2016. The main analysis included a sample
size of 214 patients with Typical ADPKD (Class 1). We evaluated the Mayo Clinic model performance calibration and
discrimination in our external sample and assessed whether predictive performance could be improved through the
addition of subsequent kidney volume measurements beyond the baseline assessment.

Results: The calibration of both versions of the Mayo Clinic prediction model using continuous Height adjusted total
kidney volume (HtTKV) and using risk subclasses was good, with R2 of 78% and 70%, respectively. Accuracy was also
good with 91.5% and 88.7% of the predicted within 30% of the observed, respectively. Additional information regarding
kidney volume did not substantially improve the model performance.

Conclusion: The Mayo Clinic prediction models are generalizable to other clinical settings and provide an accurate tool
based on available predictors to identify patients at high risk for rapid disease progression.
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Background
Prediction models in autosomal dominant polycystic
kidney disease (ADPKD) are used in clinical settings for
several purposes. They can inform patients about their
prognosis. They can identify patients at greatest risk of
rapid disease progression who might benefit most from
new therapies. They can also identify patients with

slower disease progression who might benefit from a
care strategy that delays treatment until a later stage
[1, 2]. Finally, prediction models are useful for identifying
patients with a particular disease risk profile who would
be suitable for clinical trials [2, 3]. Relevant outcomes for
ADPKD prediction models include total kidney volume
(TKV) and estimated glomerular filtration rate (eGFR) [4],
the primary clinical indicators of disease progression.
Established predictors of these outcomes include age, sex,
earlier measures of TKV and eGFR and Polycystic Kidney
Disease genotype [5, 6].
The vasopressin V2 receptor antagonist, tolvaptan, has

been recently approved for the treatment of ADPKD
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but, due to notable side effects and expense, represents a
treatment where good risk prediction is important for
targeting use. Tolvaptan is the first approved drug
shown to directly affect disease progression [7]; all other
therapies target co-morbidities that may contribute to
progression but do not affect the underlying disease [8].
The indication for tolvaptan is currently limited to pa-
tients with evidence of rapid progression in Switzerland
and European Union according to the European
Medicines Agency [9] where the expected benefit out-
weighs the risk of side effects and associated high
treatment costs [10]. The challenge for clinicians is to
identify patients at highest risk of rapid progression
without extensive diagnostic screening across the full pa-
tient population. Currently, TKV and the rate of TKV
change are considered the most accurate predictors of
progression [11]. However, for routine clinical and re-
search purposes, direct measurement of kidney volume
is less feasible due to time and technical demands as
well as expense.
Recently, Mayo Clinic investigators developed a risk

classification system for ADPKD patients using a single
TKV value and an accompanying prediction model
[12, 13]. In 2016, the European Renal Association –
European Dialysis and Transplant Association Working
Group published a recommendation that the Mayo Clinic
prediction model be used to discriminate patients at high
risk for rapid disease progression [14]. However, the
prognostic performance of the prediction model has
yet to be evaluated in an external sample outside the
US, which is critical for establishing accuracy and
generalizability of risk discrimination across different
patient populations [12].
The aim of our study was to externally validate the

Mayo Clinic Model using data from the prospective lon-
gitudinal Swiss ADPKD study, with a patient population
both geographically and temporally removed from the
original patient population in which the model was de-
veloped. We also sought to evaluate whether improved
prediction performance could be achieved by including
additional measurements of the most relevant predictor:
height adjusted total kidney volume (HtTKV).

Methods
Swiss ADPKD validation data
Participants were eligible for the Swiss ADPKD study if
they had an ADPKD diagnosis, were over 18 years of age
and had an eGFR over 30 ml per min per 1.73m2 at en-
rolment [15]. For the present analysis, participants from
the Swiss ADPKD study were included if they were
under active follow-up between 2006 to 2016, had at
least one follow-up visit and had not been treated with
tolvaptan. Approximately 3% (N = 6) of patients had
Atypical ADPKD (Class 2) and were excluded from the

present analysis. Visits were done at the university hos-
pital in Zurich and at the Hirslanden hospital Zurich. At
every scheduled clinical visit, data were collected on
medical history, kidney imaging metrics and laboratory
values from blood and urine samples. Clinical measure-
ments and assays were done according to a protocol
with standardized operating procedures [16, 17]. Follow-
ing an initial visit, a second visit occurred within 6–
12 months and then visits were scheduled annually;
when a study participant missed a scheduled visit, a
study visit occurred at the next available opportunity to
collect Magnetic Resonance Imaging (MRI) and other
study data. The local ethics committee in Zurich ap-
proved the study (EK-number 1178) and all patients pro-
vided written informed consent.

Mayo Clinic risk classes and eGFR prediction model
The Mayo Clinic prediction model has been described
[12]. Briefly, five risk subclasses with theoretical yearly
percentage increases in kidney volume of <1.5% (Class
1A), 1.5–3% (Class 1B), 3–4.5% (Class 1C), 4.5–6%
(Class 1D) and >6% (Class1E) were defined based on age
and imaging data (Fig. 1) [12]. Then a linear mixed-
effect model was used to predict eGFR after t years of
follow-up using baseline (t = 0) predictors: log2HtTKV
or risk subclass group (1A-1E) [12], sex, age, eGFR from
the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation [18]. Years of follow-up was in-
cluded as a linear term with a subject specific random
effect. Interaction terms of years of follow-up with all
predictors were also included in the model.

Outcome
Estimated glomerular filtration rate (eGFR)
In accordance with the Mayo Clinic model, our primary
outcome was eGFR at t years follow-up. Serum creatin-
ine was measured at each visit by the central laboratory
institute of clinical chemistry of the university hospital
and the central laboratory in Zurich using the modified
Jaffé method traceable to an isotope-dilution mass spec-
troscopy reference [17]. eGFR at baseline (t = 0) was
estimated using the CKD-EPI equation [18].

Predictors
Total kidney volume (TKV)
At every study visit, a measurement of kidney volume
was taken by using a standardized procedure protocol
for MRI’s [16]. MRI acquisitions contain a breath-hold
T1-weighted fast spoiled gradient echo sequence without
fat suppression sequence (4 mm slice thicknesses) and
trans-axial T2 weighted fast spin echo sequences. TKV
was estimated by hand contouring [16]. Height adjusted
total kidney volume (HtTKV) was obtained by dividing
TKV by patient height (ml/m).
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Statistical methods
Baseline characteristics are given as proportions and me-
dians (interquartile range). Patients were stratified into
the five subclasses (1A-1E) based on the Mayo Clinic
estimated kidney growth rates limits of 1.5%, 3.0%, 4.5%
and 6% (Fig. 1).
We applied the Mayo Clinic model to all participants of

the Swiss ADPKD study to predict eGFR at t years follow-
up, using log2HtTKV as a continuous predictor and keep-
ing regression coefficients fixed at the values determined
from the Mayo Clinic development sample. We also ap-
plied a second Mayo Clinic model, that replaced the base-
line (t = 0) log2HtTKV with baseline risk subclass (1A-1E).
To try to improve upon the Mayo equation predictive

performance, we tested two modifications to the original
Mayo model. First, we included in the model a second
HtTKV follow-up measurement (mostly within 6–
12 month of the baseline measurement) to provide add-
itional information on individual change in TKV (Model
1). The regression coefficient for the HtTKV term was
refit to the Swiss ADPKD study sample, but all other re-
gression coefficients were kept fixed at their original
value, including the intercept. Second, we included in-
formation on all subsequent and available HtTKV mea-
surements, again refitting the regression coefficient for
the HtTKV term while keeping all other regression coef-
ficients fixed at their original Mayo Clinic values (Model
2). Updated models with and without interaction terms
of HtTKV*years were evaluated.

Evaluation of model performance
The model fit to the validation data set was assessed using
R-squared statistics and Akaike’s information criterion

(AIC). Discrimination was visually assessed using scat-
ter plots comparing observed and predicted eGFR
values on the natural scale with an estimated regres-
sion line, line of equality and confidence interval. The
agreement was assessed using the Bland-Altman ana-
lysis [19]. The bias, defined as average (observed
eGFR – predicted eGFR) was estimated along with
the 95% limits of agreement, defined as the bias
±1.96 standard deviation of the difference between
observed and predicted eGFR. Lastly, the % of pre-
dicted eGFR within 30% of the observed eGFR was
calculated. We followed Steyerberg’s approach to validate
and update clinical prediction models [10].
To compare the performance of the prediction

models we estimated the continuous ranked probabil-
ity score (CRPS) of the 3 competing models: original
model, updated model 1 and updated model 2. The
CRPS is a proper scoring rule to assess univariate
predictive distributions with smaller values indicating
better predictive performance [20]. The metric takes
into account the entire predictive distribution of the
outcome [21] and assesses both calibration and preci-
sion of predictive distribution. For evaluation of models
with added TKV information, five-fold cross-validation
was used given that no external validation was avail-
able [10].
The predictor HtTKV was missing in 3% of the

participant-visits. We used multiple imputation (MI) to
impute the missing values; specifically, a Markov Chain
Monte Carlo method was implemented and multivariate
normality was assumed [22]. We generated 30 imputed
data sets for each model with HtTKV [23].
Stata 13.1 was used for all data analysis and graphics.

Fig. 1 Subclassification of ADPKD patients based on HtTKV limits on their age at baseline. Limits are defined from the Mayo Clinic based on estimated
kidney growth rates of <1.5% (dark green), 1.5–3.0% (mint), 3–4.5% (yellow), 4.5–6% (orange) and >6% (red)
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Results
Characteristics of the Swiss ADPKD study sample
Between April 2006 and March 2016, 214 patients with
an ADPKD diagnosis were enrolled in the Swiss ADPKD
study, contributing a total of 1985 person-visits. At base-
line, the median age was 34 years (interquartile range
[IQR]: 27–40), the median eGFR was 82 ml/min per
1.73 m2 (IQR: 70–95) and the median HtTKV was
497 ml/m (IQR: 317–762). Swiss ADPKD study follow-
up times ranged from a minimum of 0.42 years for new
enrolees to a maximum time of 10.28 years. We assessed
change from one class to another in 206 patients from
the 214 swiss ADPKD class1 patients. In total, there
were 52 patients (25%) from the 206 Swiss ADPKD
Study participants who progressed to a more severe risk
class over the median 5 year follow-up and 7 (3%) who
changed to a milder disease risk class. More than the
half of the patients in class 1A (56%) remained in their
class: 40% (10 patients) progressed from 1A to 1B (1 pa-
tient from 1A to 1C), 18% (9 patients) progressed from
1B to 1C (1 patients from 1B to 1D), 28% (16 patients)
progressed from 1C to 1D (4 patients from 1C to 1B)
and 28% (15 patients) progressed from 1D to 1E (3 pa-
tients from 1D to 1C).

Comparison of the Swiss ADPKD study sample to the
Mayo development sample
Compared to the Mayo clinic development sample of
376 patients, the average eGFR was higher by 11 ml/min
per 1.73 m2, median age was 10 years younger, and me-
dian HtTKV was 155 ml/m lower in the Swiss ADPKD
study patients. Swiss ADPKD patients had a median
follow-up time of 5 years (IQR: 2 to 9 years) compared
to 6 years (IQR 4–10) in the Mayo Clinic patients. Com-
paring progression rates, more patients progressed in
the Swiss ADPKD Study at 25% across all initial risk
classes compared to 11% to 16% in the Mayo clinic de-
velopment sample, though the median follow-up was
5 years compared to 4 years in the Mayo Clinic.

External validation of the Mayo Clinic model
In the Swiss ADPKD patient group, the Mayo Clinic
model with the predictor log2HtTKV performed well
with explained variance (R2) of 78% (Table 2), compared
to the R2 of 69% in the development data set. Replacing
baseline TKV with risk subclasses in the model resulted
in a poorer model fit with a R2 of 70%, which is slightly
lower to the R2 of 72% noted in the development set.
The scatter plot of observed eGFR versus predicted

eGFR indicated good discrimination with 91.5% of the
predicted within 30% of the observed when log2HtTKV
was included as a continuous predictor (Fig. 2a, Table 1)
and 88.7% of the predicted within 30% of the observed
when risk subclasses were included (Fig. 2b, Table 2).

The Bland-Altman analysis shown in Fig. 3 indicated a
lower bias for the log2HtTKV model and little distortion
of the variability of the distribution, as seen from the ap-
proximate zero slope of the regression line.

Improving the Mayo prediction model
To evaluate whether the Mayo prediction model per-
formance could be improved if additional information
on TKV was available, we modified the formula to in-
clude subsequently TKV measurements. Updated model
1 (number of observation = 1867), which included a
follow-up TKV measurement, showed good overall per-
formance with a R2 of 77%, an AIC of 13,557.91 and
CRPS of 58.16 (Table 2). In updated model 2 (number of
observation = 1344), which included all available follow-
up TKV measurements, resulted in a slightly better
CRPS of 57.24 and substantially improved AIC of
9706.15 compared to Model 1. The R2 was reasonably
similar between the updated models and similar to the
original Mayo Clinic model. Good agreement between
observed and predicted was maintained as shown by the
high correlation (Fig. 2c, d). Both updating models re-
duced the bias and provided a good fit to the data (Fig.
3c, d). An interaction term of TKV*years in the updated
models did change performance (Table 2).

Discussion
Accurate risk prediction is important for guiding clinical
care, particularly when there are substantial costs to
treatment. The goal of the Mayo Clinic model was to
provide risk prediction for the ADPKD patient popula-
tion; however prognostic performance has never been
established in a broader patient sample and external val-
idity of a prediction model is critical to assure accurate
prediction across patient populations and therefore
establish the model’s utility as a clinical tool.
Our results indicated that the Mayo Clinic model per-

forms well in our Swiss ADPKD patient sample. Both
models showed adequate discrimination and good cali-
bration. The overall prediction performance in our sam-
ple as assessed with R2 was higher when the continuous
predictor HtTKV was the used than when risk sub-
classes were used. These results suggest the models are
generalizable and would perform well in routine clinical
settings. Given the higher eGFRs in the Swiss ADPKD
Study, these results were particularly notable, as poorer
performance might be expected with upward shifts in
the distribution of eGFR compared to the development
set. However it should be noted that in the original
Mayo Clinic prediction model and in our validation, an
estimated eGFR from the CKD-Epi formula was used for
the baseline assessment of kidney function. This estima-
tion may itself introduce bias in the prediction of later
kidney function, relative to the true GFR. To the extent
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Table 1 Baseline characteristics of the development set from the Mayo Clinic and the validation set from the Swiss ADPKD study

Class Total number # (%) Men/Women(n/n) Median age (yr) Median eGFR
(ml/min per 1.73 m2)

Median HtTKV (mL/m) Median follow-up (yr)

Mayo Clinic

1A 40 (10.6) 7/33 50 (44–58) 84 (64–97) 249 (214–280) 5 (3–10)

1B 88 (23.4) 23/65 46 (36–53) 78 (62–97) 433 (322–565) 6 (3–9)

1C 122 (32.4) 46/76 44 (36–50) 71 (47–98) 701 (514–1037) 6 (4–10)

1D 77 (20.4) 40/37 41 (34–49) 60 (36–96) 1195 (843–1544) 6 (4–11)

1E 49 (13.0) 28/21 36 (29–43) 46 (26–94) 1874 (1118–2609) 5 (3–8)

Subtotal 376 (100) 144/232 44 (35–51) 71 (44–97) 651 (431–1195) 6 (4–10)

Swiss ADPKD

1A 27 (12.6) 9/18 29.43 (24–37) 86.67 (78–102) 199.52 (178–232) 5.19 (1.99–8.35)

1B 52 (24.3) 20/32 36.15 (29–46) 83.84 (72–100) 343.75 (272–421) 5.28 (3.13–7.92)

1C 60 (28.0) 35/25 35.56 (28–41) 83.14 (71–92) 514.31 (407–630) 4.24 (2.02–8.26)

1D 52 (24.3) 38/14 32.48 (28–38) 79.35 (72–94) 705.70 (579–910) 6.25 (2.85–8.95)

1E 23 (10.7) 18/5 29.82 (23–35) 70.30 (56–86) 1166.50 (920–1425) 6.93 (3.27–8.53)

Subtotal 214 (100) 120/94 34.22 (27–40) 82.20 (70–95) 496.58 (317–762) 5.13 (2.21–8.48)

Fig. 2 a Scatterplot of the observed eGFR versus the predicted eGFR derived from the model obtained from the development set with TKV as
predictor with regression line and the line of equality. b Scatterplot observed eGFR vs. predicted eGFR derived from the model obtained from the
development set with the five subclasses as predictor. c Scatterplot of the observed eGFR versus the predicted eGFR derived from the updated
model 1 with two TKV measurements and d updated model 2 with time-varying TKV
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that the CKD-EPI formula may perform differently in
the two cohorts, our results could have impacted. We
also did not distinguish between polycystic kidney dis-
ease genotypes 1 and 2, and prediction performance
could vary between these groups. Further the R2 is
known to be sensitive to the range and variability of the
data; thus apparent improvement in prediction perform-
ance based on a higher R2 in our validation cohort com-
pared to the original development cohort should be
interpreted with caution.
It should be noted that the Mayo Clinic prediction

model development set used TKV assessed via the

ellipsoid equation [12], while the present study used the
gold standard TKV assessment by boundary method
[24], which could introduce additional variability in pre-
diction performance. However, a recent study assessed
patient reclassified by the Mayo risk classification system
resulting from these different TKV assessment method.
The investigators found only a limited impact with a few
patients reclassified mostly to lower risk categories [24].
A second aim of our study was to evaluate whether

additional information regarding TKV change could im-
prove the model prediction performance. Based on the
results of the validation study and relatively large size of

Table 2 Predictive performance of the validation, the updated models and the sensitivity analysis (in bold)

R2 Bias (mL/min
per 1.73 m2)a

95% Limits of Agreement
(mL/min per 1.73 m2)b

Correlation P30 (%)c AIC CRPS

Validation model: risk class (1985 observations) 0.7039 5.29 −16.8,27.3 0.839 88.7 – –

Validation model: TKV (1985 observations) 0.7853 −2.73 −20.4,15.0 0.871 91.5 14,386.98 73.36

Updated model 1: 2 TKV’s (1867 observations) 0.7704 0.42 −17.4,18.3 0.872 96.6 13,557.91 58.16

Updated model 1 with interaction term 0.7720 0.82 −16.9,18.6 0.879 96.6 1322.3 81.85

Updated model 2: TKV time-varying
(1344 observations)

0.7989 0.34 −17.1,17.8 0.889 96.1 9706.15 57.24

Updated model 2 with interaction term 0.8015 0.57 −16.8,17.9 0.895 96.1 9715.05 83.39
aBias = average (observed eGFR – predicted eGFR)
b95% Limit of agreement = bias ±1.96*standard deviation of (observed eGFR – predicted eGFR)
cP30 = percentage of predicted eGFR within 30% of observed GFR (% within 30%)
AIC Akaike information criterion
CRPS continuous ranked probability score

Fig. 3 a Bland-Altman analysis of the observed eGFR versus the predicted eGFR derived from the model obtained from the development set with
TKV as predictor. b Bland-Altman analysis observed eGFR vs. predicted eGFR derived from the model obtained from the development set with
the five subclasses as predictor. c Bland-Altman analysis of the observed eGFR versus the predicted eGFR derived from the updated model 1 with
two TKV measurements and d updated model 2 with time-varying TKV
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the development sample, we followed Steyerberg’s ap-
proach [25] and fixed all regression coefficients at their
original values under the premise that re-estimation runs
the risk of replacing reliable but modestly biased estima-
tors with unbiased but unreliable ones [10]. Allowing
only the coefficient for TKV to vary, we found that the
R2 remained relatively unchanged when baseline TKV
was replaced with measurements from the first two as-
sessments. Further including all available TKV measure-
ments, including a current TKV assessment, did not
provide substantial improvement in the prediction per-
formance that would justify the additional cost, time and
effort of TKV measurement.
Strengths of our study include a patient population

that was entirely independent of the Mayo Clinic data
set, varying geographically, culturally and temporally
from the original development cohort. In addition the
Swiss ADPKD study has comprehensive follow-up with
repeated measurements of kidney volume over time in a
well-described cohort of untreated ADPKD patients at
an early disease stage. The inclusion of recently enrolled
patients as well as those with nearly 10 years of follow-
up establishes generalizability across the patient popula-
tion. Prediction models need to perform well in general
ADPKD patient populations, as they are used for clinical
decision-making.

Conclusions
In conclusion, we found that the Mayo Clinic prediction
model is an accurate tool to identify those at highest risk
for rapid disease progression as defined by declining kid-
ney function. The performance of the model was not
substantially improved with by including additional TKV
assessments, suggesting that follow-up TKV measure-
ments may not be worth the cost and burden for the
purposes of predicting progression. The Mayo prediction
model may be a valuable tool for identifying patients for
whom new treatments such as tolvaptan will provide
benefits that outweigh the burden of side effects.
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