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Abstract

Introduction: In recent years much progress has been made in the development of tools for systems biology to study the
levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to
study cell signalling directly at the transcription factor level.

Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in
mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two
robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays
for parallel, higher throughput analysis.

Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription
factor activation.

Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that
is direct and not theoretically limited by the number of available reporters.
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Introduction

Analysis of the human genome has assigned function to almost

60% of the DNA sequence, based on known function or predicted

similarity to known proteins. Of these, some 1850 (6%) are

predicted to be transcription factors (TFs) [1], crucial components

of cellular regulatory networks that dictate complex cellular

phenotypic programs [2].

In eukaryotes, gene transcription is usually regulated by multiple

TFs [3–4], and individual TFs contribute to the combinatorial

control of the activation of a number of different genes [3,5–7].

The large number of potentially interacting TFs and multiple

target genes makes the gene-level experimental identification of

specific TF activity in a cell technically difficult and time

consuming. This has necesitated the development of bioinfor-

matics-based approaches which predict specific TF interaction

inferred from global gene expression data and putative TF binding

sequences present in regulatory regions [8–11]. These well-

established gene expression profiles and validated TF activities

are used to train the model algorithms; however, many of the TFs

predicted by such analyzes to play roles in specific tissues have not

yet been confirmed experimentally. The direct analysis of the

biochemical activities of the TFs themselves would, therefore, be of

great value to biochemical and systems biological research.

Only a few studies have described experimental methods to

systematically detect TF activation in response to intracellular

signalling [7,12–13]. Qiao et al. [7] reported an array-based

approach for the analysis of the binding activities of TFs. Here,

proteins bound to specific labelled DNA binding sequences were

separated on an agarose gel and the TF-bound DNA was purified

from the gel and analyzed using DNA arrays. This method is

dependent on the in vitro binding of the TFs to the respective DNA

binding sequences, the interaction being strong enough to

withstand gel electrophoresis, and sufficient resolving power in

the gel. Romanov et al. [12] and Botvinnik et al. [13] both

described reporter based systems to study intracellular signalling.

The Romanov system used homogenous reporters where TF

binding sites (TFBS) were inserted upstream of reporters that

differed in the position of a restriction enzyme site. Cellular

mRNA transcripts were amplified and labelled, the products were
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digested and separated based on their length, before being

detected and quantified. The Botvinnik system differed in the

design of the reporters, which were in 4-letter ‘words’, and in this

system the transcripts isolated from cells were amplified, labelled

and then analyzed on an array. While these approaches have

provided tantalizing evidence for the potential power of systematic

technologies to analyze TFs, they also have weaknesses. They all

require an enzymatic labelling step where efficiencies can vary and

significant loss of product or signal can occur. Also, each system

relies on a single detection method and thus there is no way to

independently validate the data within the experiment.

Here, we describe a reporter based system utilizing two

detection platforms, based on quantitative real-time PCR (qPCR)

and microarrays, for the measurement of TF activity in

mammalian cells. These have the advantage that qPCR is

sensitive and reproducible, has a large dynamic range and allows

the simultaneous analysis of multiple samples, which makes it

suitable for applications where cell numbers are limited [14–16].

Microarrays are sensitive [17–18] and relatively cheap making

high throughput analysis of large experiments feasible [19].

Accurate quantification using microarrays remains a challenge.

Therefore, we apply these methods as two independent platforms;

microarrays as high throughput screens and qPCR for the

accurate quantification of TF activity. With our current library

of 60 TFs, and using ten different treatments, we show that our

system is specific and sensitive, scalable, and allows the simulta-

neous detection of multiple TF activities.

Figure 1. A schematic representation of the method. In each reporter plasmid, the transcription factor binding site (TFBS) and the thymidine
kinase promoter (PTK) were present upstream of the transcriptional start site (TSS) and the unique DNA reporter (UR) sequence. The cassette was
flanked by two poly(A) signals to prevent transcriptional interference due to the circular plasmid. Each TFBS was assigned a specific UR sequence to
act as a signature for its corresponding TF activity. These plasmids were tranfected into cells and the cells treated with compounds of interest, mRNA
was isolated, reverse transcribed and analyzed on two detection platforms. For microarray analysis, cDNA was amplified by PCR using a Cy3 or Cy5-
labelled universal sense forward primer (Cy3/Cy5-AG_URF) in conjunction with a universal antisense reverse primer (prMJ264) to generate a mixture
of 120 bp fluorescently labelled PCR amplicons that could be analyzed on DNA microarrays. For the qPCR reaction, a forward primer, specific for each
UR, was used in combination with a universal FAM-labelled hydrolysis probe (prMJ245) and a universal reverse primer (prMJ264).
doi:10.1371/journal.pone.0050521.g001
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Methods

All quantification experiments contained four biological repli-

cates and each experiment was repeated at least three times.

Chemicals
All chemicals are from Sigma unless otherwise stated.

Phosphodiesterase inhibitors were obtained from Calbiochem

unless otherwise stated.

General Culture Conditions
Escherichia coli DH5a cells were used for the construction,

screening and propagation of plasmid constructs as described in

Jiwaji et al. [20]. HEK293 cells (ATCC Number CRL-1573) were

maintained in DMEM supplemented with 4 mM L-glutamine and

10% FBS at 37uC in an atmosphere that contained 5% CO2.

Plasmid Description
DNA encoding a multiple cloning cassette and thymidine kinase

promoter (PTK) was inserted between Kpn I and Hind III upstream

of the firefly luciferase gene (Fluc) in pGL3 Basic (Promega)

generating pMN2. DNA encoding TFBS sequences (Table S2)

were inserted upstream of PTK. Fluc was then replaced with

a unique DNA reporter sequence (UR) such that each TFBS was

attached to a different UR (Table S2). The sequence of an

example plasmid has been submitted to GenBank (Accession

number GU217589).

Transfection and Treatment of HEK293 Cells
46106 HEK293 cells were transfected using Genejuice (Nova-

gen), as recommended by the manufacturer, with 800 ng DNA

consisting of 11.5 ng pRL-SV40 (Promega) and 11.5 ng of each

TFBS-encoding plasmid. After 16 hours, cells were treated with

50 mM CdCl2, 1 mM dexamethasone, 25 mM forskolin or

0.05 mM phorbol-12-myristate 13-acetate (TPA) for 4 hours

before mRNA and protein analysis. In the phosphodiesterase

inhibitor (PDEI) experiment, transfected HEK293 cells were

treated with 25 mM forskolin, 1 mM 8-bromo-cAMP, 1 mM 8-

bromo-cGMP, 1 mM 3-isobutyl-1-methylxanthine (IBMX),

1 mM erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), 1 mM

rolipram, 1 mM vardenafil citrate (Sequoia Research Products)

or 1 mM sildenafil citrate (Sequoia Research Products) for 2

hours.

Cyclic AMP XPTM and Cyclic GMP XPTM Assay Kits (Cell

Signalling) were used to determine the intracellular levels of cAMP

and cGMP in HEK293 cells treated with forskolin, cyclic

nucleotide analogues or PDEI at the concentrations used above

and these were compared to the levels of cAMP and cGMP in

untreated cells.

Western Blots
Protein extracts were separated on Nu-PAGE 4–12% Tris-

Acetate acrylamide gels (Invitrogen) in 3-(N-morpholino)propane

sulfonic acid (MOPS)-sodium dodecyl sulphate (SDS) buffer

(Invitrogen). SDS-PAGE and western blotting were performed

using standard protocols. Gels were transferred onto Immobilon-P

membrane (Millipore). Cell Signalling primary antibodies were

used unless otherwise stated: phospho-CREB/phospho-ATF

(9198S), CREB/ATF (9197S), SP1 (Santa Cruz antibodies;

sc14027), phospho-c-jun (9261S), c-jun (9165S), phospho-IkB
(2859S), IkB (4812S) and a-tubulin (Santa Cruz antibodies; sc-

8035). Anti-rabbit (Thermo Scientific, 31460) and anti-mouse

(Sigma, A4416) peroxidase-conjugated goat secondary antibodies

were used. Signal was detected with SuperSignal West Pico

Chemiluminescent substrate (Thermo Scientific) using the

GBOX/CHEMI-HR16-E-BOX Gel Documentation System

Figure 2. Analysis of induction in cadmium chloride-treated cells transfected with TFBS-UR plasmids. HEK293 cells transfected with
a plasmid pool, that included the plasmids listed in Table S2 and pRL-SV40 and were subsequently treated with cadmium. (A) Microarray-based
detection of TF derived activation of UR expression. (B) qPCR-based detection of TF-derived activation of UR expression. Values are presented as log2
treatments of the fold induction of the TFBS-directed UR expression after treatment with the inducer of interest. The grey bar represents treatment-
independent changes in the system. TFBS marked with * represent treatment-dependent effects on the TF library. Numerical data is presented in
Table S3. A statistical analysis of the qPCR assay data is shown in Figure 3.
doi:10.1371/journal.pone.0050521.g002

Table 1. Activation of transcription factors by specific
treatments on the qPCR platform.

Treatment TFs
Log2 Fold
Induction p-value

Dexamethasone GRE 3.860.6 1.061029

GRE (PRE/ARE/MRE) 2.960.4 1.061029

SRE/SRF 2.060.3 1.061029

TPA NF-kB 4.460.6 1.061029

c-Rel; RelA 3.960.4 1.061029

NF-kB 3.260.2 1.061029

c-Jun 3.260.7 1.061029

AP1/TRE 2.360.4 2.261025

Forskolin CREB 13.660.5 1.061029

ATF/1/2/3 12.860.1 1.061029

SRE/SRF 3.360.2 1.061029

8-bromo-cAMP CREB 4.560.2 1.061029

ATF 3.460.4 1.061029

IBMX CREB 4.660.1 1.061029

ATF 4.160.0 1.061029

EHNA CREB 4.160.3 2.261025

ATF 3.660.2 2.561023

Rolipram CREB 4.460.3 1.061029

ATF 3.660.2 1.061029

8-bromo-cGMP CREB 0.360.2 5.161021

ATF 0.260.2 4.061021

Vardenafil citrate CREB 0.360.2 2.561021

ATF 0.760.2 5.261021

Sildenafil citrate CREB 0.560.2 4.161021

ATF 20.360.2 5.561021

HEK293 cells transfected with pool of plasmids (listed in Table S2 and pRL-SV40)
and were subsequently treated with chemicals of interest. Values are presented
as log2 treatments of the fold induction of the TFBS-directed UR expression
after treatment with the inducer of interest. The errors are calculated as 1
standard error of the mean each way. P-values indicate the posterior probability
that there was no difference in expression levels between the control and
treatment samples so a lower p-value would indicate a greater likelihood that
there was a difference between the control and treatment samples.
Abbreviations: IBMX: 3-isobutyl-1-methylxanthine, EHNA: erythro-9-(2-hydroxy-
3-nonyl)adenine.
doi:10.1371/journal.pone.0050521.t001
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(Syngene) and analyzed with the GeneSnap software (Syngene) or

ImageJ (http://rsb.info.nih.gov/ij). Membranes were stripped of

antibodies and then re-probed for the non-phosphorylated protein

or for a-tubulin to verify equal protein loading.

RNA Purification and cDNA Synthesis
Total RNA was prepared using the miRNeasy mini kit

(Qiagen), mRNA was isolated using Dynabeads mRNA Purifica-

tion Kit (Invitrogen) and was reverse transcribed using Superscript

II enzyme (Invitrogen). UR transcripts, expressed from the TFBS-

UR encoding plasmids, and Rluc, expressed from pRL-SV40,

were analyzed using microarrays and qPCR respectively.

Microarrays
Unmodified HPLC-purified oligonucleotide captures (Table S2)

were diluted to 25 mM in 0.15 M NaH2PO4 (pH 8.5) and 280 rL
used per spot. 8 subarrays were generated on each epoxy-coated

glass slide using the Scienion SciFlexarrayer S3; each subarray

included 5 replicates of each UR and Rluc. The fabricated slides

were incubated overnight at ambient temperature in 70% relative

humidity, pre-hybridised and washed using standard conditions.

Duplicate UR and Rluc PCR reactions were performed for

each cDNA sample (3 mL) using Cy3/Cy5-labeled sense and

unlabelled antisense primers (2 mM UR primers and 1 mM Rluc

primers, Table S1) for 25 cycles in a Mastercycler epgradient PCR

Figure 3. qPCR analysis of induction of TFBS-directed UR expression in treated cells transfected with TFBS-UR plasmids. The
statistical model calculated a posterior probability distribution over the mean of the log normalized fold induction. The p-value indicated the
posterior probability that there was no difference in expression levels between the control and treatment samples. 95% credible intervals were also
calculated for the mean log normalized fold induction and indicate the region where there is a 95% probability that the mean effect lies within it. Bars
not crossing the 0 line show significant evidence for an effect following treatment with the inducer of interest.
doi:10.1371/journal.pone.0050521.g003
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machine (Eppendorf) using HotStarTaq DNA polymerase (Qia-

gen). The fluorescently-labelled amplicons were purified using the

QIAquick PCR purification kit (Qiagen), diluted 4 fold with

hybridization buffer, denatured for 5 minutes at 95uC, and 4 mL of

the diluted amplicons were placed on two successive subarrays

which were incubated overnight in a humidified chamber at 53uC.
Microarray slides were washed once in 2XSSC, 0.1% SDS at

53uC for 5 minutes, twice in 1XSSC for 2 minutes at room

temperature and finally twice in 0.1XSSC for 1 minute at room

temperature. The microarray slides were dried by centrifugation at

1,6006g for 5 minutes.

Fluorescent images were captured and analyzed with a Perkin-

Elmer ScanArray Express scanner and software. Transfection

efficiency was accounted for by normalizing the mean signal-

background value for each UR to the corresponding signal-

background value for Rluc. Changes in gene expression were

quantified by calculating the log2 ratio of normalized values for

treated cells compared to untreated cells.

qPCR
UR and Rluc analysis was conducted with Lightcycler Probes

Master mix (Roche) in a Lightcycler 480 (Roche). Primer

sequences are shown in Tables S1 and S2. A 10 fold dilution

series of UR or Rluc linear dsDNA was created and a standard

curve generated as described before [20–21]. Efficiency of the

qPCR reaction (E) was calculated and primer pairs with E= 1.6–

2.4 were typically used [22]. Unknown samples were compared to

the standard curve and the copy number calculated. Transfection

efficiency was accounted for by normalizing the UR copy numbers

to that of Rluc in each sample [20]. Changes in gene expression

were quantified by comparing the log2 ratio for treated cells to

untreated cells.

Data Normalization
A pool of TFBS-UR encoding reporter plasmids and the control

plasmid pRL-SV40 was used to transfect HEK293 cells. Yin et al.

[23] reported an inverse correlation between plasmid size and the

transfection efficiency of that plasmid. As all the reporter plasmids

and pRL-SV40 were similar in size, we determined that the

transfection efficiencies would not vary significantly between these

plasmids. If there were differences in the rate of plasmid uptake

between plasmids, these rates would be comparable for the same

plasmid between the different biological samples.

We have previously demonstrated that Rluc, expressed from the

co-transfected plasmid pRL-SV40, was better as a reference for

normalization than the products of many commonly used

endogenous chromosomal reference genes [20]. This is because

it is stably expressed at levels similar to those of the reporter

plasmids and it takes into account all the factors that affect

expression within the experiment, including transfection efficiency.

The inclusion of a co-transfected control significantly improved

the reproducibility and the validity of biological experiments. The

use of this Rluc normalization protocol should ensure that any

statistically significant differences in TFBS-directed UR expression

after sample treatment were a result of the treatment of interest.

Statistical Analyses
All data was transformed by taking logarithms to the base 2. For

microarrays this was the value for the normalized relative

fluorescence, and for qPCR, this was the normalized copy number

Figure 4. Induction of selected TFBS-directed UR expression in HEK293 cells after treatment with cadmium, dexamethasone, TPA
and forskolin. HEK293 cells transfected with a plasmid pool, that included the plasmids listed in Table S2 and pRL-SV40 and were subsequently
treated with drugs of interest. (A) MRE-directed UR expression after treatment with cadmium. (B) GRE-directed UR expression after treatment with
dexamethasone. (C) NF-kB-directed UR expression after treatment with TPA. (D) CREB-directed UR expression after treatment with forskolin. Values
are presented as log2 treatments of the fold induction of the TFBS-directed UR expression after treatment with the inducer of interest. The error bars
are calculated as 1 standard error of the mean each way.
doi:10.1371/journal.pone.0050521.g004
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obtained from the Ct values. The log transformed data were

analyzed in JAGS [24], a Gibbs sampler for hierarchical models

and Coda [25], a tool for examining Markov Chain Monte Carlo

runs. For the microarray data, a hierarchical repeated-measures

two-way Bayesian ANOVA model was used. For the qPCR data,

a three-way Bayesian ANOVA model was used.

Results and Discussion

Microarray-based analysis required the presence of a unique

sequence that could be specifically identified for each signal of

interest. In contrast, qPCR requires the presence of three

sequences on the reporter; a forward primer, a fluorescently-

labelled probe binding site and a reverse primer. To meet the

criteria for both these techniques, a DNA reporter was designed

with a 23 nucleotide variable unique reporter (UR) region

attached to a constant 58 nucleotide sequence (Figure 1). For

the microarrays, the variable region was specifically targeted with

an anti-sense capture (Table S2). For qPCR, the specific forward

primer (Table S2) overlapped the variable region and the

fluorescent probe and the reverse primer were located in the

constant region, allowing specific qPCR reactions to be conducted

for each UR. This design minimized the differences between the

URs so the same reaction parameters could be used for all the UR

constructs. A program was written to generate UR sequences that

were designed to be unique in the human genome, specific,

comparable in physicochemical parameters (length, GC content,

melting temperatures, with minimal secondary structure and

without tetranucleotide runs) and detectable by both qPCR and

microarrays (Daly et al., manuscript in preparation). Experimental

analysis of these automatically generated sequences showed that

captures and forward primers could differentiate between URs

with a high degree of sequence identity (Arrays: 74%; qPCR:

83%).

HEK293 cells were transfected with plasmids containing the

transcription factor binding sites and unique reporters (TFBS-UR),

the cells treated under a variety of conditions, mRNA purified and

cDNA synthesized. This cDNA was analyzed using both

microarray and qPCR-based detection platforms (Figure 1). We

routinely observed log2 values between 21 to +1, corresponding

Figure 5. Induction of the TF proteins of interest in HEK293 cells after treatment with forskolin, TPA and cadmium. Proteins extracted
from treated and control cells were analyzed using Western blots and TF-specific antibodies. The levels of phosphorylated TFs and inactive TFs were
analyzed for (A) CREB and ATF, (B) IkB, (C) c-jun and (D) SP1. Tubulin was used as a loading control. Quantification of the levels of protein on the
Western blots showed a 1.6 and 1.3 fold increase in P-CREB and P-ATF after treatment with forskolin and a 1.5 and 1.6 fold increase in P-IkB, and P-c-
jun after treatment with TPA. Treatment of HEK293 cells with cadmium chloride, dexamethasone, forskolin and TPA resulted in a 1.1, 1.1. 1.0 and 1.0
fold increase in the levels of SP1 protein. (E) Increased hMTIIA gene expression in HEK293 cells after treatment with cadmium. Expression of the
cadmium-responsive hMTIIa gene was normalized to the expression of the chromosomal reference gene B2M. Abbreviations: -, carrier only control; C,
cadmium; D, dexamethasone; F, forskolin; T, TPA.
doi:10.1371/journal.pone.0050521.g005
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to 2 fold repression or induction, for basal levels of TF activity on

both detection platforms and attributed these to treatment-

independent biological variation in the system. For stringency,

data with values between these cut-off points and data with error

bars that brought them into this region were not considered to be

significant.

Initially, HEK293 cells were treated with cadmium. Both

microarray and qPCR platforms showed that cadmium treatment

resulted in an increase in activation of metal responsive element

(MRE) and antioxidant response element (ARE) directed UR

expression (Figures 2A and 2B, Table S3). Cadmium is known to

activate the metal responsive (MR) pathway and the MRE [26]

and ARE have been reported to bind TFBSs in response to cell

stress, especially after exposure to xenobiotics like cadmium [27–

28]. This information supports the data collected from both

detection platforms. No TF activity was significantly down-

regulated after cadmium treatment (Figures 2A and 2B, Table

S3). Intra-experimental data showed up to 30% variation between

biological replicates, and in some cases inter-experimental fold-

change values varied up to 60%; however, in both cases the

direction of change and the activity profiles remained essentially

the same where significant fold change occurred.

A statistical model that calculated a posterior probability

distribution over the mean of the log normalized fold induction

was used to test the validity of the data. The tails of this posterior

distribution were compared to 0 (indicating no induction), to

obtain a p-value. This p-value indicated the posterior probability

that there was no difference in expression levels between the

control and treatment samples. 95% credible intervals were

calculated for the mean log normalized fold induction, indicating

the region where there is a 95% probability that the mean effect

lies within it. Bars not crossing the 0 line show significant evidence

for an effect following treatment with the corresponding inducer.

The analysis of data generated for cadmium-treated HEK293 cells

on the qPCR-based platform (Figure 3) is in agreement with the

conclusions drawn from the biological data; cadmium treatment of

HEK293 cells has a significant effect on two TFs from the library,

MRE and ARE.

Alternative inducers were then used to show the selectivity of

the method (Table 1). Treatment with dexamethasone resulted in

the activation of two different GREs and the SRE/SRF, consistent

with activation of the glucocorticoid response (GR) pathway [29].

Treatment with TPA resulted in increased NF-kB and AP-1

activities; these both have important roles in the cellular pro-

liferation and immune responses respectively and have been

shown previously to be induced by TPA [30–32]. Forskolin

treatment caused an activation of CREB and ATF, two cAMP

responsive proteins active in the mitogen-activated protein kinase

and G-protein coupled receptor pathways respectively, consistent

with an increase in cellular cAMP levels [33–34].

To demonstrate that TF activity was related concentrations of

inducer, reporters that showed changes in their activity after

treatment (MRE, CREB, NF-kB and GRE) were studied at

a range of inducer concentrations in HEK293 cells (Figure 4).

Cadmium, TPA and forskolin produced generally similar patterns

of TF activation with approximately linear response to increasing

inducer concentration up to concentrations that became toxic to

the cells. MRE activity increased to 100 mM cadmium but

decreased above 100 mM (Figure 4A). NF-kB activity increased

significantly upon the addition of even low levels of TPA, up to

0.05 mM, but then decreased only gradually to 5 mM, suggesting

that either the cell population showed a range of tolerance to TPA

toxicity, or that cells were able to adapt to high TPA levels

(Figure 4C). Finally, treatment of cells with forskolin resulted in

increased CREB activity at concentrations up to 500 mM, above

which CREB activity dropped significantly showing marked

toxicity (Figure 4D). In contrast, GRE expression induced by

dexamethasone showed a rather different profile; GRE activity

was induced comparably by the addition of between 0.1 to 10 mM
dexamethasone, with no apparent concentration dependence.

Concentrations above 10 mM resulted in reduction in the levels of

activity due to toxicity (Figure 4B). At concentrations above which

the inducers were toxic to the cells, the TF activity profiles

changed from inducer-dependent changes in TF activity to

toxicity-related changes. When inducers were at concentrations

that were toxic to the cell, we observed an increase in the activity

of TFs that were indicators of cellular stress responses and

apoptosis including p53, STAT3 and c-Jun (data not shown).

There was also a dramatic increase in the variation between the

biological replicates within the experiment (up to 300%). For

studies focused on the effect of inducers on cell signalling, we

observed that it was very important to determine the concentra-

tions at which the inducer was toxic to the cell and to conduct

studies below this threshold concentration.

To show the specificity of the measured forskolin effect, and the

ability of the platform to detect the effects of chemical in-

tervention, the cells were treated with phosphodiesterase inhibitors

(PDEIs), which target the enzymes involved in the regulation of

cyclic nucleotide metabolism, and are classified as non-specific (N),

cAMP-specific (A) or cGMP-specific (G) [35] depending on their

action (Figure S1). PDEIs used were selected based on their cyclic

nucleotide selectivity and specificity [35], and included IBMX (N)

[36–37], EHNA (N) [36], rolipram (A) [36–38], vardenafil (G) and

sildenafil (G) [37,39]. In addition, cell membrane-permeable stable

analogues of cAMP and cGMP were included as internal controls.

HEK293 cells were treated with forskolin, 8-bromo-cAMP, 8-

bromo-cGMP or PDEI, and the levels of cAMP and cGMP in

treated cells were measured and compared to untreated cells.

HEK293 cells treated with forskolin, 8-bromo-cAMP, IBMX,

EHNA and rolipram showed elevated levels of cellular cAMP and

those treated with 8-bromo-cGMP, IBMX, EHNA, vardenafil and

sildenafil showed elevated levels of cellular cGMP (Table S4).

The effect of these treatments on TF activity in treated cells was

measured on the microarray and qPCR platforms. The data

obtained on the two detection platforms was comparable.

Treatment of HEK293 cells with 8-bromo-cAMP, non-selective

(IBMX, EHNA) or cAMP-specific PDEI (rolipram) resulted in

increased CREB and ATF activity (Table 1). In contrast, increased

cGMP levels following treatment with 8-bromo-cGMP or cGMP-

specific PDEIs (vardenafil and sildenafil), did not result in elevated

CREB or ATF activity (Table 1). The differences in the

transcriptional readout after PDEI treatment of HEK293 cells

allowed us to differentiate between non-specific/cAMP-specific

and cGMP-specific PDEI treatments at the TF activity level,

opening up significant opportunities for screening new com-

pounds.

To independently validate the changes in TF activity observed

on the microarray and qPCR platforms, total protein extracted

from treated HEK293 cells was analyzed by western blots.

Forskolin-treated HEK293 cells showed increased levels of

phospho-CREB and phospho-ATF (Figure 5A). TPA treatment

resulted in elevated levels of phospho-IkB, which is known to

correlate to phospho-NF-kB in the cell, and a slight increase in

phospho-c-jun, which is one of the proteins that constitutes and

activates the AP1 TF complex (Figure 5B and 5C). SP1, a TF

involved in differentiation, was included as a negative control in

this experiment as its levels should be unaffected by the conditions

being tested in this report ([40], Figure 5D). Unfortunately, no
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antibodies were available to study the effect of cadmium on the

MR pathway. However, Karin et al. [41] have reported that the

human metallothionein IIa gene (hMTIIa) was responsive to

cadmium treatment so hMTIIa expression in treated cells was used

to confirm activation of the MR. Expression of hMTIIa was

normalized to B2M, the stably-expressed chromosomal gene for

beta-2-microglobulin [20]. hMTIIa expression increased dramat-

ically (from 0.0360.01 to 4.4160.24, Figure 5E) after treatment of

HEK293 cells with cadmium, representing a 147 fold increase.

These data independently corroborate the biological data collected

on the microarray and qPCR detections platforms, confirming

that the up-regulation of TFs activity observed on the detection

platforms also existed at the protein level.

Conclusions
Our experimental system exhibits a number of advantages for

the analysis of TF activity. The design of the UR ensures that we

have access to a large number of reporters, and we are in the

process of completing a 1000 component library. The lack of

enzymatic labeling steps reduces inherent errors, and the direct

analysis of multiplexed PCR reactions and the inclusion of internal

normalization controls (e.g. Rluc and pMN222-pMN224) allow

the generation of comparative data between biological samples

and between independent experiments. The availability of two

detection platforms ensures that the data can be validated by two

independent systems from the same experiment.

This sensor platform, as with other reporter-based platforms, does

suffer from a few technical limitations. Transfection of cells with

reporter plasmids is required, and for larger libraries this needs to be

performedwith a relatively high plasmid concentration; this could in

itself influencecellularprocesses. Inaddition, transfectionofplasmids

encodingmultiple copies of TFBS could lead toTF sequestration for

low copy number TFs, which in turn could affect cellular signalling,

although the individual plasmid concentrations are relatively low.

Botvinnik et al. [13] reported that the use of TFBS-encoding

constructs in pools reduced these risks and our data corroborates

thisobservation.However, itwouldbeadvisable tovalidate theresults

from the multiplexed platform using an alternative system. It is also

important tonote that, aswithany transfectionbased strategy that for

cell lines that are difficult to transfect, transfection efficiency could be

low and reduced levels ofmRNA transcripts produced,making these

reporter systems less suitable foruse in thesecell lines.With the system

reported in this paper it would be possible to concatenate the TFBS-

UR reporters and deliver these constructs using viral vectors to

overcome these problems, although this requires the development of

sufficiently strong insulator elements that could be inserted between

the reporters to prevent the results being influenced by read-through

from the stronger TFs. One last technical limitation is linked to the

high throughputmicroarray-based detection platform.This analysis

currently requires PCR amplification and labelling of the UR

transcripts before detection. This necessitates some optimization of

PCRconditions, and it is difficult to analyzeTFs across abroad range

ofactivities in the sameexperiment, as it is likely thatweak signalsmay

not be detected. To address this, the array analysis was performed on

samples from three sets of PCR reactions generated at increasing

cycle numbers to ensure that signal was detected from low level

transcripts while still maintaining accurate analysis of high level

transcripts.

Our proof of concept biological treatments raises interesting

applications for this technology from studying signalling pathways of

interest to building and testing inferential models of signalling to

screeningdrugs fordesired therapeuticorundesiredoff-target effects.

Thesystemisstraightforward, robust,andallowsmoreinformationto

be extracted from each experiment, a factor that is increasingly

important considering the time and cost of biological studies.

Supporting Information

Figure S1 Schematic representation of the cAMP and
cGMP signalling pathways in mammalian cells. The

cyclic nucleotides cAMP and cGMP are generated by the

activation of membrane-bound receptors coupled to AC or GC.

cAMP stimulates the cAMP-sensitive PDE and PKA both of

which result in the stimulation of cAMP-dependent cellular

responses including the activation of the TFs CREB and ATF.

cGMP activates PKG and the cGMP-dependent PDE which in

turn activates the cGMP dependent cellular pathways. IBMX

inhibits non-specific PDE 1, EHNA inhibits cAMP- and cGMP-

specific PDE2, rolipram inhibits cAMP-specific PDE4 and both

vardenafil and sildenafil inhibit cGMP-specific PDE5. Abbrevia-

tions: AC: adenylyl cyclase, GCP: guanylyl cyclase (particulate),

GCS: guanylyl cyclase (soluble), EHNA: erythro-9-(2-hydroxy-3-

nonyl)adenine, IBMX: 3-isobutyl-1-methylxanthine, PKA: protein

kinase A, PKG: protein kinase G.

(TIF)

Table S1 Primers used in this study.

(DOCX)

Table S2 List of plasmids in the unique reporter-based
sensor platform library to date.

(DOCX)

Table S3 Data for ‘Analysis of induction in cadmium
chloride-treated cells transfected with TFBS-UR plas-
mids’. HEK293 cells transfected with a plasmid pool, that

included the plasmids listed in Table S2 and pRL-SV40 and were

subsequently treated with cadmium. (A) Microarray-based de-

tection of TF derived activation of UR expression. (B) qPCR-

based detection of TF-derived activation of UR expression. Values

are presented as log2 treatments of the fold induction of the TFBS-

directed UR expression after treatment with the inducer of

interest. TFBS marked with in red represent treatment-dependent

effects on the TF library. The SEM values are calculated as 1

standard error of the mean each way.

(DOCX)

Table S4 Changes in the levels of cAMP and cGMP in
HEK293 cells treated with cyclic nucleotide analogues or
PDEI. HEK293 cells transfected with pool of plasmids (listed in

Table S2 and pRL-SV40) and were subsequently treated with

chemicals of interest. Levels of intracellular cAMP and cGMP

were quantified and are presented as the increase in the

intracellular cAMP or cGMP levels in cells treated with inducers

of interest compared to the levels in untreated cells. The errors are

calculated as 1 standard error of the mean each way. Abbrevia-

tions: IBMX: 3-isobutyl-1-methylxanthine, EHNA: erythro-9-(2-

hydroxy-3-nonyl)adenine.

(DOCX)
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